
Package ‘IsoriX’
January 20, 2025

Version 0.9.3
Encoding UTF-8
Title Isoscape Computation and Inference of Spatial Origins using

Mixed Models
Depends R (>= 3.5.0)
Imports graphics, grDevices, grid, lattice (>= 0.22-2), latticeExtra,

methods, numDeriv, rasterVis (>= 0.51.6), spaMM (>= 3.13),
stats, terra, tools, utils, viridisLite

Description Building isoscapes using mixed models and inferring the geographic
origin of samples based on their isotopic ratios. This package is essentially a
simplified interface to several other packages which implements a new
statistical framework based on mixed models. It uses 'spaMM' for fitting and
predicting isoscapes, and assigning an organism's origin depending on its
isotopic ratio. 'IsoriX' also relies heavily on the package 'rasterVis' for
plotting the maps produced with 'terra' using 'lattice'.

License GPL (>= 2)
Suggests colorspace, elevatr, gmp, magick, rgl, spelling, testthat,

webshot2, withr
LazyData true

URL https://github.com/courtiol/IsoriX,
https://bookdown.org/content/782

BugReports https://github.com/courtiol/IsoriX/issues

RoxygenNote 7.3.2
Language en-GB
NeedsCompilation no
Author Alexandre Courtiol [aut, cre] (<https://orcid.org/0000-0003-0637-2959>),

François Rousset [aut] (<https://orcid.org/0000-0003-4670-0371>),
Marie-Sophie Rohwaeder [aut],
Stephanie Kramer-Schadt [aut] (<https://orcid.org/0000-0002-9269-4446>)

Maintainer Alexandre Courtiol <alexandre.courtiol@gmail.com>
Repository CRAN
Date/Publication 2024-09-08 07:20:05 UTC

1

https://github.com/courtiol/IsoriX
https://bookdown.org/content/782
https://github.com/courtiol/IsoriX/issues
https://orcid.org/0000-0003-0637-2959
https://orcid.org/0000-0003-4670-0371
https://orcid.org/0000-0002-9269-4446

2 IsoriX-package

Contents

IsoriX-package . 2
AssignDataAlien . 5
AssignDataBat . 6
AssignDataBat2 . 7
CalibDataAlien . 8
CalibDataBat . 10
CalibDataBat2 . 11
calibfit . 13
CALIBFIT-class . 19
CountryBorders . 20
create_aliens . 21
downloadfile . 23
ElevRasterDE . 24
getelev . 25
getprecip . 27
GNIPDataDE . 28
GNIPDataEUagg . 29
isofind . 30
ISOFIND-class . 34
isofit . 34
isomultifit . 38
isomultiscape . 40
isopalette2 . 42
IsoriX-defunct . 44
isoscape . 44
ISOSCAPE-class . 46
OceanMask . 47
options . 47
plots . 49
PrecipBrickDE . 53
prepcipitate . 54
prepraster . 55
prepsources . 58
serialize . 61

Index 65

IsoriX-package Isoscape Computation and Inference of Spatial Origins using Mixed
Models

IsoriX-package 3

Description

IsoriX can be used for building isoscapes using mixed models and inferring the geographic origin
of organisms based on their isotopic signature. This package is essentially a simplified interface
combining several other packages which implements the statistical framework proposed by Courtiol
& Rousset 2017. It uses the package spaMM for fitting and predicting isoscapes, and for performing
the assignment. IsoriX also heavily relies on the package rasterVis for plotting the maps produced
with the package terra using the powerful package lattice visualization system.

Details

Below, we describe briefly the main steps of the workflow that aims at performing the construction
of an isoscape and the assignment of organisms of unknown geographic origin(s) based on their
isotopic signature. We advise you to also read the detailed book chapter we wrote (in press), as well
as our online documentation, which essentially cover the same material in a more detailed manner.
You should also read the dedicated help pages of the functions you are using.

The statistical methods will not be detailed in this document but information on the computation of
isoscapes is available in Courtiol & Rousset 2017, and information on the calibration and assign-
ment in the appendix of Courtiol et al. 2019.

1. Fitting the isoscape model with isofit:
The function isofit fits a geostatistical model, which approximates the relationship between
the topographic features of a location and its isotopic signature (see isofit for details). The
model fits observations of isotopic delta values at several geographic locations (hereafter,
called sources). One common type of sources used in ecology is the delta values for hydro-
gen in precipitation water collected at weather stations, but one may also use measurements
performed on sedentary organisms. In either case, the accuracy of the isoscape (and thereby
the accuracy of assignments) increases with the number and spatial coverage of the sources.
The function isofit is designed to fit the model on data aggregated per location across all
measurements. If instead you want to fit the model on measurements split per time intervals
(e.g. per month), within each location, you should use the alternative function isomultifit.
Either way the data must be prepared using the function prepsources.

2. Preparing the structural raster with prepraster:
Building isoscapes and assigning organisms to their origin requires an adequate structural
raster, i.e. a matrix representing a spatial grid. The function prepraster allows restricting
the extent of the raster to the area covered by isoscape data (in order to avoid extrapolation)
and to reduce the resolution of the original structural raster (in order to speed up computation
in all following steps). Note that aggregating the raster may lead to different results for the
assignment, if the structural raster is used to define a covariate. This is because the values of
raster cells changes depending on the aggregation function, which in turn will affect model
predictions.
We provide the function getelev to download an elevation raster for the entire world at a res-
olution of one altitude per square-km, and other rasters may be used. Such an elevation raster
can be used as a structural raster. We have also stored a low resolution raster for Germany in
our package (see ElevRasterDE) for users to try things out, but we do not encourage its use
for real application.

3. Predicting the isoscape across the area covered by the elevation raster with isoscape:

https://bookdown.org/content/782/

4 IsoriX-package

The function isoscape generates the isoscapes: it uses the fitted geostatistical models to pre-
dict the isotopic values (and several variances associated to those) for each raster cell defined
by the structural raster. If the model has been fitted with isomultifit, you should use the
alternative function isomultiscape to generate the isoscape.
Our package allows the production of fine-tuned isoscape figures (using the function plot.ISOSCAPE).
Alternatively, the isoscape rasters can be exported as ascii raster and edited in any Geographic
Information System (GIS) software (see isoscape and the online documentation for details).

4. Fitting the calibration model with calibfit:
In most cases, organisms are of another kind than the sources used to build the isoscape (i.e.
the isoscape is built on precipitation isotopic values and organisms are not water drops, but
e.g. the fur of some bats). In such a case, the hydrogen delta values of the sampled organisms
were modulated by their distinct physiology and do not directly correspond to the isotopic
signature of the sources. In this situation, one must use sedentary organisms to study the
relationship between the isotopic values in organisms and that of their environment. The
function calibfit fits a statistical model on such a calibration dataset.
If the isoscape is directly built from isotopic values of organisms, there is no need to fit a
calibration model.

5. Inferring spatial origins of samples with isofind:
The function isofind tests for each location across the isoscape if it presents a similar iso-
topic signature than the unknown origin of a given individual(s). This assignment procedure
considered the some (but not all, see Courtiol et al. 2019) uncertainty stemming from the
model fits (geostatistical models and calibration model). The function plot.ISOFIND then
draws such assignment by plotting the most likely origin with the prediction region around it.
When several organisms are being assigned, both assignments at the level of each sample and
a single assignment for the whole group can be performed.

Note

Please note that the geographic coordinates (latitude, longitude) of any spatial data (locations,
rasters) must be given in decimal degrees following the WGS84 spheroid standard.

Author(s)

Alexandre Courtiol <alexandre.courtiol@gmail.com>,

François Rousset,

Marie-Sophie Rohwaeder,

Stephanie Kramer-Schadt <kramer@izw-berlin.de>

References

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). "Isoscape computation and inference of spatial origins with mixed models
using the R package IsoriX." In Hobson KA, Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

Courtiol A, Rousset F (2017). "Modelling isoscapes using mixed models." bioRxiv. doi: 10.1101/207662,
link.

https://www.biorxiv.org/content/10.1101/207662v1

AssignDataAlien 5

See Also

Useful links:

• https://github.com/courtiol/IsoriX

• https://bookdown.org/content/782

• Report bugs at https://github.com/courtiol/IsoriX/issues

AssignDataAlien Simulated assignment dataset

Description

This dataset contains simulated hydrogen delta values. The data can be used as an example to
perform assignments using the function isofind.

Format

A dataframe with 10 observations and 2 variables:

sample_ID (factor) Identification of the sample
sample_value (numeric) Hydrogen delta value of the tissue

See Also

isofind to perform assignments

Examples

head(AssignDataAlien)
str(AssignDataAlien)

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
The following describes how we created such dataset

We prepare the precipitation data
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

We fit the models for Germany
GermanFit <- isofit(data = GNIPDataDEagg)

We build the isoscape

https://github.com/courtiol/IsoriX
https://bookdown.org/content/782
https://github.com/courtiol/IsoriX/issues

6 AssignDataBat

GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)

We create a simulated dataset with 1 site and 10 observations
set.seed(1L)
Aliens <- create_aliens(

calib_fn = list(intercept = 3, slope = 0.5, resid_var = 5),
isoscape = GermanScape,
raster = ElevRasterDE,
coordinates = data.frame(

site_ID = "Berlin",
long = 13.52134,
lat = 52.50598

),
n_sites = 1,
min_n_samples = 10,
max_n_samples = 10

)
AssignDataAlien <- Aliens[, c("sample_ID", "sample_value")]

Uncomment the following to store the file as we did
save(AssignDataAlien, file = "AssignDataAlien.rda", compress = "xz")

}

AssignDataBat Assignment datasets for bat species

Description

These datasets contain data from Voigt & Lenhert (2019). They contain hydrogen delta values of fur
keratin from common noctule bats (Nyctalus noctula) killed at wind turbines in northern Germany.
These data can be used as an example to perform assignments using the function isofind. The
difference between AssignDataBat and AssignDataBatRev is that in the latter the bat fur isotope
values were corrected to align with the current delta values for deuterium for keratin reference mate-
rials (Soto et al. 2017, https://doi.org/10.1002/rcm.7893) ensuring comparability between formerly
and more recently normalized datasets of delta values for deuterium.

Format

Two dataframes with 14 observations and 4 variables:

sample_ID (factor) Identification of the animal
lat (numeric) Latitude coordinate (decimal degrees)
long (numeric) Longitude coordinate (decimal degrees)
sample_value (numeric) Hydrogen delta value of the tissue

AssignDataBat2 7

Source

data provided by Voigt CC & Lehnert L.

References

Voigt CC & Lehnert L (2019). Tracking of movements of terrestrial mammals using stable isotopes.
In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with Stable Isotopes, second
edition. Academic Press, London.

Soto DX, Koehler G, Wassenaar LI & Hobson KA (2017). Re-evaluation of the hydrogen stable
isotopic composition of keratin calibration standards for wildlife and forensic science applications.
Rapid Commun Mass Spectrom. 31(14):1193-1203. doi: 10.1002/rcm.7893. PMID: 28475227.

See Also

isofind to perform assignments

Examples

head(AssignDataBat)
str(AssignDataBat)

AssignDataBat2 Assignment datasets for bat species

Description

These datasets contain data from Voigt, Lehmann & Greif (2015). It contains hydrogen delta val-
ues of fur keratin from bats captured in 2008, 2009 and 2013 from their roosting sites in Bul-
garia. We only retained the bats of the genus Myotis from the original study. These data can be
used as an example to perform assignments using the function isofind. The difference between
AssignDataBat2 and AssignDataBat2Rev is that in the latter the bat fur isotope values were cor-
rected to align with the current delta values for deuterium for keratin reference materials (Soto
et al. 2017, https://doi.org/10.1002/rcm.7893) ensuring comparability between formerly and more
recently normalized datasets of delta values for deuterium.

Format

Two dataframes with 244 observations and 3 variables:

sample_ID (factor) Identification of the animal
species (factor) Animal species name
sample_value (numeric) Hydrogen delta value of the tissue

8 CalibDataAlien

Source

data provided by Voigt CC, Lehmann D & Greif S.

References

Voigt CC, Lehmann D & Greif S (2015). Stable isotope ratios of hydrogen separate mammals of
aquatic and terrestrial food webs. Methods in Ecology and Evolution 6(11).

Soto DX, Koehler G, Wassenaar LI & Hobson KA (2017). Re-evaluation of the hydrogen stable
isotopic composition of keratin calibration standards for wildlife and forensic science applications.
Rapid Commun Mass Spectrom. 31(14):1193-1203. doi: 10.1002/rcm.7893. PMID: 28475227.

See Also

isofind to perform assignments

Examples

head(AssignDataBat2)
str(AssignDataBat2)

CalibDataAlien Simulated calibration dataset

Description

This dataset contains simulated hydrogen delta values for corresponding locations based on an
assumed linear relationship between the animal tissue value and the hydrogen delta values in the
environment. The data can be used as an example to fit a calibration model using the function
calibfit.

Format

A dataframe with x observations and 6 variables:

site_ID (factor) Identification of the sampling site
long (numeric) Longitude coordinate (decimal degrees)
lat (numeric) Latitude coordinate (decimal degrees)
elev (numeric) Elevation asl (m)
sample_ID (factor) Identification of the sampled animal
tissue.value (numeric) Hydrogen delta value of the tissue

CalibDataAlien 9

Details

Users who wish to use their own dataset for calibration should create a dataframe of similar struc-
ture than this one. The columns should possess the same names as the ones described above. If the
elevation is unknown at the sampling sites, elevation information can be extracted from a high res-
olution elevation raster using the function terra::extract. In this dataset, we retrieved elevations
from the Global Multi-resolution Terrain Elevation Data 2010.

See Also

calibfit to fit a calibration model

Examples

head(CalibDataAlien)
str(CalibDataAlien)

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
We prepare the precipitation data
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

We fit the models for Germany
GermanFit <- isofit(data = GNIPDataDEagg)

We build the isoscape
GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)

We create a simulated dataset with 50 site and 10 observations per site
set.seed(2L)
CalibDataAlien <- create_aliens(
calib_fn = list(intercept = 3, slope = 0.5, resid_var = 5),
isoscape = GermanScape,
raster = ElevRasterDE,
n_sites = 50,
min_n_samples = 10,
max_n_samples = 10

)
plot(sample_value ~ source_value, data = CalibDataAlien)
abline(3, 0.5)

CalibDataAlien$source_value <- NULL

Uncomment the following to store the file as we did
save(CalibDataAlien, file = "CalibDataAlien.rda", compress = "xz")

}

10 CalibDataBat

CalibDataBat Calibration datasets for bat species

Description

These datasets contain hydrogen delta values of fur keratin from 6 sedentary bat species. They cor-
respond to the combination of several studies as detailed in Voigt & Lenhert 2019. CalibDataBat is
the dataset used in Courtiol et al. 2019. The data can be used as an example to fit a calibration model
using the function calibfit. CalibDataBatRev is the same data but the bat fur isotope values were
corrected to align with the current delta values for deuterium for keratin reference materials (Soto
et al. 2017, https://doi.org/10.1002/rcm.7893) ensuring comparability between formerly and more
recently normalized datasets of delta values for deuterium.

Format

Two dataframes with 335 observations and 7 variables:

site_ID (factor) Identification of the sampling site
long (numeric) Longitude coordinate (decimal degrees)
lat (numeric) Latitude coordinate (decimal degrees)
elev (numeric) Elevation asl (m)
sample_ID (factor) Identification of the sampled animal
species (factor) A code for the species
sample_value (numeric) Hydrogen delta value of the tissue

Details

Users who wish to use their own dataset for calibration should create a dataframe of similar struc-
ture than these ones (only the column ’species’ can be dropped). The columns should possess
the same names as the ones described above. If the elevation is unknown at the sampling sites,
elevation information can be extracted from a high resolution elevation raster using the function
terra::extract (see Examples in CalibDataBat2).

Source

data provided by Voigt CC & Lehnert L.

References

Voigt CC & Lehnert L (2019). Tracking of movements of terrestrial mammals using stable isotopes.
In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with Stable Isotopes, second
edition. Academic Press, London.

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). Isoscape computation and inference of spatial origins with mixed models

CalibDataBat2 11

using the R package IsoriX. In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

Soto DX, Koehler G, Wassenaar LI & Hobson KA (2017). Re-evaluation of the hydrogen stable
isotopic composition of keratin calibration standards for wildlife and forensic science applications.
Rapid Commun Mass Spectrom. 31(14):1193-1203. doi: 10.1002/rcm.7893. PMID: 28475227.

See Also

CalibDataBat2 for another (related) calibration dataset

calibfit to fit a calibration model

Examples

head(CalibDataBat)
str(CalibDataBat)

CalibDataBat2 Calibration datasets for bat species

Description

These datasets contain hydrogen delta values of fur keratin from sedentary bat species captured
between 2005 and 2009 from Popa-Lisseanu et al. (2012). These data can be used as an example
to fit a calibration model using the function calibfit. The difference between CalibDataBat2
and CalibDataBat2Rev is that in the latter the bat fur isotope values were corrected to align
with the current delta values for deuterium for keratin reference materials (Soto et al. 2017,
https://doi.org/10.1002/rcm.7893) ensuring comparability between formerly and more recently nor-
malized datasets of delta values for deuterium.

Format

Two dataframes with 178 observations and 6 variables:

site_ID (factor) Identification of the sampling site
long (numeric) Longitude coordinate (decimal degrees)
lat (numeric) Latitude coordinate (decimal degrees)
elev (numeric) Elevation asl (m)
sample_ID (factor) Identification of the sampled animal
sample_value (numeric) Hydrogen delta value of the tissue

12 CalibDataBat2

Details

Users who wish to use their own dataset for calibration should create a dataframe of similar struc-
ture than these ones (only the column ’species’ can be dropped). The columns should possess
the same names as the ones described above. If the elevation is unknown at the sampling sites,
elevation information can be extracted from a high resolution elevation raster using the function
terra::extract (see Examples). Note that the original study used a different source of elevation
data.

Source

data provided by Popa-Lisseanu AG et al.

References

Popa-Lisseanu AG, Soergel K, Luckner A, Wassenaar LI, Ibanez C, Kramer-Schadt S, Ciechanowski
M, Goerfoel T, Niermann I, Beuneux G, Myslajek RW, Juste J, Fonderflick J, Kelm D & Voigt CC
(2012). A triple isotope approach to predict the breeding origins of European bats. PLoS ONE
7(1):e30388.

Soto DX, Koehler G, Wassenaar LI & Hobson KA (2017). Re-evaluation of the hydrogen stable
isotopic composition of keratin calibration standards for wildlife and forensic science applications.
Rapid Commun Mass Spectrom. 31(14):1193-1203. doi: 10.1002/rcm.7893. PMID: 28475227.

See Also

CalibDataBat for another (related) calibration dataset

calibfit to fit a calibration model

Examples

head(CalibDataBat2)
str(CalibDataBat2)

The following example require to have downloaded
an elevation raster with the function getelev()
and will therefore not run unless you uncomment it

if (require(terra)){
We delete the elevation data
CalibDataBat2$elev <- NULL
#
We reconstruct the elevation data using an elevation raster
getelev(file = "elevBats.tif", z = 6,
lat_min = min(CalibDataBat2$lat),
lat_max = max(CalibDataBat2$lat),
long_min = min(CalibDataBat2$long),
long_max = max(CalibDataBat2$long))
ElevationRasterBig <- rast("elevBats.tif")
CalibDataBat2$elev <- extract(
ElevationRasterBig,
cbind(CalibDataBat2$long, CalibDataBat2$lat))

calibfit 13

head(CalibDataBat2)
}

calibfit Fit the calibration model (or load parameters from calibration done
outside IsoriX)

Description

This function establishes the relationship between the isotopic values of organisms (e.g. tissues
such as hair, horn, ivory or feathers; referred in code as sample_value) and the isotopic values of
their environment (e.g. precipitation water; referred in code as source_value). This function is only
needed when the assignment of organisms has to be performed within an isoscape that was not built
using the organisms themselves, but that was instead built using another source of isotopic values
(e.g., precipitation). If the isoscape had been fitted using isotopic ratios from sedentary animals
directly, this calibration step is not needed (e.g. isoscape fitted using sedentary butterflies and mi-
gratory butterflies to assign). In other cases, this calibration step is usually needed since organisms
may not directly reflect the isotopic values of their environment. Depending on the calibration data
to be used (provided via the argument data), one of four possible calibration methods must be se-
lected (via the argument method). Each method considers a different statistical model and requires
particular data that are organised in a specific way (see Details for explanations and Examples for
use cases).

Usage

calibfit(
data,
isofit = NULL,
method = c("wild", "lab", "desk", "desk_inverse"),
verbose = interactive(),
control_optim = list()

)

Arguments

data A dataframe containing the calibration data (see note below)

isofit The fitted isoscape created by isofit

method A string indicating the method used to generate the data used for the calibration.
By default method is "wild", but the other "lab", "desk" and "desk_inverse".
See Details for the difference between these three methods.

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if you run an interactive R session and FALSE otherwise.

control_optim A list to pass information to the argument control in the call to optim (only
effective when method = "wild"; for advanced users only).

14 calibfit

Details

The method argument can take one of the four values "wild" (default), "lab", "desk" and "desk_inverse"
corresponding to the four calibration methods. It is crucial for you to select the method that is most
appropriate for your workflow, as the choice of method can impact the most likely assignment
locations during the assignment test performed in isofind.

Method "wild":
This calibration method is the one to be used when the calibration data to be used correspond to
isotopic values measured on sedentary organisms and when no direct measurement of isotopic
values in the environment are available at the locations where sedentary organisms have been
collected. In such a case, the isotopic values in the environment of sedentary organisms are
predicted internally using an isoscape fitted with isofit. This calibration method thus aims
at estimating and accounting for the uncertainty associated with these predicted values. Such
uncertainty is accounted for when fitting the calibration fit so as to produce an unbiased estimation
of the calibration relationship and it is also then accounted for by isofind when inferring the
possible locations of origin. Before we added the argument method in calibfit (i.e. before releasing
the version 0.8.3), this method was the only one available in IsoriX.

• Statistical model: in this case, the calibration model to be fitted is a linear mixed-effects
model (LMM) that fits the isotopic values of sedentary organisms as a linear function of
the isotopic values in their environment (e.g. precipitation). The function considers that
the isotopic values from the environment (e.g. from precipitation) at the locations at which
organisms were sampled are not known. The function therefore predicts these isotopic values
from the geostatistical model fitted by the function isofit, which is provided to calibfit using
the argument isofit. The LMM used to fit the calibration function has a simple fixed-effect
structure: an intercept and a slope. The random effect is more complex: it is normally
distributed with mean zero, a certain variance between locations proportional to the squared
(fixed) slope, and a covariance structure defined by the prediction covariance matrix of the
isoscape model between the calibration locations. See appendix in Courtiol et al. 2019 for
more details.

• Required calibration data: the calibration data to be used here must be a dataframe (or a
tibble) containing at least the following columns:

– sample_value: the isotopic value of the calibration sample
– long: the longitude coordinate (decimal degrees)
– lat: the latitude coordinate (decimal degrees)
– site_ID: the sample site

The column name must be identical to those indicated here. Other columns can be present in
the data but won’t be used. Each row must correspond to a different calibration sample (i.e. a
single isotopic measurement). See CalibDataAlien, CalibDataBat, or CalibDataBat2 for
examples of such a dataset.

Method "lab":
This calibration method is the one to be used when the calibration data to be used correspond to
isotopic values recorded for both organisms and their environment. We can foresee three main
situations in which the "lab" method is the one to be used:

1. the data are generated by growing organisms in a controlled environment where they are fed
and/or given water with a specific (known) isotopic value.

calibfit 15

2. sedentary organisms are sampled in the wild together with a sample from their environment
and that isotopic values have been measured for both.

3. you want to use a calibration made by others based on a plot of that calibration showing the
datapoints. In such a case, you should use an R package (e.g. metaDigitse or digitize) or
software (e.g. graphClick or dataThief) to extract the coordinates on the plots so as to obtain
the isotopic values of the sample and the environment behind each point.

Note that the use cases 1 and 2 will allow for the propagation of all relevant sources of uncertainty
during the assignment. In contrast, the third use case implies to neglect uncertainty in the isotopic
values in the environment if those were initially predicted using an isoscape. It also neglects
the covariances involving such predicted values. That being said, if you want to use someone
else calibration relationship, using this method is generally preferable to using the method "desk"
described below (less error prone and de facto accounting for all five parameters mentioned for
the method "desk").

• Statistical model: in this case, the calibration model to be fitted is a simple linear model
(LM) or a simple linear mixed-effects model (LMM) that fits the isotopic values of sedentary
organisms as a linear function of the isotopic values in their environment (e.g. precipitation).
Whether it is a LM or a LMM depends on the presence of a column site_ID in the dataset
as well as on the number of unique values for such a column. If the column is present and
the number of unique values is larger than 4, a LMM is fitted. Otherwise, a LM is fitted. In
both cases, the function considers that the isotopic values from the environment (e.g. from
precipitation) at the locations at which organisms were sampled are known. Contrary to the
method "wild", the environment values are thus considered as observed and not predicted
from an isoscape. The argument isofit should thus remain NULL in this case (since no
isoscape is used, no isoscape fit is required to perform the calibration). The model used to fit
the calibration function has a simple fixed effect structure: an intercept and a slope.

• Required calibration data: the calibration data to be used here must be a dataframe (or a
tibble) containing at least the following columns:

– sample_value: the isotopic value of the calibration sample
– source_value: the isotopic value of the environment
– site_ID (optional): the sample site

The column name must be identical to those indicated here. Other columns can be present in
the data but won’t be used. Each row must correspond to a different calibration sample (i.e.
a single sample-environment pair of isotopic measurements).

Methods "desk" and "desk_inverse":
These calibration methods must only be used as a last resource! They are unlikely to yield robust
inference during the assignment step. These calibration methods are the ones to be used when
no calibration data is directly available, when you cannot either extract the data from a plot, and
thus when you must rely solely on published metrics (including intercept and slope) to repre-
sent a calibration relationship. They work by making crude assumptions that various uncertainty
components are null.
The method "desk" is the one to be used when the published calibration relationship is of the
form lm(sample_value ~ source_value) and the method "desk_inverse" is the one to be used
when the published calibration relationship is of the form lm(source_value ~ sample_value).
Do make sure you are using the correct alternative. Note that the model used for the published
calibration must be a linear regression (LM) and not a reduced major axis regression (RMA). If
you use parameter values stemming from a RMA, the assignment will most likely be biased.

16 calibfit

Both methods require five metrics to work at their best: the intercept and slope of a calibration
relationship, the standard errors (SE) associated to them, and the residual variance (not SD). For
statistical reasons, the method "desk" is more flexible than the method "desk_inverse" and can
still work (in the sense of running, but the reliability of the assignments will get worse) if the
SEs and/or the residual variance is not provided. For the method "desk_inverse" all metrics are
unfortunately necessary.

Don’t expect miracles: even if the "desk" method is used together with its five parameters, the
assignment will still suffer from the same limitations as those impacting the method "lab" usage
number 3. If less than five parameters are provided, further assumptions are made and this comes
with a cost: again, it can bias the assignment and bias the confidence region. For these reasons, we
were tempted to use method = "dirty" instead of method = "desk"... but we chickened out since
we predicted that users would then refrain from mentioning the method they used in publications...

Note that if the provided slope is set to 0 and an intercept is considered, the calibration methods
actually corresponds to the simple consideration of a fractionation factor.

• Statistical model: none!

• Required calibration data for method "desk": the calibration data to be used here must be
a dataframe (or a tibble) containing a single row with the following columns:

– intercept: the estimated slope of a LM calibration fit

– slope: the estimated slope of a LM calibration fit

– intercept_se (optional): the standard error around the intercept

– slope_se (optional): the standard error around the slope

– resid_var (optional): the residual variance (not SD) of a LM calibration fit

• Required calibration data for method "desk_inverse": the calibration data to be used here
must be a dataframe (or a tibble) containing a single row with the following columns:

– intercept: the estimated slope of a LM calibration fit

– slope: the estimated slope of a LM calibration fit

– intercept_se: the standard error around the intercept

– slope_se: the standard error around the slope

– resid_var: the residual variance (not SD) of a LM calibration fit

– sign_mean_Y: a numeric indicating the sign of the mean value of the isotopes in the en-
vironment in the format returned by sign; that is either 1 (if positive) or -1 (if negative).
This is required for pivoting the regression from "desk_inverse" to "desk".

– N: a numeric indicating the sample size of the data used for the calibration fit. This is
required for pivoting the regression from "desk_inverse" to "desk".

Value

This function returns a list of class CALIBFIT containing the name of the calibration method used,
whether a species_ID random effect was estimated, whether a site_ID random effect was estimated,
the fixed-effect estimates of the calibration function, the covariance of the fixed effects, the residual
variance of the calibration fit, the fitted calibration model (if applicable), the fitted isoscape model
(if applicable), the original calibration data set with additional information added during the fit, and
the location of the calibration points as spatial points.

calibfit 17

References

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). Isoscape computation and inference of spatial origins with mixed models
using the R package IsoriX. In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

See Also

see plot for the help on how to plot the calibration relationship.

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
###
1 Example of calibration using the method "wild"
###

1.1 We prepare the data to fit the isoscape:
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

1.2 We fit the isoscape models for Germany:
GermanFit <- isofit(
data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat_abs = TRUE)

)

1.3 We fit the calibration model using the method "wild" (the default):
CalibAlien <- calibfit(data = CalibDataAlien, isofit = GermanFit)

1.4 We explore the outcome of the calibration:
CalibAlien
summary(CalibAlien)
plot(CalibAlien)

Note 1: you can plot several calibrations at once (using bats this time):
CalibBat1 <- calibfit(data = CalibDataBat, isofit = GermanFit)
CalibBat2 <- calibfit(data = CalibDataBat2, isofit = GermanFit)
plot(CalibBat1)
points(CalibBat2, pch = 3, col = "red", CI = list(col = "green"))

Note 2: you can extract data created by plot()
for plotting things yourself:
dataplot <- plot(CalibAlien, plot = FALSE)
plot(sample_fitted ~ source_value,

data = dataplot,
xlim = range(dataplot$source_value),
ylim = range(dataplot$sample_lwr, dataplot$sample_upr), col = NULL

18 calibfit

)
polygon(

x = c(dataplot$source_value, rev(dataplot$source_value)),
y = c(dataplot$sample_lwr, rev(dataplot$sample_upr)),
col = 3

)
points(sample_fitted ~ source_value, data = dataplot, type = "l", lty = 2)

##
2 Example of calibration using the method "lab"
##

2.0 We create made up data here because we don't have yet a good dataset
for this case, but you should use your own data instead:
GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)
set.seed(123)
CalibDataAlien2 <- create_aliens(

calib_fn = list(
intercept = 3, slope = 0.5,
resid_var = 5

),
isoscape = GermanScape,
raster = ElevRasterDE,
n_sites = 25,
min_n_samples = 5,
max_n_samples = 5

)
CalibDataAlien2 <- CalibDataAlien2[, c(

"site_ID", "sample_ID",
"source_value", "sample_value"

)]
head(CalibDataAlien2) ## your data should have this structure

2.1 We fit the calibration model using the method "lab":
CalibAlien2 <- calibfit(data = CalibDataAlien2, method = "lab")

2.2 We explore the outcome of the calibration:
CalibAlien2
summary(CalibAlien2)
plot(CalibAlien2)

###
3 Example of calibration using the method "desk"
###

3.1 We format the information about the calibration function to be used
as a dataframe:
CalibDataAlien3 <- data.frame(

intercept = 1.67, slope = 0.48,
intercept_se = 1.65, slope_se = 0.03,
resid_var = 3.96

CALIBFIT-class 19

)
CalibDataAlien3

3.2 We fit the calibration model using the method "desk":
CalibAlien3 <- calibfit(data = CalibDataAlien3, method = "desk")

3.3 We explore the outcome of the calibration:
CalibAlien3
summary(CalibAlien3)
plot(CalibAlien3, xlim = c(-100, 100), ylim = c(-50, 50))

Note: the desk function also work with just intercept and slope:
CalibDataAlien4 <- CalibDataAlien3[, c("intercept", "slope")]
CalibAlien4 <- calibfit(data = CalibDataAlien4, method = "desk")
CalibAlien4
summary(CalibAlien4)
plot(CalibAlien3, xlim = c(-100, 100), ylim = c(-50, 50))
points(CalibAlien4, line = list(col = "orange"))
Regression lines are the same, but the new calibration does not have a
confidence intervals since we provided no uncertainty measure in
CalibDataAlien4, which will make a difference during assignments...

###
4 Example of calibration using the method "desk_inverse"
###

4.1 We format the information about the calibration function to be used
as a dataframe:
CalibDataAlien4 <- data.frame(

intercept = -16.98822, slope = 1.588885,
intercept_se = 2.200435, slope_se = 0.08106032,
resid_var = 13.15102, N = 125, sign_mean_Y = -1

)
CalibDataAlien4

4.2 We fit the calibration model using the method "desk_inverse":
CalibAlien4 <- calibfit(data = CalibDataAlien4, method = "desk_inverse")

4.3 We explore the outcome of the calibration:
CalibAlien4
summary(CalibAlien4)
plot(CalibAlien4, xlim = c(-100, 100), ylim = c(-50, 50))

}

CALIBFIT-class Class CALIBFIT

Description

Class CALIBFIT

20 CountryBorders

Slots

method a character string indicating the method used for the calibration

species_rand a logical indicating whether the species random effect is included in the model

site_rand a logical indicating whether the site random effect is included in the model

param the fixed-effect estimates of the calibration function

fixefCov the covariance matrix of the fixed effects

phi the residual variance of the calibration fit

calib_fit the fitted calibration model (if applicable)

iso_fit the fitted calibration model (if applicable)

data the calibration data

sp_points a list of spatial points used for calibration

CountryBorders Borders of world CountryBorders

Description

This dataset contains a polygon polygon SpatVector (from terra). It can be used to draw the borders
of world countries.

Format

A SpatVector object

Source

This SpatVector is derived from the package rnaturalearth. Please refer to this other package for
description and sources of this dataset. See example for details on how we created the dataset.

See Also

• OceanMask for another polygon used to embellish the plots

Examples

plot(CountryBorders, border = "red", col = "darkgrey")

How did we create this file?

Uncomment the following to create the file as we did
if (require(rnaturalearth) && require(terra)) {
CountryBorders <- rnaturalearth::ne_countries(scale = 'medium', returnclass = 'sf')
CountryBorders <- vect(CountryBorders[, 0])
#saveRDS(CountryBorders, file = "IsoriX/inst/extdata/CountryBorders.rds", compress = "xz")
}

create_aliens 21

create_aliens Simulate datasets for calibrations or assignments

Description

This function allows to simulate data so to provide examples for the calibration and for the assign-
ment procedure. We name the simulated individuals ’Aliens’ so to make it clear that the data we
use to illustrate our package are not real data.

Usage

create_aliens(
calib_fn = list(intercept = 3, slope = 0.5, resid_var = 5),
isoscape = NULL,
coordinates = NA,
raster = NULL,
n_sites = NA,
min_n_samples = 1,
max_n_samples = 10

)

Arguments

calib_fn A list containing the parameter values describing the relationship between the
isotope values in the environment and those in the simulated organisms. This list
must contain three parameters: the intercept, the slope, and the residual variance.

isoscape The output of the function isoscape

coordinates An optional data.frame with columns site_ID, long and lat

raster A SpatRaster containing an elevation raster

n_sites The number of sites from which the simulated organisms originate (integer)

min_n_samples The minimal number of observations (integer) per site

max_n_samples The maximal number of observations (integer) per site

Details

The isostopic values for the organisms are assumed to be linearly related to the one from the environ-
ment. The linear function can be parametrized using the first argument of the function (calib_fn).
With this function the user can simulate data for different sites.

The number and locations of sites can be controlled in two ways. A first possibility is to use the
argument n_sites. The sites will then be selected randomly among the locations present in the
isoscape (argument isoscape) provided to this function. An alternative possibility is to provide
a data frame containing three columns (site_ID, long and lat) to input the coordinate of the
sampling site manually.

22 create_aliens

Irrespective of how locations are chosen, a random number of observations will be drawn, at each
site, according to a uniform distribution bounded by the values of the argument min_n_samples
and max_n_samples.

From the selected coordinates, the isotope values for the environment are directly extracted from the
corresponding point predictions stored in the isoscape object. No uncertainty is considered during
this process. Then the linear calibration defines the means of the isotope values for the simulated
organisms. The actual values is then drawn from a Gaussian distribution centred around such mean
and a variance defined by the residual variance (resid_var) input within the list calib_fn.

Value

This functions returns a data.frame (see example for column names)

See Also

calibfit for a calibration based on simulated data

isofind for an assignment based on simulated data

IsoriX for the complete work-flow of our package

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
We fit the models for Germany
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

GermanFit <- isofit(data = GNIPDataDEagg)

We build the isoscapes
GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)

We create a simulated dataset with 25 sites and 5 observations per site
Aliens <- create_aliens(
calib_fn = list(intercept = 3, slope = 0.5, resid_var = 5),
isoscape = GermanScape,
raster = ElevRasterDE,
n_sites = 25,
min_n_samples = 5,
max_n_samples = 5

)

We display the simulated dataset
Aliens

We plot the relationship between the environmental isotope values
and those from the simulated organisms
plot(sample_value ~ source_value, data = Aliens, ylab = "Tissue", xlab = "Environment")

downloadfile 23

abline(3, 0.5, col = "blue") ## the true relationship

We create a simulated dataset with 2 sites imputing coordinates manually
Aliens2 <- create_aliens(

calib_fn = list(intercept = 3, slope = 0.5, resid_var = 5),
isoscape = GermanScape,
coordinates = data.frame(

site_ID = c("Berlin", "Bielefeld"),
long = c(13.52134, 8.49914),
lat = c(52.50598, 52.03485)

),
raster = ElevRasterDE,
min_n_samples = 5,
max_n_samples = 5

)

Aliens2
}

downloadfile Download files and check their binary integrity

Description

This function is the internal function used in IsoriX to download the large files from internet and it
could be useful to download anything from within R. We created this function to make sure that the
downloaded files are valid. Downloads can indeed result in files that are corrupted, so we tweaked
the options to reduce this possibility and the function runs a check if the signature of the file is
provided to the argument md5sum.

Usage

downloadfile(
address = NULL,
filename = NULL,
path = NULL,
overwrite = FALSE,
md5sum = NULL,
verbose = interactive()

)

Arguments

address A string indicating the address of the file on internet

filename A string indicating the name under which the file must be stored

path A string indicating where to store the file on the hard drive (without the file
name!). Default = current directory.

24 ElevRasterDE

overwrite A logical indicating if an existing file should be re-downloaded

md5sum A string indicating the md5 signature of the valid file as created with tools::md5sum

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise. If a numeric is
provided instead, additional information about the download will be provided if
the number is greater than 1.

Value

The complete path of the downloaded file (invisibly)

Note

Users should directly use the function getelev and getprecip.

See Also

getelev, getprecip

ElevRasterDE The raster of elevation for Germany

Description

This raster contains the elevation of the surface of Germany (meters above sea level) with a resolu-
tion of approximately 40 square-km.

Format

A SpatRaster object

Details

This raster contains elevation data of Germany in a highly aggregated form corresponding to a
resolution of approximately one elevation value per 40 square-km. This is only for the purpose
of having a small and easy-to-handle file to practice, but it should not be used to perform real
assignments!

Source

https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm

See Also

prepraster to crop and/or aggregate this raster

https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm

getelev 25

Examples

Compute crudely the resolution (approximative size of cells in km2)
median(values(cellSize(ElevRasterDE, unit = "km")))

How did we create this file (without IsoriX) ?

Uncomment the following to create the file as we did

ElevRasterDE <- elevatr::get_elev_raster(locations = data.frame(
x = c(5.5, 15.5), y = c(47, 55.5)),
prj = "+proj=longlat +datum=WGS84 +no_defs",
clip = "bbox", z = 3)
#
ElevRasterDE <- terra::rast(ElevRasterDE)

How to create a similar file with IsoriX ?
#
Download the tif file (see ?getelev)
getelev(file = "~/ElevRasterDE.tif",
z = 3,
long_min = 5.5, long_max = 15.5, lat_min = 47, lat_max = 55.5)

Convert the tif into R raster format
ElevRasterDE <- rast('~/ElevRasterDE.tif')

getelev Download an elevation raster from internet

Description

The function getelev downloads an elevation raster from internet. It is a wrapper that 1) calls the
function elevatr::get_elev_raster to download the data and 2) saves the downloaded raster on
the hard drive (so that you don’t have to keep downloading the same file over and over again). The
file saved on the disk is a *.tif file which you can directly read using the function terra::rast.

Usage

getelev(
file = "~/elevation_world_z5.tif",
z = 5,
long_min = -180,
long_max = 180,
lat_min = -90,
lat_max = 90,
margin_pct = 5,
override_size_check = FALSE,

26 getelev

overwrite = FALSE,
Ncpu = getOption_IsoriX("Ncpu"),
verbose = interactive(),
...

)

Arguments

file A string indicating where to store the file on the hard drive (default = ~/elevation_world_z5.tif)
z An integer between 1 and 14 indicating the resolution of the file do be down-

loaded (1 = lowest, 14 = highest; default = 5)
long_min A numeric indicating the minimum longitude to select from. Should be a number

between -180 and 180 (default = -180).
long_max A numeric indicating the maximal longitude to select from. Should be a number

between -180 and 180 (default = 180).
lat_min A numeric indicating the minimum latitude to select from. Should be a number

between -90 and 90 (default = -90).
lat_max A numeric indicating the maximal latitude to select from (default = 90).
margin_pct The percentage representing by how much the area should extend outside the

area used for cropping (default = 5, corresponding to 5%). Set to 0 if you want
exact cropping.

override_size_check

A logical indicating whether or not to override size checks (default = FALSE)
overwrite A logical indicating if an existing file should be re-downloaded
Ncpu An integer specifying the number of CPU’s to use when downloading AWS tiles

(default set by global package options).
verbose A logical indicating whether information about the progress of the procedure

should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

... Other parameters to be passed to the function elevatr::get_elev_raster

Details

By default (and to keep with the spirit of the former implementations of getelev in IsoriX, which
did not rely on elevatr::elevatr), an elevation raster of the whole world is downloaded with a
resolution correspond to ca. 0.6 km2 per raster cell. You can increase the resolution by increasing
the value of the argument z. You can also restrict the area to be downloaded using the arguments
long_min, long_max, lat_min & lat_max.

Note that when using prepraster you will be able to reduce the resolution and restrict the bound-
aries of this elevation raster, but you won’t be able to increase the resolution or expend the bound-
aries. As a consequence, it is probably a good idea to overshoot a little when using getelev and
download data at a resolution slightly higher than you need and for a extent larger than your data.

You can customise further what you download by using other parameters of elevatr::get_elev_raster
(via the elipsis ...).

Please refer to the documentation of elevatr::get_elev_raster for information on the sources
and follows link in there to know how to cite them.

getprecip 27

Value

This function returns the full path where the file has been stored

Examples

To download the high resolution
elevation raster in the current folder, just type:
getelev()

getprecip Download rasters of monthly precipitation from internet

Description

The function getprecip allows for the download of rasters of monthly precipitation from internet.
It downloads the "precipitation (mm) WorldClim Version 2.1" at a spatial resolution of 30 seconds
(~1 km2). After download, the function also unzip the file. The function getprecip uses the
generic function downloadfile that can also be used to download directly other files. This raster
needs further processing with the function prepcipitate. It can then be used to predict annual
averages precipitation weighted isoscapes with the function isomultiscape.

Usage

getprecip(path = NULL, overwrite = FALSE, verbose = interactive())

Arguments

path A string indicating where to store the file on the hard drive (without the file
name!). Default = current directory.

overwrite A logical indicating if an existing file should be re-downloaded

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise. If a numeric is
provided instead, additional information about the download will be provided if
the number is greater than 1.

Details

In the argument "path" is not provided, the file will be stored in the current working directory. The
functions can create new directories, so you can also indicate a new path. The integrity of the
elevation raster is tested after a call to getprecip. In case of corruption, try downloading the file
again, specifying overwrite = TRUE to overwrite the corrupted file.

Value

This function returns the path of the folder where the files have been stored

28 GNIPDataDE

Source

https://worldclim.org/data/worldclim21.html

Examples

To download the monthly precipitation
in a temporary directory
directory, just type:
temp_folder <- tempdir()
getprecip(path = temp_folder)
Mind that the file weights ca. 1GB!
For real use, replace temp_folder by your selected computer path

GNIPDataDE Hydrogen delta values in precipitation water, Germany

Description

This dataset contains the hydrogen delta value from precipitation water sampled at weather stations
between 1961 and 2013 in Germany. These data have been kindly provided by Christine Stumpp
and processed by the International Atomic Energy Agency IAEA in Vienna (GNIP Project: Global
Network of Isotopes in Precipitation). These data are free to reuse provided the relevant citations
(see references). These data represent a small sample of the much larger dataset compiled by the
GNIP. We no longer provide larger GNIP dataset in the package as those are not free to reuse (but
we do provide aggregated versions of it; see GNIPDataEUagg). You can still download the complete
GNIP dataset for free, but you will have to proceed to a registration process with GNIP and use
their downloading interface WISER (https://nucleus.iaea.org/wiser/index.aspx).

Format

The dataframe includes 8591 observations and the following variables:

lat (numeric) Latitude coordinate (decimal degrees)
long (numeric) Longitude coordinate (decimal degrees)
elev (numeric) Elevation asl (m)
source_value (numeric) hydrogen delta value (per thousand)
year (numeric) Year of sampling
month (numeric) Month of sampling
source_ID (factor) The unique identifier of the weather station

Details

The dataset contains non-aggregated data for 27 weather stations across Germany.
This dataset is the raw data source and should not be directly used for fitting isoscapes.
Please use prepsources to filter the dataset by time and location.
If you want to use your own dataset, you must format your data as those produced by the function
prepsources.

https://worldclim.org/data/worldclim21.html
https://nucleus.iaea.org/wiser/index.aspx

GNIPDataEUagg 29

Source

data provided by the IAEA.

References

GNIP Project IAEA Global Network of Isotopes in Precipitation: https://www.iaea.org

Stumpp, C., Klaus, J., & Stichler, W. (2014). Analysis of long-term stable isotopic composition in
German precipitation. Journal of hydrology, 517, 351-361.

Klaus, J., Chun, K. P., & Stumpp, C. (2015). Temporal trends in d18O composition of precipita-
tion in Germany: insights from time series modelling and trend analysis. Hydrological Processes,
29(12), 2668-2680.

See Also

prepsources to prepare the dataset for the analyses and to filter by time and location.

Examples

head(GNIPDataDE)

GNIPDataEUagg Hydrogen delta values in precipitation water (aggregated per loca-
tion)

Description

These datasets contain the mean and variance of hydrogen delta value from precipitation water
sampled at weather stations between 1953 and 2015 in Europe (GNIPDataEUagg) and in the entire
world (GNIPDataALLagg). These data have been extracted from the International Atomic Energy
Agency IAEA in Vienna (GNIP Project: Global Network of Isotopes in Precipitation) and processed
by us using the function prepsources. The data are aggregated per location (across all month-
year combinations). We no longer provide the full non-aggregate GNIP dataset in the package as
it is not free to reuse. You can still download the complete GNIP dataset for free, but you will
have to proceed to a registration process with GNIP and use their downloading interface WISER
(https://nucleus.iaea.org/wiser/index.aspx).

Format

The dataframes include many observations and the following variables:

source_ID (factor) The unique identifier of the weather station
mean_source_value (numeric) Average of the aggregate of hydrogen delta values (per thousand)
var_source_value (numeric) Variance of the aggregate of hydrogen delta values (per thousand^2)
n_source_value (numeric) Number of hydrogen delta values aggregated

https://www.iaea.org
https://nucleus.iaea.org/wiser/index.aspx

30 isofind

lat (numeric) Latitude coordinate (decimal degrees)
long (numeric) Longitude coordinate (decimal degrees)
elev (numeric) Elevation asl (m)

Details

These datasets have been aggregated and can thus be directly used for fitting isoscapes.

If you want to use your own dataset, you must format your data as these datasets.

Source

data provided by the IAEA and processed by us.

References

GNIP Project IAEA Global Network of Isotopes in Precipitation: https://www.iaea.org

See Also

GNIPDataDE for a non-aggregated dataset.

Examples

head(GNIPDataALLagg)
dim(GNIPDataALLagg)
head(GNIPDataEUagg)
dim(GNIPDataEUagg)

isofind Infer spatial origins

Description

This function performs the assignment of samples of unknown origins.

Usage

isofind(
data,
isoscape,
calibfit = NULL,
mask = NA,
neglect_covPredCalib = TRUE,
verbose = interactive()

)

https://www.iaea.org

isofind 31

Arguments

data A dataframe containing the assignment data (see note below)
isoscape The output of the function isoscape

calibfit The output of the function calibfit (This argument is not needed if the isoscape
had been fitted using isotopic ratios from sedentary animals.)

mask A polygon of class SpatVector representing a mask to replace values on all
rasters by NA inside polygons (see details)

neglect_covPredCalib

A logical indicating whether to neglect the covariance between the uncertainty
of predictions from the isoscape mean fit and the uncertainty in predictions from
the calibration fit (default = TRUE). See Details.

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

Details

An assignment is a comparison, for a given organism, of the predicted isotopic source value at its
location of origin and the predicted isotopic source value at each location of the isoscape. The
difference between these two values constitute the statistic of the assignment test. Under the null
hypothesis (the organism is at a location with the same isotopic value than its original location),
the test statistics follows a normal distribution with mean zero and a certain variance that stems
from both the isoscape model fits and the calibration fit. The function isofind computes the map
of p-value for such an assignment test (i.e. the p-values in all locations of the isoscape) for all
samples in the dataframe data. The function also performs a single assignment for the entire group
by combining the p-value maps of all samples using the Fisher’s method (Fisher 1925). Significant
p-values are strong evidence that the sample do NOT come from the candidate location (and not the
opposite!). For statistical details about this procedure as well as a discussion of which uncertainties
are captured and which are not, please refer to Courtiol et al. 2019.

Details on parameters:

• neglect_covPredCalib: as long as the calibration method used in calibfit is "wild", a co-
variance is expected between the uncertainty of predictions from the isoscape mean fit and the
uncertainty in predictions from the calibration fit. This is because both the isoscape and the
calibration use in part the same data. By default this term is omitted (i.e. the value for the
argument neglect_covPredCalib is TRUE) since in practice it seems to affect the results only
negligibly in our trials and the computation of this term can be quite computer intensive. We
nonetheless recommend to set neglect_covPredCalib to FALSE in your final analysis. If the
calibration method used in calibfit is not "wild", this parameter has no effect.

• mask: a mask can be used so to remove all values falling in the mask. This can be useful
for performing for example assignments on lands only and discard anything falling in large
bodies of water (see example). By default our OceanMask is considered. Setting mask to
NULL allows to prevent this automatic behaviour.

Value

This function returns a list of class ISOFIND containing itself three lists (sample, group, and
sp_points) storing all rasters built during assignment and the spatial points for sources, calibration

32 isofind

and assignments. The list sample contains three set of raster layers: one storing the value of the test
statistic ("stat"), one storing the value of the variance of the test statistic ("var") and one storing the
p-value of the test ("pv"). The list group contains one raster storing the p-values of the assignment
for the group. The list sp_points contains two spatial point objects: sources and calibs.

Note

See AssignDataAlien to know which variables are needed to perform the assignment and their
names.

References

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). Isoscape computation and inference of spatial origins with mixed models
using the R package IsoriX. In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).
ISBN 0-05-002170-2.

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 200) {
We fit the models for Germany
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

GermanFit <- isofit(
data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat_abs = TRUE)

)

We build the isoscape
GermanScape <- isoscape(

raster = ElevRasterDE,
isofit = GermanFit

)

We fit the calibration model
CalibAlien <- calibfit(

data = CalibDataAlien,
isofit = GermanFit

)

We perform the assignment on land only
AssignmentDry <- isofind(

isofind 33

data = AssignDataAlien,
isoscape = GermanScape,
calibfit = CalibAlien

)

perform the assignment on land and water
Assignment <- isofind(

data = AssignDataAlien,
isoscape = GermanScape,
calibfit = CalibAlien,
mask = NULL

)

We plot the group assignment
plot(Assignment, who = "group", mask = list(mask = NULL))

plot(AssignmentDry, who = "group", mask = list(mask = NULL))

We plot the assignment for the 8 first samples
plot(AssignmentDry,

who = 1:8,
sources = list(draw = FALSE),
calibs = list(draw = FALSE)

)

We plot the assignment for the sample "Alien_10"
plot(AssignmentDry, who = "Alien_10")

Other example without calibration:
We will try to assign a weather station
in the water isoscape

We create the assignment data taking
GARMISCH-PARTENKIRCHEN as the station to assign
GPIso <- GNIPDataDEagg[GNIPDataDEagg$source_ID == "GARMISCH-PARTENKIRCHEN", "mean_source_value"]
AssignDataGP <- data.frame(

sample_value = GPIso,
sample_ID = "GARMISCH-PARTENKIRCHEN"

)

We perform the assignment
AssignedGP <- isofind(

data = AssignDataGP,
isoscape = GermanScape,
calibfit = NULL

)
We plot the assignment and
show where the station really is (using lattice)
plot(AssignedGP, plot = FALSE) +

xyplot(47.48 ~ 11.06,
cex = 5, pch = 13, lwd = 2, col = "black"

)

34 isofit

}

ISOFIND-class Class ISOFIND

Description

Class ISOFIND

Slots

sample a list of SpatRaster objects storing the assignment info for each sample

group a SpatRaster storing the group assignment info

sp_points a list of SpatVector storing the spatial points for sources, calibration and assignment
samples

isofit Fit the isoscape models

Description

This function fits the aggregated source data using mixed models. The fitting procedures are done by
the package spaMM::spaMM which we use to jointly fit the mean isotopic values and their associated
residual dispersion variance in a spatially explicit manner.

Usage

isofit(
data,
mean_model_fix = list(elev = FALSE, lat_abs = FALSE, lat_2 = FALSE, long = FALSE,

long_2 = FALSE),
disp_model_fix = list(elev = FALSE, lat_abs = FALSE, lat_2 = FALSE, long = FALSE,

long_2 = FALSE),
mean_model_rand = list(uncorr = TRUE, spatial = TRUE),
disp_model_rand = list(uncorr = TRUE, spatial = TRUE),
uncorr_terms = list(mean_model = "lambda", disp_model = "lambda"),
spaMM_method = list(mean_model = "fitme", disp_model = "fitme"),
dist_method = "Earth",
control_mean = list(),
control_disp = list(),
verbose = interactive()

)

isofit 35

Arguments

data The dataframe containing the data used for fitting the isoscape model

mean_model_fix A list of logical indicating which fixed effects to consider in mean_fit

disp_model_fix A list of logical indicating which fixed effects to consider in disp_fit
mean_model_rand

A list of logical indicating which random effects to consider in mean_fit
disp_model_rand

A list of logical indicating which random effects to consider in disp_fit

uncorr_terms A list of two strings defining the parametrization used to model the uncorrelated
random effects for mean_fit and disp_fit

spaMM_method A list of two strings defining the spaMM functions used for mean_fit and disp_fit

dist_method A string indicating the distance method

control_mean A list of additional arguments to be passed to the call of mean_fit

control_disp A list of additional arguments to be passed to the call of disp_fit

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

Details

The detailed statistical definition of the isoscape model is described in Courtiol & Rousset 2017 and
summarized in Courtiol et al. 2019.

Briefly, the fitting procedure of the isoscape model is divided into two fits: mean_fit and disp_fit.
mean_fit corresponds to the fit of the "mean model", which we will use to predict the mean isotopic
values at any location in other functions of the package. disp_fit corresponds to the fit of the
"residual dispersion model", which we will use to predict the residual dispersion variance associated
to the mean predictions. mean_fit is a linear mixed-effects model (LMM) with fixed effects, an
optional spatial random effect with a Matérn correlation structure and an optional uncorrelated
random effect accounting for variation between sources unrelated to their location. disp_fit is a
Gamma Generalized LMM (Gamma GLMM) that also has fixed effects, an optional spatial random
effect with a Matérn correlation structure and an optional uncorrelated random effect. For the
GLMM the residual variance is fixed to its theoretical expectation.

The dataframe data must contain a single row per source location with the following columns:
mean_source_value (the mean isotopic value), var_source_value (the unbiased variance esti-
mate of the isotopic value at the location), n_source_value (the number of measurements per-
formed at the location, could be 1) and source_ID (a factor defining the identity of the sources at a
given location).

The arguments mean_model_fix and disp_model_fix allow the user to choose among different
fixed-effect structures for each model. These arguments are lists of booleans (TRUE or FALSE),
which define which of the following fixed effects must be considered: the elevation (elev), the
absolute value of the latitude (lat_abs), the squared latitude (lat_2), the longitude (long) and the
squared longitude (long_2). An intercept is always considered in both models.

In the models, the mean (for the mean model) or the log residual variance (for the residual dispersion
model) follow a Gaussian distribution around a constant value. The arguments mean_model_rand

36 isofit

and disp_model_rand allow to choose among different random effects for each model influencing
the realizations of these Gaussian random processes. For each model one can choose not to include
random effects or to include an uncorrelated random effect, a spatial random effect, or both (de-
fault). Setting "uncorr" = TRUE implies that the realizations of the random effect differ between
sources for reasons that have nothing to do with the relative geographic location (e.g. some micro-
climate or some measurement errors trigger a shift in all measurements (mean model) or a shift
in the variance between measurements (residual dispersion model) performed at a given source by
the same amount). Setting "spatial" = TRUE (default) implies that the random realizations of the
Gaussian process follow a Matérn correlation structure. Put simply, this implies that the closer two
locations are, the more similar the means (or the log residual variance) in isotopic values are (e.g.
because they are likely to be traversed by the same air masses).

The arguments uncorr_terms allow the choice between two alternative parametrizations for the un-
correlated random effect in the fits: "lambda" or "nugget" for each model. When using "lambda",
the variance of the uncorrelated random terms is classically modelled by a variance. When a spatial
random effect is considered, one can alternatively choose "nugget", which modifies the Matérn
correlation value when distance between location tends to zero. If no random effect is considered,
one should stick to the default setting and it will be ignored by the function. The choice of the
parametrization is a matter of personal preferences and it does not change the underlying models,
so the estimations for all the other parameters of the models should not be impacted by whether one
chooses "lambda" or "nugget". However, only uncertainty in the estimation of "lambda" can be
accounted for while computing prediction variances, which is why we chose this alternative as the
default. Depending on the data one parametrization may lead to faster fit than the other.

The argument spaMM_method is also a list of two strings where the first element defines the spaMM
functions used for fitting the mean model and the second element defines the spaMM method used
for fitting the residual dispersion model. The possible options are "HLfit", "corrHLfit" and
"fitme". Note that "HLfit" shall only be used in the absence of a Matérn correlation structure
and "corrHLfit" shall only be used in the presence of it. In contrast, "fitme" should work in all
situations. Which method is best remains to be determined and it is good practice to try different
methods (if applicable) to check for the robustness of the results. If all is well one should obtain very
similar results with the different methods. If this is not the case, carefully check the model output to
see if one model fit did not get stuck at a local minimum during optimization (which would translate
in a lower likelihood, or weird isoscapes looking flat with high peaks at very localised locations).

The argument dist_method allows modifying how the distance between locations is computed to
estimate the spatial correlation structure. By default, we consider the so-called "Earth" distances
which are technically called orthodromic distances. They account for earth curvature. The alterna-
tive "Euclidean" distances do not. For studies performed on a small geographic scale, both distance
methods should lead to similar results.

The arguments control_mean and control_dist are lists that are transmitted to the spaMM::spaMM
fitting functions (defined by spaMM_method). These lists can be used to finely control the fitting
procedure, so advanced knowledge of the package spaMM::spaMM is required before messing around
with these inputs.

We highly recommend users to examine the output produced by isofit. Sometimes, poor fit may oc-
cur and such models should therefore not be used for building isoscapes or performing assignments.

isofit 37

Value

This function returns a list of class ISOFIT containing two inter-related fits: mean_fit and disp_fit.
The returned list also contains the object info_fit that contains all the call arguments.

Note

There is no reason to restrict mean_fit and disp_fit to using the same parametrization for fixed
and random effects.

Never use a mean_fit object to draw predictions without considering a disp_fit object: mean_fit is
not fitted independently from disp_fit.

For all methods, fixed effects are being estimated by Maximum Likelihood (ML) and dispersion
parameters (i.e. random effects and Matérn correlation parameters) are estimated by Restricted
Maximum Likelihood (REML). Using REML provides more accurate prediction intervals but im-
pedes the accuracy of Likelihood Ratio Tests (LRT). Our choice for REML was motivated by the
fact that our package is more likely to be used for drawing inferences than null hypothesis testing.
Users interested in model comparisons may rely on the conditional AIC values that can be extracted
from fitted models using the function spaMM::AIC from spaMM.

Variable names for data must be respected to ensure a correct utilization of this package. Alter-
ation to the fixed effect structure is not implemented so far (beyond the different options proposed)
to avoid misuse of the package. Users that would require more flexibility should consider using
spaMM directly (see Courtiol & Rousset 2017) or let us know which other covariates would be
useful to add in IsoriX.

Source

https://kimura.univ-montp2.fr/~rousset/spaMM.htm

References

Courtiol, A., Rousset, F. (2017). Modelling isoscapes using mixed models. https://www.biorxiv.
org/content/10.1101/207662v1

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). Isoscape computation and inference of spatial origins with mixed models
using the R package IsoriX. In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

Rousset, F., Ferdy, J. B. (2014). Testing environmental and genetic effects in the presence of spatial
autocorrelation. Ecography, 37(8):781-790.

Bowen, G. J., Wassenaar, L. I., Hobson, K. A. (2005). Global application of stable hydrogen and
oxygen isotopes to wildlife forensics. Oecologia, 143(3):337-348.

See Also

spaMM::spaMM for an overview of the spaMM package

spaMM::fitme and spaMM::corrHLfit for information about the two possible fitting procedures
that can be used here

spaMM::MaternCorr for information about the Matérn correlation structure

prepsources for the function preparing the data for isofit

https://kimura.univ-montp2.fr/~rousset/spaMM.htm
https://www.biorxiv.org/content/10.1101/207662v1
https://www.biorxiv.org/content/10.1101/207662v1

38 isomultifit

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 10) {
Fitting the models for Germany
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

GermanFit <- isofit(data = GNIPDataDEagg, mean_model_fix = list(elev = TRUE, lat_abs = TRUE))

GermanFit

Diagnostics for the fits
plot(GermanFit)

Exploration of the fitted models
GermanFit$mean_fit
GermanFit$disp_fit
AIC(GermanFit$disp_fit)

}

isomultifit Fit isoscape models per strata (typically time interval such as months)

Description

This function fits several set of isoscapes (e.g. one per strata). It can thus be used to predict annual
averages precipitation weighted isoscapes.

Usage

isomultifit(
data,
split_by = "month",
mean_model_fix = list(elev = FALSE, lat_abs = FALSE, lat_2 = FALSE, long = FALSE,

long_2 = FALSE),
disp_model_fix = list(elev = FALSE, lat_abs = FALSE, lat_2 = FALSE, long = FALSE,

long_2 = FALSE),
mean_model_rand = list(uncorr = TRUE, spatial = TRUE),
disp_model_rand = list(uncorr = TRUE, spatial = TRUE),
uncorr_terms = list(mean_model = "lambda", disp_model = "lambda"),
spaMM_method = list(mean_model = "fitme", disp_model = "fitme"),
dist_method = "Earth",
control_mean = list(),
control_disp = list(),

isomultifit 39

verbose = interactive()
)

Arguments

data The dataframe containing the data used for fitting the isoscape model

split_by A string indicating the name of the column of data used to split the dataset. The
function isofit will then be called on each of these sub-datasets. The default
behaviour is to consider that the dataset should be split per months (split_by =
"month").

mean_model_fix A list of logical indicating which fixed effects to consider in mean_fit

disp_model_fix A list of logical indicating which fixed effects to consider in disp_fit
mean_model_rand

A list of logical indicating which random effects to consider in mean_fit
disp_model_rand

A list of logical indicating which random effects to consider in disp_fit

uncorr_terms A list of two strings defining the parametrization used to model the uncorrelated
random effects for mean_fit and disp_fit

spaMM_method A list of two strings defining the spaMM functions used for mean_fit and disp_fit

dist_method A string indicating the distance method

control_mean A list of additional arguments to be passed to the call of mean_fit

control_disp A list of additional arguments to be passed to the call of disp_fit

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

Details

This function is a wrapper around the function isofit.

Value

This function returns a list of class MULTIISOFIT containing all pairs of inter-related fits (stored
under multi_fits). The returned list also contains the object info_fit that contains all the call
arguments.

See Also

isofit for information about the fitting procedure of each isoscape.

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

40 isomultiscape

if (getOption_IsoriX("example_maxtime") > 30) {
We prepare the GNIP monthly data between January and June for Germany

GNIPDataDEmonthly <- prepsources(
data = GNIPDataDE,
month = 1:6,
split_by = "month"

)

head(GNIPDataDEmonthly)

We fit the isoscapes

GermanMonthlyFit <- isomultifit(data = GNIPDataDEmonthly)

GermanMonthlyFit

plot(GermanMonthlyFit)
}

isomultiscape Predicts the average spatial distribution of isotopic values over
months, years...

Description

This function is the counterpart of isoscape for the objects created with isomultifit. It creates
the isoscapes for each strata (e.g. month) defined by split_by during the call to isomultifit and
the aggregate them. The function can handle weighting for the aggregation process and may thus
be used to predict annual averages precipitation weighted isoscapes.

Usage

isomultiscape(raster, isofit, weighting = NULL, verbose = interactive())

Arguments

raster The structural raster (SpatRaster) such as an elevation raster created using prepelev

isofit The fitted isoscape created by isofit

weighting An optional RasterBrick containing the weights

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

Value

This function returns a list of class ISOSCAPE containing a set of all 8 raster layers mentioned
above (all being of class SpatRaster), and the location of the sources as spatial points.

isomultiscape 41

See Also

isoscape for details on the function used to compute the isoscapes for each strata isomultifit
for the function fitting the isoscape

plot.ISOSCAPE for the function plotting the isoscape model

IsoriX for the complete work-flow

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 180) {
We prepare the data and split them by month:

GNIPDataDEmonthly <- prepsources(
data = GNIPDataDE,
split_by = "month"

)

dim(GNIPDataDEmonthly)

We fit the isoscapes:#'
GermanMultiFit <- isomultifit(
data = GNIPDataDEmonthly,
mean_model_fix = list(elev = TRUE, lat.abs = TRUE)

)

We build the annual isoscapes by simple averaging (equal weighting):
GermanMultiscape <- isomultiscape(

raster = ElevRasterDE,
isofit = GermanMultiFit

)

We build the annual isoscapes with a weighting based on precipitation amount:
GermanMultiscapeWeighted <- isomultiscape(

raster = ElevRasterDE,
isofit = GermanMultiFit,
weighting = PrecipBrickDE

)

We plot the mean isoscape of the averaging with equal weighting:
plot(x = GermanMultiscape, which = "mean")

We plot the mean isoscape of the averaging with precipitation weighting:
plot(x = GermanMultiscapeWeighted, which = "mean")

We build the isoscapes for a given month (here January):
GermanScapeJan <- isoscape(

raster = ElevRasterDE,

42 isopalette2

isofit = GermanMultiFit$multi_fits[["month_1"]]
)

We plot the mean isoscape for January:
plot(x = GermanScapeJan, which = "mean")

}

isopalette2 Colour palettes for plotting

Description

These datasets contain colour vectors that can be used for plotting. In our examples, we use the
isopalette1 for plotting the isoscape using plot.ISOSCAPE and isopalette2 for plotting the
assignment outcome using plot.ISOFIND.

Format

A vector of colours

Details

Colour palettes can be created by using the function colorRamp that interpolates colours between
a set of given colours. One can also use colorRampPalette to create functions providing colours.
Also interesting, the function colorspace::choose_palette offers a GUI interface allowing to
create and save a palette in a hexadecimal format (which can later on be imported into R). This
latter function is however limited to a maximum of 50 colours. You can also use R colour palettes
already available such as terrain.colors or others available (see examples below). Alternatively,
you can design your own colour palette by writing standard hexadecimal code of colours into a
vector.

Note

We use the package rasterVis for plotting. Instead of using colour palettes directly, one can also
use any "Theme" designed for the lattice graphic environment (see source for details).

Source

For information on how to use themes, check:

https://oscarperpinan.github.io/rastervis/#themes

See Also

grDevices::rainbow for information about R colour palettes

grDevices::colorRamp and colorspace::choose_palette to create your own palettes

https://oscarperpinan.github.io/rastervis/#themes

isopalette2 43

Examples

A comparison of some colour palette

par(mfrow = c(2, 3))
pie(rep(1, length(isopalette1)),

col = isopalette1,
border = NA, labels = NA, clockwise = TRUE, main = "isopalette1"

)
pie(rep(1, length(isopalette2)),

col = isopalette2,
border = NA, labels = NA, clockwise = TRUE, main = "isopalette2"

)
pie(rep(1, 100),

col = terrain.colors(100), border = NA, labels = NA,
clockwise = TRUE, main = "terrain.colors"

)
pie(rep(1, 100),

col = rainbow(100), border = NA, labels = NA,
clockwise = TRUE, main = "rainbow"

)
pie(rep(1, 100),

col = topo.colors(100), border = NA, labels = NA,
clockwise = TRUE, main = "topo.colors"

)
pie(rep(1, 100),

col = heat.colors(100), border = NA, labels = NA,
clockwise = TRUE, main = "heat.colors"

)

Creating your own colour palette
MyPalette <- colorRampPalette(c("blue", "green", "red"), bias = 0.7)
par(mfrow = c(1, 1))
pie(1:100,

col = MyPalette(100), border = NA, labels = NA,
clockwise = TRUE, main = "a home-made palette"

)

Turing palettes into functions for use in IsoriX
Isopalette1Fn <- colorRampPalette(isopalette1, bias = 0.5)
Isopalette2Fn <- colorRampPalette(isopalette2, bias = 0.5)
par(mfrow = c(1, 2))
pie(1:100,

col = Isopalette1Fn(100), border = NA, labels = NA,
clockwise = TRUE, main = "isopalette1"

)
pie(1:100,

col = Isopalette2Fn(100), border = NA, labels = NA,
clockwise = TRUE, main = "isopalette2"

)

44 isoscape

IsoriX-defunct Defunct and deprecated functions

Description

The function you asked help for has been defunct (i.e. it does not longer exists) or deprecated (i.e.
it will disappear soon). A new function with a different name is surely doing the old job.

Arguments

... The call of the defunct or deprecated function

isoscape Predicts the spatial distribution of source isotopic values

Description

This function produces the set of isoscapes, i.e. the spatial prediction (i.e. maps) of the distribution
of source isotopic values, as well as several variances around such predictions. The predictions
are computed using the fitted geostatistical models for each raster cell of a structural raster. All
shape files can be exported and loaded into any Geographic Information System (GIS) if needed
(see online tutorials).

Usage

isoscape(raster, isofit, verbose = interactive())

Arguments

raster The structural raster (SpatRaster) such as an elevation raster created using prepelev

isofit The fitted isoscape created by isofit

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session and FALSE otherwise.

Details

This function computes the predictions (mean), prediction variances (mean_predVar), residual vari-
ances (mean_residVar) and response variances (mean_respVar) for the isotopic values at a resolu-
tion equal to the one of the structural raster. It also computes the same information for the residual
dispersion variance (disp_pred, disp_predVar, disp_residVar, or disp_respVar).

The predictions of isotopic values across the landscape are performed by calling the function
spaMM::predict from the package spaMM on the fitted isoscape produced by isofit.

Let us summarize the meaning of mean, mean_predVar, mean_residVar and mean_respVar (see
Courtiol & Rousset 2017 and Courtiol et al. 2019 for more details):

isoscape 45

Our model assumes that that there is a single true unknown isoscape, which is fixed but which is
represented by the mixed-effect model as a random draw from possible realizations of isoscapes
(random draws of the Matérn-correlated process and of the uncorrelated random effects if consid-
ered). We infer this realized isoscape by fitting the model to a limited amount of data, with some
uncertainty since different random draws of the unknown isoscape may give the same observed
data. There is thus a conditional distribution of possible true isoscapes given the data. For linear
mixed-effects models, the mean prediction is the mean of this conditional distribution. The predic-
tion variance is ideally the mean square difference between the true unknown value of the linear
predictor and the mean prediction at a given location. The residual variance is simply the prediction
of the variance in isotopic value at a given location. Its exact meaning depends on the aggregation
scheme used in prepsources, but by default, it would correspond to the temporal variation between
months and across years. The response variance estimates the variance of new observations drawn
from the true unknown isoscape at a given location. The response variance is simply equal to the
sum of the prediction variance and the residual variance (note that the residual variance considered
assume that a single observation is being observed per location).

The isoscape can be plotted using the function plot.ISOSCAPE (see examples).

Value

This function returns a list of class ISOSCAPE containing a set of all 8 raster layers mentioned
above (all being of class SpatRaster), and the location of the sources as spatial points.

References

Courtiol, A., Rousset, F. (2017). Modelling isoscapes using mixed models. https://www.biorxiv.
org/content/10.1101/207662v1

Courtiol A, Rousset F, Rohwäder M, Soto DX, Lehnert L, Voigt CC, Hobson KA, Wassenaar LI &
Kramer-Schadt S (2019). Isoscape computation and inference of spatial origins with mixed models
using the R package IsoriX. In Hobson KA & Wassenaar LI (eds.), Tracking Animal Migration with
Stable Isotopes, second edition. Academic Press, London.

See Also

isofit for the function fitting the isoscape

plot.ISOSCAPE for the function plotting the isoscape model

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
We prepare the data
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

We fit the models
GermanFit <- isofit(

https://www.biorxiv.org/content/10.1101/207662v1
https://www.biorxiv.org/content/10.1101/207662v1

46 ISOSCAPE-class

data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat_abs = TRUE)

)

We build the isoscapes
GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)

GermanScape
plot(GermanScape)

We build more plots
PlotMean <- plot(x = GermanScape, which = "mean", plot = FALSE)

PlotMeanPredVar <- plot(x = GermanScape, which = "mean_predVar", plot = FALSE)

PlotMeanResidVar <- plot(x = GermanScape, which = "mean_residVar", plot = FALSE)

PlotMeanRespVar <- plot(x = GermanScape, which = "mean_respVar", plot = FALSE)

We display the plots
print(PlotMean, split = c(1, 1, 2, 2), more = TRUE)
print(PlotMeanPredVar, split = c(2, 1, 2, 2), more = TRUE)
print(PlotMeanResidVar, split = c(1, 2, 2, 2), more = TRUE)
print(PlotMeanRespVar, split = c(2, 2, 2, 2), more = FALSE)

We build a sphere with our isoscape
plot(x = GermanScape, which = "mean", plot = FALSE, sphere = list(build = TRUE))

We can save a rotating sphere with the isoscape as a .gif-file.
This file will be located inside your working directory.
Make sure your current rgl device (from the previous step) is still open
and that you have both the packages 'rgl' and 'magick' installed.
The building of the .gif implies to create temporarily many .png
but those will be removed automatically once the .gif is done.
Uncomment to proceed (after making sure you have rgl, magick & webshot2 installed)
if(require("rgl") && require("magick") && require("webshot2")) {
movie3d(spin3d(axis = c(0, 0, 1), rpm = 2), duration = 30, dir = getwd())
}

}

ISOSCAPE-class Class ISOSCAPE

Description

Class ISOSCAPE

Slots

isoscapes a SpatRaster storing the isoscapes

OceanMask 47

sp_points a list of spatial points

OceanMask Mask of world oceans

Description

This dataset contains a polygon SpatVector (from terra). It can be used to mask large bodies of
water.

Format

A SpatVector object

Source

See example for details on how we created the dataset.

See Also

• CountryBorders for another polygon used to embellish the plots

Examples

plot(OceanMask, col = "blue")

How did we create this file?

Uncomment the following to create the file as we did
if (require(terra)) {
worldlimit <- vect(ext(CountryBorders))
crs(worldlimit) <- crs(CountryBorders)
OceanMask <- worldlimit - CountryBorders
#saveRDS(OceanMask, file = "IsoriX/inst/extdata/OceanMask.rds", compress = "xz")
}

options Setting and displaying the options of the package

Description

** Information on the settings for the delta notation **

48 options

Usage

options_IsoriX(...)

getOption_IsoriX(x = NULL)

Arguments

... A named value or a list of named values. The following values, with their de-
faults, are used:

title_delta_notation a name, call, or expression used as default in titles to refer
to the delta notation.

example_maxtime The number of seconds allowed for a given example to run.
It is used to control whether the longer examples should be run or not based
on the comparison between this option and the approximate running time
of the example on our computers.

Ncpu An integer corresponding to the number of cores to be used (in functions
that can handle parallel processing).

dont_ask A logical indicating if the user prompt during interactive session dur-
ing plotting must be inactivated (for development purposes only).

spaMM_debugmod A logical indicating if the warnings and errors produced
by the spaMM package should stopped being turned into messages (for
development purposes only).

x A character string holding an option name.

Details

Note that if the delta notation is not successfully rendered on your plots (which can happen for var-
ious reasons related to fonts, encoding settings, graphic devices and perhaps more), you may try to
use e.g. options_IsoriX(title_delta_notation = bquote(italic("\u03B4")**2*H[p])) to
override the default for all plots. The default does correspond to options_IsoriX(title_delta_notation
= bquote(delta**2*H)). If you are working with oxygen (rather than with deuterium), modifying
the global option is also a good place to do so. You may do: options_IsoriX(title_delta_notation
= bquote(delta**18*O)).

Value

The options are invisibly returned in an object called IsoriX:::.data_IsoriX$options

Examples

OldOptions <- options_IsoriX()
OldOptions
getOption_IsoriX("title_delta_notation")
getOption_IsoriX("example_maxtime")
options_IsoriX(example_maxtime = 30)
options_IsoriX()
options_IsoriX(example_maxtime = OldOptions$example_maxtime)
options_IsoriX()

plots 49

plots Plotting functions for IsoriX

Description

These functions plot objects created by IsoriX (with the exception of plot method for SpatRaster
created using terra::terra. All plotting functions are based on the powerful package lattice. If
instead you want to use ggplot2, please follow the instructions on the online tutorial.

Usage

S3 method for class 'ISOSCAPE'
plot(
x,
which = "mean",
y_title = list(which = TRUE, title = getOption_IsoriX("title_delta_notation")),
sources = list(draw = TRUE, cex = 0.5, pch = 2, lwd = 1, col = "red"),
borders = list(borders = NA, lwd = 0.5, col = "black"),
mask = list(mask = NA, lwd = 0, col = "black", fill = "black"),
palette = list(step = NA, range = c(NA, NA), n_labels = 11, digits = 2, fn = NA),
plot = TRUE,
sphere = list(build = FALSE, keep_image = TRUE),
...

)

S3 method for class 'ISOFIND'
plot(
x,
who = "group",
cutoff = list(draw = TRUE, level = 0.05, col = "#909090"),
sources = list(draw = TRUE, cex = 0.5, pch = 2, lwd = 1, col = "red"),
calibs = list(draw = TRUE, cex = 0.5, pch = 4, lwd = 1, col = "blue"),
assigns = list(draw = TRUE, cex = 0.5, pch = 5, lwd = 1, col = "white"),
borders = list(borders = NA, lwd = 0.5, col = "black"),
mask = list(mask = NA, lwd = 0, col = "black", fill = "black"),
mask2 = list(mask = NA, lwd = 0, col = "purple", fill = "purple"),
palette = list(step = NA, range = c(0, 1), n_labels = 11, digits = 2, fn = NA),
plot = TRUE,
sphere = list(build = FALSE, keep_image = TRUE),
...

)

S3 method for class 'ISOFIT'
plot(x, cex_scale = 0.2, ...)

S3 method for class 'CALIBFIT'
plot(

https://bookdown.org/content/782/advanced.html#ggplot

50 plots

x,
pch = 1,
col = "black",
xlab = "Isotopic value in the environment",
ylab = "Isotopic value in the calibration sample",
xlim = NULL,
ylim = NULL,
line = list(show = TRUE, col = "blue"),
CI = list(show = TRUE, col = "blue"),
plot = TRUE,
...

)

S3 method for class 'CALIBFIT'
points(
x,
pch = 2,
col = "red",
line = list(show = TRUE, col = "red"),
CI = list(show = TRUE, col = "red"),
plot = TRUE,
...

)

S3 method for class 'SpatRaster'
plot(x, ...)

Arguments

x The return object of a call to isofit, isoscape, calibfit, isofind, or terra::rast

which A string indicating the name of the raster to be plotted (see details)

y_title A list containing information for the display of the title (see details)

sources A list containing information for the display of the location of the sources (see
details)

borders A list containing information for the display of borders (e.g. country borders)
(see details)

mask A list containing information for the display of a mask (e.g. an ocean mask) (see
details)

palette A list containing information for the display of the colours for the isoscape (see
details)

plot A logical indicating whether the plot shall be plotted or just returned

sphere A list containing information whether the raster should be returned as a rotating
sphere and if the image created during the process should be saved in your cur-
rent working directory. The default settings are FALSE and TRUE, respectively.

... Additional arguments (only in use in plot.CALIBFIT and plot.SpatRaster)

plots 51

who Either "group", or a vector of indices (e.g. 1:3) or names of the individuals (e.g.
c("Mbe_1", "Mbe_3")) to be considered in assignment plots

cutoff A list containing information for the display of the region outside the prediction
interval (see details)

calibs A list containing information for the display of the location of the calibration
sampling location (see details)

assigns A list containing information for the display of the location of the assignment
sampling location (see details)

mask2 A list containing information for the display of a mask (e.g. a distribution mask)
(see details)

cex_scale A numeric giving a scaling factor for the points in the plots

pch The argument pch as in par for plot.CALIBFIT and points.CALIBFIT

col The argument col as in par for plot.CALIBFIT and points.CALIBFIT

xlab A string the x-axis label in plot.CALIBFIT

ylab A string the y-axis label in plot.CALIBFIT

xlim A range defining the extreme coordinates for the the x-axis in plot.CALIBFIT

ylim A range defining the extreme coordinates for the the y-axis in plot.CALIBFIT

line A list containing two elements: show, a logical indicating whether to show the
regression line or not; and col, a string or integer indicating the colour for
plotting the regression line

CI A list containing two elements: show, a logical indicating whether to show the
confidence interval or not; and col, a string or integer indicating the colour for
plotting the confidence interval

Details

General

When called upon an object of class ISOFIT, the plot function draws diagnostic information for the
fits of the isoscape geostatistical model.

When called upon an object of class CALIBFIT, the plot function draws the fitted calibration func-
tion.

When called upon an object of class ISOSCAPE, the plot function draws a fine-tuned plot of the
isoscape.

When called upon an object of class SpatRaster, the plot function displays the raster (just for check-
ing things fast and dirty). In this case, the function is a simple shortcut to rasterVis::levelplot.

Plotting isoscapes

When used on a fitted isoscape, the user can choose between plotting the predictions (which =
"mean"; default), the prediction variance (which = "mean_predVar"), the residual variance (which
= "mean_residVar"), or the response variance (which = "mean_respVar") for the mean model; or
the corresponding information for the residual dispersion variance model ("disp", "disp_predVar",
"disp_residVar", or "disp_respVar").

52 plots

When used on a simulated isoscape produced with the function isosim (currently dropped due to
the package RandomFields being temporarily retired from CRAN), the user can choose between
plotting the mean isotopic value (which = "mean") or the residual dispersion (which = "disp").

Plotting assignments

When called upon an object of class ISOFIND, the plot function draws a fine-tuned plot of the
assignment. You can use the argument who to choose between plotting the assignment for the group
or for some individuals (check the online tutorial for examples).

Info on parameters influencing the rendering of maps

The argument y_title is a list that can be tweaked to customise the title of isoscapes. Within this
list, the element which is a logical indicating if the name of the layer should be displayed or not.
The element title is a string or a call used to define the rest of the title. By default it draws the
delta value for hydrogen. Check the syntax of this default before trying to modify it. If you want to
modify it for all plots, see getOption_IsoriX.

The arguments cutoff, sources, calibs, assigns, borders, mask, and mask2 are used to fine-
tune additional layers that can be added to the main plot to embellish it. These arguments must be
lists that provide details on how to draw, respectively, the area outside the prediction interval (for
assignment plots), the locations of sources (for both isoscape and assignment plots), the locations of
the calibration samples (for assignment plots), the locations of the assignment samples (for assign-
ment plots), the borders (for both types of plots), and the mask (again, for both). For assignment
maps, an extra mask can be used (mask2), as one may want to add a mask covering the area out-
side the biological range of the species. Within these lists, the elements lwd, col, cex, pch and
fill influences their respective objects as in traditional R plotting functions (see par for details).
The element draw should be a logical that indicates whether the layer must be created or not. The
argument borders (within the list borders) expects an object of the class SpatVector, such as the
object CountryBorders provided with this package. The argument mask (within the list mask) also
expects an object of the class SpatVector, such as the object OceanMask provided with this package
(see examples).

The argument palette is used to define how to colour the isoscape and assignment plot. Within
this list, step defines the number of units on the z-scale that shares a given colour; range can
be used to constrain the minimum and/or maximum values to be drawn (e.g. range = c(0, 1))
(this latter argument is useful if one wants to create several plots with the same z-scale); n_labels
allows for the user to approximately define the maximum number of numbers plotted on the z-scale;
digits defines the number of digits displayed for the numbers used as labels; and fn is used to
specify the function that is used to sample the colours. If fn is NULL (default) the palette functions
derived from isopalette1 and isopalette2 are used when plotting isoscape and assignments,
respectively. If fn is NA the function used is the palette viridisLite::viridis.

Default symbols used on maps

Under the default settings, we chose to represent:

• the source data by little red triangles.

• the calibration data by little blue crosses.

• the locations where the samples to assign were collected by white diamonds.

These symbols can be changed as explained above.

https://bookdown.org/content/782/

PrecipBrickDE 53

See Also

isofit for the function fitting the isoscape

isoscape for the function building the isoscape

calibfit for the function fitting the calibration function

isofind for the function performing the assignment

Examples

See ?isoscape or ?isofind for examples

PrecipBrickDE The precipitation monthly amounts for Germany

Description

This brick of rasters contains the monthly precipitation amounts (in mm) for Germany with a reso-
lution of approximately 30 square-km.

Format

A SpatRaster with 12 layers

Details

The data are derived from "precipitation (mm) WorldClim Version2" which can be downloaded
using the function getprecip.

Source

https://worldclim.org/data/worldclim21.html

See Also

prepcipitate to prepare this raster

Examples

The following example requires to download
a large precipitation rasters with the function getprecip()
and will therefore not run unless you uncomment it

How did we create this file?

Uncomment the following to create the file as we did
getprecip() ## Download the tif files (~ 1 Gb compressed)
PrecipBrickDE <- prepcipitate(raster = ElevRasterDE)
terra::saveRDS(PrecipBrickDE, file = "PrecipBrickDE.rds", compress = "xz")

https://worldclim.org/data/worldclim21.html

54 prepcipitate

prepcipitate Prepare the raster brick containing the precipitation data

Description

This functions turns the WorldClim data downloaded using the function getprecip into a Spa-
tRaster of same resolution and extent as the structural raster. This function is designed to be used
with isomultiscape.

Usage

prepcipitate(path = NULL, raster, verbose = interactive())

Arguments

path A string indicating the path where the WorldClim data have been downloaded.
If the path is null (the default) the function will assume that the folder containing
the precipitation data is in the current directory

raster A raster containing the structural raster

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session, and FALSE otherwise.

See Also

getprecip to download the relevant precipitation data

PrecipBrickDE for the stored precipitation data for Germany

prepelev to prepare an elevation raster

Examples

The following example takes some time and download a large amount of data (~ 1 Gb).
It will therefore not be run unless you uncomment it

We fit the models for Germany:
GNIPDataDEagg <- prepsources(data = GNIPDataDE)
#
GermanFit <- isofit(data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat.abs = TRUE))
#
We prepare the structural raster:
StrRaster <- prepraster(raster = ElevRasterDE,
isofit = GermanFit,
aggregation_factor = 0)
#
We download the precipitation data:
temp_folder <- tempdir()

prepraster 55

getprecip(path = temp_folder)
#
We prepare the raster brick with all the precipitation data:
PrecipitationBrick <- prepcipitate(path = temp_folder,
raster = StrRaster)
#
We plot the precipitation data:
levelplot(PrecipitationBrick)

prepraster Prepare the structural raster

Description

This function prepares the structural raster for the follow-up analyses. The size and extent of the
structural raster defines the resolution at which the isoscapes and the assignments are defined.

Usage

prepraster(
raster,
isofit = NULL,
margin_pct = 5,
aggregation_factor = 0L,
aggregation_fn = mean,
manual_crop = NULL,
values_to_zero = c(-Inf, 0),
verbose = interactive()

)

Arguments

raster The structural raster (SpatRaster)

isofit The fitted isoscape model returned by the function isofit

margin_pct The percentage representing by how much the area should extend outside the
area used for cropping (default = 5, corresponding to 5%). Set to 0 if you want
exact cropping.

aggregation_factor

The number of neighbouring cells (integer) to merge during aggregation

aggregation_fn The function used to aggregate cells

manual_crop A vector of four coordinates (numeric) for manual cropping, e.g. the spatial
extent

values_to_zero A numeric vector of length two specifying the range of values for the structural
raster that must be turned into 0. Default is c(-Inf, 0) which for an eleva-
tion raster brings all seas to an elevation of zero. For using IsoriX for marine
organisms, you should use c(0, Inf) instead.

56 prepraster

verbose A logical indicating whether information about the progress of the procedure
should be displayed or not while the function is running. By default verbose is
TRUE if users use an interactive R session, and FALSE otherwise.

Details

This functions allows the user to crop a raster according to either the extent of the isoscape or manu-
ally. If a fitted isoscape object is provided (see isofit), the function extracts the observed locations
of isotopic sources from the model object and crops the structural raster accordingly. Alternatively,
manual_crop allows you to crop the structural raster to a desired extent. If no model and no co-
ordinates for manual cropping are provided, no crop will be performed. Importantly, cropping is
recommended as it prevents extrapolations outside the latitude/longitude range of the source data.
Predicting outside the range of the source data may lead to highly unreliable predictions.

Aggregation changes the spatial resolution of the raster, making computation faster and using less
memory (this can affect the assignment; see note below). An aggregation factor of zero (or one)
keeps the resolution constant (default).

This function relies on calls to the functions terra::aggregate and terra::crop from the pack-
age terra. It thus share the limitations of these functions. In particular, terra::crop expects
extents with increasing longitudes and latitudes. We have tried to partially relax this constrains for
longitude and you can use the argument manual_crop to provide longitudes in decreasing order,
which is useful to centre a isoscape around the pacific for instance. But this fix does not solve
all the limitations as plotting polygons or points on top of that remains problematic (see example
bellow). We will work on this on the future but we have other priorities for now (let us know if you
really need this feature).

Value

The prepared structural raster of class SpatRaster

Note

Aggregating the raster may lead to different results for the assignment, because the values of raster
cells changes depending on the aggregation function (see example below), which in turn affects
model predictions.

See Also

ElevRasterDE for information on elevation rasters, which can be used as structural rasters.

Examples

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

if (getOption_IsoriX("example_maxtime") > 30) {
We fit the models for Germany
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

prepraster 57

GermanFit <- isofit(
data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat_abs = TRUE)

)

Let's explore the difference between aggregation schemes

We aggregate and crop using different settings
ElevationRaster1 <- prepraster(

raster = ElevRasterDE,
isofit = GermanFit,
margin_pct = 0,
aggregation_factor = 0

)

ElevationRaster2 <- prepraster(
raster = ElevRasterDE,
isofit = GermanFit,
margin_pct = 5,
aggregation_factor = 5

)

ElevationRaster3 <- prepraster(
raster = ElevRasterDE,
isofit = GermanFit,
margin_pct = 10,
aggregation_factor = 5, aggregation_fn = max

)

We plot the outcome of the 3 different aggregation schemes using terra

oripar <- par(mfrow = c(1, 3)) ## display 3 plots side-by-side

plot(ElevationRaster1, main = "Original small raster")
polys(CountryBorders)
polys(OceanMask, col = "blue")

plot(ElevationRaster2, main = "Small raster aggregated (by mean)")
polys(CountryBorders)
polys(OceanMask, col = "blue")

plot(ElevationRaster3, main = "Small raster aggregated (by max)")
polys(CountryBorders)
polys(OceanMask, col = "blue")

par(oripar) ## restore graphical settings
}

The examples below will only be run if sufficient time is allowed
You can change that by typing e.g. options_IsoriX(example_maxtime = XX)
if you want to allow for examples taking up to ca. XX seconds to run
(so don't write XX but put a number instead!)

58 prepsources

if (getOption_IsoriX("example_maxtime") > 10) {
Let's create a raster centered around the pacific

We first create an empty raster
EmptyRaster <- rast(matrix(0, ncol = 360, nrow = 180))
ext(EmptyRaster) <- c(-180, 180, -90, 90)
crs(EmptyRaster) <- "+proj=longlat +datum=WGS84"

We crop it around the pacific
PacificA <- prepraster(EmptyRaster, manual_crop = c(110, -70, -90, 90))
ext(PacificA) # note that the extent has changed!

We plot (note the use of the function shift()!)
plot(PacificA, col = "blue", legend = FALSE)
polys(CountryBorders, col = "black")
polys(shift(CountryBorders, dx = 360), col = "black")

}

prepsources Filter and aggregate the raw source dataset

Description

This function prepares the available dataset to be used for creating the isoscape (e.g. GNIPDataDE).
This function allows the trimming of data by months, years and location, and for the aggregation of
selected data per location, location:month combination or location:year combination. The function
can also be used to randomly exclude some observations.

Usage

prepsources(
data,
month = 1:12,
year,
long_min = -180,
long_max = 180,
lat_min = -90,
lat_max = 90,
split_by = NULL,
prop_random = 0,
random_level = "source",
col_source_value = "source_value",
col_source_ID = "source_ID",
col_lat = "lat",
col_long = "long",
col_elev = "elev",
col_month = "month",
col_year = "year"

)

prepsources 59

Arguments

data A dataframe containing raw isotopic measurements of sources

month A numeric vector indicating the months to select from. Should be a vector of
round numbers between 1 and 12. The default is 1:12 selecting all months.

year A numeric vector indicating the years to select from. Should be a vector of
round numbers. The default is to select all years available.

long_min A numeric indicating the minimum longitude to select from. Should be a number
between -180 and 180 (default = -180).

long_max A numeric indicating the maximal longitude to select from. Should be a number
between -180 and 180 (default = 180).

lat_min A numeric indicating the minimum latitude to select from. Should be a number
between -90 and 90 (default = -90).

lat_max A numeric indicating the maximal latitude to select from (default = 90).

split_by A string indicating whether data should be aggregated per location (split_by
= NULL, the default), per location:month combination (split_by = "month"), or
per location:year combination (split_by = "year").

prop_random A numeric indicating the proportion of observations or sampling locations (de-
pending on the argument for random_level) that will be kept. If prop_random
is greater than 0, then the function will return a list containing two dataframes:
one containing the selected data, called selected_data, and one containing the
remaining data, called remaining_data.

random_level A string indicating the level at which random draws can be performed. The two
possibilities are "obs", which indicates that observations are randomly drawn
taken independently of their location, or "source" (default), which indicates that
observations are randomly drawn at the level of sampling locations.

col_source_value

A string indicating the column containing the isotopic measurements

col_source_ID A string indicating the column containing the ID of each sampling location

col_lat A string indicating the column containing the latitude of each sampling location

col_long A string indicating the column containing the longitude of each sampling loca-
tion

col_elev A string indicating the column containing the elevation of each sampling loca-
tion

col_month A string indicating the column containing the month of sampling

col_year A string indicating the column containing the year of sampling

Details

This function aggregates the data as required for the IsoriX workflow. Three aggregation schemes
are possible for now. The most simple one, used as default, aggregates the data so to obtained
a single row per sampling location. Datasets prepared in this way can be readily fitted with the
function isofit to build an isoscape. It is also possible to aggregate data in a different way in order
to build sub-isoscapes representing temporal variation in isotope composition, or in order to produce

60 prepsources

isoscapes weighted by the amount of precipitation (for isoscapes on precipitation data only). The
two possible options are to either split the data from each location by month or to split them by
year. This is set with the split_by argument of the function. Datasets prepared in this way should
be fitted with the function isomultifit.

The function also allows the user to filter the sampling locations based on time (years and/ or
months) and space (locations given in geographic coordinates, i.e. longitude and latitude) to cal-
culate tailored isoscapes matching e.g. the time of sampling and speeding up the model fit by
cropping/clipping a certain area. The dataframe produced by this function can be used as input to
fit the isoscape (see isofit and isomultifit).

Value

This function returns a dataframe containing the filtered data aggregated by sampling location, or a
list, see above argument prop_random. For each sampling location the mean and variance sample
estimates are computed.

Examples

Create a processed dataset for Germany
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

head(GNIPDataDEagg)

Create a processed dataset for Germany per month
GNIPDataDEmonthly <- prepsources(

data = GNIPDataDE,
split_by = "month"

)

head(GNIPDataDEmonthly)

Create a processed dataset for Germany per year
GNIPDataDEyearly <- prepsources(

data = GNIPDataDE,
split_by = "year"

)

head(GNIPDataDEyearly)

Create isoscape-dataset for warm months in germany between 1995 and 1996
GNIPDataDEwarm <- prepsources(

data = GNIPDataDE,
month = 5:8,
year = 1995:1996

)

head(GNIPDataDEwarm)

Create a dataset with 90% of obs
GNIPDataDE90pct <- prepsources(

serialize 61

data = GNIPDataDE,
prop_random = 0.9,
random_level = "obs"

)

lapply(GNIPDataDE90pct, head) # show beginning of both datasets

Create a dataset with half the weather sources
GNIPDataDE50pctsources <- prepsources(

data = GNIPDataDE,
prop_random = 0.5,
random_level = "source"

)

lapply(GNIPDataDE50pctsources, head)

Create a dataset with half the weather sources split per month
GNIPDataDE50pctsourcesMonthly <- prepsources(

data = GNIPDataDE,
split_by = "month",
prop_random = 0.5,
random_level = "source"

)

lapply(GNIPDataDE50pctsourcesMonthly, head)

serialize Save and read objects produced by IsoriX using RDS files

Description

Because files created with IsoriX contain terra::SpatRaster and terra::SpatVector objects,
they cannot be saved using base::saveRDS or base::save functions. The reason is that objects
created with terra::terra point to data stored in memory which are not contained in the R ob-
jects themselves. Adapting the approach implemented in the terra::terra package, we provide
a wrapper for base::saveRDS and base::readRDS functions, which allows one to save and read
objects produced with IsoriX by simply using saveRDS() and readRDS().

Usage

saveRDS_IsoriX(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

62 serialize

)

S3 method for class 'ISOSCAPE'
saveRDS(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S3 method for class 'CALIBFIT'
saveRDS(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S3 method for class 'ISOFIND'
saveRDS(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S3 method for class 'character'
readRDS(file, refhook = NULL)

S4 method for signature 'ISOSCAPE'
saveRDS(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'CALIBFIT'
saveRDS(
object,

serialize 63

file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'ISOFIND'
saveRDS(
object,
file = "",
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'character'
readRDS(file, refhook = NULL)

Arguments

object (definition copied from base::readRDS:) R object to serialize.

file (definition copied from base::readRDS:) a connection or the name of the file
where the R object is saved to or read from.

ascii (definition copied from base::readRDS:) a logical. If TRUE or NA, an ASCII
representation is written; otherwise (default), a binary one is used. See the com-
ments in the help for base::save.

version (definition copied from base::readRDS:) the workspace format version to use.
NULL specifies the current default version (3). The only other supported value is
2, the default from R 1.4.0 to R 3.5.0.

compress (definition copied from base::readRDS:) a logical specifying whether saving to
a named file is to use "gzip" compression, or one of "gzip", "bzip2" or "xz" to
indicate the type of compression to be used. Ignored if file is a connection.

refhook (definition copied from base::readRDS:) a hook function for handling reference
objects.

Details

base::saveRDS and base::readRDS are standard S3 functions. So in order to be able to have a
specific behaviour for objects produced with IsoriX, we imported saveRDS and readRDS S4 generics
from terra::terra to dispatch both S3 and S4 IsoriX-specific methods (see Methods_for_S3).
The S3 implementation is consistent with the rest of the package and presents all usual benefits
associated with S3 methods (e.g. simple access to the code). The S4 implementation makes IsoriX
methods compatible with the use of terra::saveRDS and terra::readRDS.

64 serialize

Value

For saveRDS, NULL invisibly.

For readRDS, an R object.

Functions

• saveRDS_IsoriX(): S3 function to save IsoriX objects into a RDS file

• saveRDS(ISOSCAPE): S3 method to save an ISOSCAPE object into a RDS file

• saveRDS(CALIBFIT): S3 method to save a CALIBFIT object into a RDS file

• saveRDS(ISOFIND): S3 method to save an ISOFIND object into a RDS file

• readRDS(character): S3 method to read an object produced with IsoriX (or other) stored in
a RDS file

• saveRDS(ISOSCAPE): S4 method to save an ISOSCAPE object into a RDS file

• saveRDS(CALIBFIT): S4 method to save an CALIBFIT object into a RDS file

• saveRDS(ISOFIND): S4 method to save an ISOFIND object into a RDS file

• readRDS(character): S4 method to read an object produced with IsoriX (or other) stored in
a RDS file

Examples

if (getOption_IsoriX("example_maxtime") > 30) {
We prepare the data
GNIPDataDEagg <- prepsources(data = GNIPDataDE)

We fit the models
GermanFit <- isofit(
data = GNIPDataDEagg,
mean_model_fix = list(elev = TRUE, lat_abs = TRUE)

)

We build the isoscapes
GermanScape <- isoscape(raster = ElevRasterDE, isofit = GermanFit)

Saving as RDS
filename <- tempfile(fileext = ".rds") # or whatever names you want
saveRDS(GermanScape, file = filename)

Reading RDS
GermanScape2 <- readRDS(filename)
GermanScape2

}

Index

∗ color
isopalette2, 42

∗ datasets
AssignDataAlien, 5
AssignDataBat, 6
AssignDataBat2, 7
CalibDataAlien, 8
CalibDataBat, 10
CalibDataBat2, 11
CountryBorders, 20
ElevRasterDE, 24
GNIPDataDE, 28
GNIPDataEUagg, 29
isopalette2, 42
OceanMask, 47
PrecipBrickDE, 53

∗ models
calibfit, 13
isofind, 30
isofit, 34
isomultiscape, 40
isoscape, 44

∗ package
IsoriX-package, 2

∗ plot
plots, 49

∗ prediction
isomultiscape, 40
isoscape, 44

∗ predict
isomultiscape, 40
isoscape, 44

∗ regression
calibfit, 13
isofind, 30
isofit, 34
isomultiscape, 40
isoscape, 44

∗ saving

serialize, 61
∗ simulate

create_aliens, 21
∗ simulation

create_aliens, 21
∗ utilities

prepraster, 55

AssignDataAlien, 5, 32
AssignDataBat, 6
AssignDataBat2, 7
AssignDataBat2Rev (AssignDataBat2), 7
AssignDataBatRev (AssignDataBat), 6

base::readRDS, 61, 63
base::save, 61, 63
base::saveRDS, 61, 63

CalibDataAlien, 8, 14
CalibDataBat, 10, 12, 14
CalibDataBat2, 10, 11, 11, 14
CalibDataBat2Rev (CalibDataBat2), 11
CalibDataBatRev (CalibDataBat), 10
Calibfit (IsoriX-defunct), 44
calibfit, 4, 8–12, 13, 22, 31, 50, 53
CALIBFIT-class, 19
colorRamp, 42
colorRampPalette, 42
colorspace::choose_palette, 42
CountryBorders, 20, 47, 52
create_aliens, 21

downloadfile, 23

elevatr::elevatr, 26
elevatr::get_elev_raster, 25, 26
ElevRasterDE, 3, 24, 56

GetElev (IsoriX-defunct), 44
getelev, 3, 24, 25
getOption_IsoriX, 52

65

66 INDEX

getOption_IsoriX (options), 47
getprecip, 24, 27, 53, 54
GNIPDataALLagg (GNIPDataEUagg), 29
GNIPDataDE, 28, 30, 58
GNIPDataEUagg, 28, 29
grDevices::colorRamp, 42
grDevices::rainbow, 42

isofind, 4–8, 14, 22, 30, 31, 50, 53
ISOFIND-class, 34
Isofit (IsoriX-defunct), 44
isofit, 3, 13, 14, 34, 39, 40, 44, 45, 50, 53,

55, 56, 59, 60
isomultifit, 3, 4, 38, 40, 41, 60
isomultiscape, 4, 27, 40, 54
isopalette1, 52
isopalette1 (isopalette2), 42
isopalette2, 42, 52
IsoriX, 22, 41
IsoriX (IsoriX-package), 2
Isorix (IsoriX-defunct), 44
IsoriX-defunct, 44
IsoriX-package, 2
Isoscape (IsoriX-defunct), 44
isoscape, 3, 4, 21, 31, 40, 41, 44, 50, 53
ISOSCAPE-class, 46
Isosim (IsoriX-defunct), 44

Methods_for_S3, 63

OceanMask, 20, 31, 47, 52
optim, 13
options, 47
options_IsoriX (options), 47

par, 51, 52
plot, 17
plot.CALIBFIT (plots), 49
plot.ISOFIND, 4, 42
plot.ISOFIND (plots), 49
plot.ISOFIT (plots), 49
plot.ISOSCAPE, 4, 41, 42, 45
plot.ISOSCAPE (plots), 49
plot.SpatRaster (plots), 49
plots, 49
points.CALIBFIT (plots), 49
PrecipBrickDE, 53, 54
prepcipitate, 27, 53, 54
prepdata (IsoriX-defunct), 44

prepelev, 40, 44, 54
prepelev (IsoriX-defunct), 44
prepiso (IsoriX-defunct), 44
prepraster, 3, 24, 26, 55
prepsources, 3, 28, 29, 37, 45, 58
print.CALIBFIT (calibfit), 13
print.ISOFIND (isofind), 30
print.ISOFIT (isofit), 34
print.isoscape (isoscape), 44

QueryGNIP (IsoriX-defunct), 44
queryGNIP (IsoriX-defunct), 44

rasterVis::levelplot, 51
readRDS (serialize), 61
readRDS,character-method (serialize), 61
readRDS.character (serialize), 61
RElevate (IsoriX-defunct), 44
relevate (IsoriX-defunct), 44

saveRDS (serialize), 61
saveRDS,CALIBFIT-method (serialize), 61
saveRDS,ISOFIND-method (serialize), 61
saveRDS,ISOSCAPE-method (serialize), 61
saveRDS.CALIBFIT (serialize), 61
saveRDS.ISOFIND (serialize), 61
saveRDS.ISOSCAPE (serialize), 61
saveRDS_IsoriX (serialize), 61
serialise (serialize), 61
serialize, 61
sign, 16
spaMM::AIC, 37
spaMM::corrHLfit, 37
spaMM::fitme, 37
spaMM::MaternCorr, 37
spaMM::predict, 44
spaMM::spaMM, 34, 36, 37
summary.CALIBFIT (calibfit), 13
summary.ISOFIND (isofind), 30
summary.ISOFIT (isofit), 34
summary.isoscape (isoscape), 44

terra::aggregate, 56
terra::crop, 56
terra::extract, 9, 10, 12
terra::rast, 25, 50
terra::readRDS, 63
terra::saveRDS, 63
terra::SpatRaster, 61

INDEX 67

terra::SpatVector, 61
terra::terra, 49, 61, 63
terrain.colors, 42
tools::md5sum, 24

viridisLite::viridis, 52

	IsoriX-package
	AssignDataAlien
	AssignDataBat
	AssignDataBat2
	CalibDataAlien
	CalibDataBat
	CalibDataBat2
	calibfit
	CALIBFIT-class
	CountryBorders
	create_aliens
	downloadfile
	ElevRasterDE
	getelev
	getprecip
	GNIPDataDE
	GNIPDataEUagg
	isofind
	ISOFIND-class
	isofit
	isomultifit
	isomultiscape
	isopalette2
	IsoriX-defunct
	isoscape
	ISOSCAPE-class
	OceanMask
	options
	plots
	PrecipBrickDE
	prepcipitate
	prepraster
	prepsources
	serialize
	Index

