Package 'InflectSSP'

January 20, 2025

Type Package Title Melt Curve Fitting and Melt Shift Analysis Version 1.6 Description Analyzes raw abundance data from a cellular thermal shift experiment and calculates melt temperatures and melt shifts for each protein in the experiment. McCracken (2022) <doi:10.1101/2022.12.30.522131>. License GPL-2 **Encoding** UTF-8 Imports readxl, data.table, plotrix, tidyr, ggplot2, xlsx, httr, jsonlite, GGally, network, stats, RColorBrewer, svglite Suggests knitr, rmarkdown, VignetteBuilder knitr RoxygenNote 7.2.3 NeedsCompilation no Config/testthat/edition 3 Author Neil McCracken [aut], Hao Liu [ctb], Amber Mosley [cre] Maintainer Amber Mosley <almosley@iu.edu> **Repository** CRAN

Contents

Date/Publication 2023-04-19 08:00:03 UTC

Correction	2
CurveFit1	3
CurveFit2	3
Import	4
InflectSSP	5
MeltCalc	6
Normalize	7

Correction

11

Quantify	8
ReportDataMelts	8
ReportSTRING	9

Index

Correction	This function corrects the normalized abundance of each protein using
	a correction constant that is calculated in this function. The correc-
	tion constant is determined using the difference between actual and
	predicted fit at the proteome level.

Description

This function corrects the normalized abundance of each protein using a correction constant that is calculated in this function. The correction constant is determined using the difference between actual and predicted fit at the proteome level.

Usage

Correction(PSM, UP, Data_CurveFit1Parameters, Data_Normalized, Data_Quantified)

Arguments

PSM	the number of peptide spectrum matches that are deemed acceptable for report- ing	
UP	the number of unique peptides for a protein that are deemed acceptable for re- porting	
Data_CurveFit1Parameters		
	the parameters determined from Curve Fit 1 operation for proteome melts	
Data_Normalized	t	
	the normalized abundance data for each protein determined in the Normalize function.	
Data_Quantified		
	the median normalized abundance data at the proteome level	

Value

the corrected and normalized abundance data for each protein

Examples

```
## Not run:
Data_Corrected<-Correction(PSM,UP,Data_CurveFit1Parameters,
Data_Normalized,Data_Quantified)
```

End(Not run)

CurveFit1

Description

This function determines the 4 parameter or 3 parameter log fit for the proteome level curve.

Usage

```
CurveFit1(Data_Quantified)
```

Arguments

Data_Quantified

the median abundance values calculated in the Quantify function

Value

the curve fit parameters for the control and condition curves at the proteome level

Examples

Not run: Data_CurveFit1Parameters<-CurveFit1(Data_Quantified)</pre>

End(Not run)

CurveFit2	This function determines the best curve fit for each protein using the
	data post correction and also determines the R squared for each curve
	fit

Description

This function determines the best curve fit for each protein using the data post correction and also determines the R squared for each curve fit

Usage

```
CurveFit2(Data_Corrected)
```

Arguments

Data_Corrected data that meets exclusion criteria from Exclude function

Import

Value

Curve fits and R squared for each protein

Examples

```
## Not run:
Data_CurveFit2_Control<-CurveFit2(Data_Corrected_Control)
## End(Not run)
```

Import	This function imports data that will be analyzed in downstream func-
	tions.

Description

This function imports data that will be analyzed in downstream functions.

Usage

Import(NControl, NCondition, Directory)

Arguments

NControl	the number of Control replicate experiments that are to be analyzed
NCondition	the number of Condition replicate experiments that are to be analyzed
Directory	the directory where the source data files to be analyzed are saved. This is also the location where the results will be saved.

Value

Imported data from all experiments

Examples

```
## Not run:
Data_Imported<-Import(NControl,NCondition,Directory)</pre>
```

End(Not run)

InflectSSP

This function is the primary function that calls other functions in the program.

Description

This function is the primary function that calls other functions in the program.

Usage

```
InflectSSP(
   Directory,
   NControl,
   NCondition,
   PSM,
   UP,
   CurveRsq,
   PValMelt,
   PValMeltFDR,
   MeltLimit,
   RunSTRING,
   STRINGScore,
   Species
)
```

Arguments

Directory	the directory where the source data files to be analyzed are saved. This is also the location where the results will be saved.
NControl	the number of Control replicate experiments that are to be analyzed
NCondition	the number of Condition replicate experiments that are to be analyzed
PSM	the number of peptide spectrum matches that are deemed acceptable for report- ing
UP	the number of unique peptides for a protein that are deemed acceptable for re- porting
CurveRsq	Coefficient of determination criteria for melt curves
PValMelt	p-value criteria for melt shifts
PValMeltFDR	Whether or not the FDR correction for pvalue is used in designation of melts of interest
MeltLimit	the melt shift temperature limit used for determining which proteins to report as significant
RunSTRING	whether or not the STRING function will be run or not in the analysis
STRINGScore	the score to be used in the STRING analysis
Species	species number for bioinformatics search

Value

the proteins that have significant melt shifts from an experiment

Examples

```
## Not run:
    Directory<-'/Users/Einstein'</pre>
    NControl<-2
    NCondition<-3
    PSM<-2
    UP<-3
    CurveRsq<-.95
    PValMelt<-0.05
     PValMeltFDR<-"No"
     MeltLimit<-3
     RunSTRING<-"Yes"
     STRINGScore<-0.99
     Species<-9606
     InflectSSP(Directory,NControl,
    NCondition, PSM, UP, CurveRsq, PValMelt, PValMeltFDR,
    MeltLimit,RunSTRING,STRINGScore,
     Species)
```

End(Not run)

MeltCalc

This function determines melt shifts for all proteins that meet quality criteria and also determines the melt shift p-values

Description

This function determines melt shifts for all proteins that meet quality criteria and also determines the melt shift p-values

Usage

```
MeltCalc(
  Directory,
  Data_CurveFit2_Complete_Unique,
  CurveRsq,
  PValMelt,
  MeltLimit,
  PValMeltFDR
)
```

Normalize

Arguments

Directory	the directory data is saved to	
Data_CurveFit2_Complete_Unique		
	the curve fit data from the CurveFit2 function	
CurveRsq	the criteria for melt curve p-values	
PValMelt	the criteria for the melt shift p-values	
MeltLimit	the melt shift temperature limit used for determining which proteins are significant	
PValMeltFDR	Whether or not the FDR correction for pvalue is used in designation of melts of interest	

Value

Proteins melt shifts

Examples

```
## Not run:
    Data_Melts<-MeltCalc(Directory,Data_CurveFit2_Complete_Unique,
    CurveRsq,PValMelt,MeltLimit,PValMeltFDR)
## End(Not run)
```

Normalize	This function normalizes the abundance values to that measured at the
	lowest temperature

Description

This function normalizes the abundance values to that measured at the lowest temperature

Usage

```
Normalize(Data_Imported)
```

Arguments

Data_Imported the abundance data imported from Import function

Value

Normalized data

Examples

```
## Not run:
    Data_Normalized<-Normalize(Data_Imported)
## End(Not run)
```

Quantify

This function determines the median abundance value across the proteome for all experiments together

Description

This function determines the median abundance value across the proteome for all experiments together

Usage

Quantify(Data_Normalized, NReps)

Arguments

Data_Normalized

	the normalized abundance data calculated in the Normalize function	
NReps	the number of replicates to be analyzed	

Value

The median abundance data for all experiments at the proteome level

Examples

```
## Not run:
     Data_Quantified<-Quantify(Data_Normalized)</pre>
## End(Not run)
```

ReportDataMelts	This function generates results from the Inflect function after applying
	criteria input from the user

Description

This function generates results from the Inflect function after applying criteria input from the user

Usage

```
ReportDataMelts(
 Data_Melts,
 Data_CurveFit2_Control,
 Data_CurveFit2_Condition,
 Directory,
  PValMelt
)
```

ReportSTRING

Arguments

Data_Melts	abundance and fit data for proteins that meet quality criteria in overall workflow	
Data_CurveFit2_Control		
	the curve fit data from the Curve Fit 2 function	
Data_CurveFit2_Condition		
	the curve fit data from the Curve Fit 2 function	
Directory	directory where data is saved	
PValMelt	the criteria for the melt shift p-values	

Value

Excel files with summary of data along with melt curve plots for significant proteins

Examples

```
## Not run:
    ReportDataMelts(Data_Melts,Data_CurveFit2_Control,Data_CurveFit2_Condition,Directory,PValMelt)
## End(Not run)
```

ReportSTRING	This function generates a STRING based network using the significant
	melt shifts from analysis

Description

This function generates a STRING based network using the significant melt shifts from analysis

Usage

```
ReportSTRING(Data_Melts, STRINGScore, Directory, Species, PValMeltFDR)
```

Arguments

Data_Melts	abundance and fit data for proteins that meet quality criteria in overall workflow
STRINGScore	the STRING score that is used to determine whether an interaction is significant
Directory	directory where results are saved
Species	species taxon number for bioinformatics search
PValMeltFDR	Whether or not the FDR correction for pvalue is used in designation of melts of interest

Value

Excel files with summary of data along with melt curve plots for significant proteins

Examples

Not run: ReportSTRING(Data_Melts,STRINGScore,Directory,Species,PValMeltFDR)

End(Not run)

Index

Correction, 2 CurveFit1, 3 CurveFit2, 3 Import, 4 InflectSSP, 5 MeltCalc, 6 Normalize, 7 Quantify, 8 ReportDataMelts, 8 ReportSTRING, 9