Package 'IndexWizard'

January 20, 2025

Type Package

Title Constructing and Analyzing Complex Selection Indices

Version 0.2.1.0

Description Allows the construction selection indices based on estimated breeding values in animal and plant breeding and to calculate several analytic measures around to assess its impact on genetic and phenotypic progress. The methodology thereby allows to analyze genetic gain of traits in the breeding goal which are not part of the actual index and automatically computes several analytic measures. It further allows to retrospectively derive realized economic weights from observed genetic trends. The framework is described in Simianer, H., Heise, J., Rensing, S., Pook, T. Geibel, J. and Reimer, C. (2023) <doi:10.1186/s12711-023-00807-0>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/johannesgeibel/IndexWizard

BugReports https://github.com/johannesgeibel/IndexWizard/issues

NeedsCompilation no

Author Johannes Geibel [aut, cre] (<https://orcid.org/0000-0001-7172-3263>), Christian Reimer [aut] (<https://orcid.org/0000-0002-9697-2511>), Torsten Pook [aut] (<https://orcid.org/0000-0001-7874-8500>), Johannes Heise [aut] (<https://orcid.org/0000-0002-7605-7148>), Stefan Rensing [aut], Henner Simianer [aut] (<https://orcid.org/0000-0002-7551-3797>)

Maintainer Johannes Geibel < johannes.geibel@fli.de>

Repository CRAN

Date/Publication 2023-06-16 16:20:05 UTC

Contents

print.SelInd	2
SelInd	3
summary.SelInd	4
	6

Index

print.SelInd

Function to nicely print a SelInd object

Description

Function to nicely print a SelInd object

Usage

S3 method for class 'SelInd'
print(x, ...)

Arguments

х	An object of class SelInd
	does nothing, only for compatibility with the generic function

Value

No return value, only prints formatted output.

Examples

```
tn <- c("RZM", "RZN", "RZEo")</pre>
G <- matrix(
    c(1.0,0.13,0.13,
    0.13,1.0,0.23,
    0.13,0.23,1.0),
    3, 3, dimnames = list(tn,tn)
    ) * 144
w <- c(0.7, 0.3, 0)
names(w) <- tn</pre>
r2 <- c(0.743, 0.673)
names(r2) <- tn[1:2]
res <- SelInd(</pre>
  w = w,
  G = G,
  r2 = r2
)
print(res)
```

SelInd

Description

Function to calculate selection index

Usage

```
SelInd(
    w,
    G,
    r2,
    H = NULL,
    i = NULL,
    h2 = NULL,
    d_G_obs = NULL,
    delta = 1e-04,
    verbose = TRUE
)
```

Arguments

GNamed n*n genetic variance- covariance matrix. Dimnames of G need to match w to ensure correct sorting. Required.r2Named numeric vector of reliabilities with length m. Required.HNamed m*m variance-covariance matrix of estimated breeding to internally de- rive the residual variance-covariance matrix. If H contains more traits than r2, it will be subsetted.iSelection intensityh2named numeric vector of length n containing heritabilities for the traitsd_G_obsnamed numeric vector of length n containing the observed composition of the genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivativeverboseShall information be printed?	W	Numeric vector of n economic weights. Traits present in G, but not part of the index need to be coded as 0. If traits of G are missing, they will be added automatically with zero weight. Required.
HNamed m*m variance-covariance matrix of estimated breeding to internally de- rive the residual variance-covariance matrix. If H contains more traits than r2, it will be subsetted.iSelection intensityh2named numeric vector of length n containing heritabilities for the traitsd_G_obsnamed numeric vector of length n containing the observed composition of the genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivative	G	e
rive the residual variance-covariance matrix. If H contains more traits than r2, it will be subsetted.iSelection intensityh2named numeric vector of length n containing heritabilities for the traitsd_G_obsnamed numeric vector of length n containing the observed composition of the genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivative	r2	Named numeric vector of reliabilities with length m. Required.
h2named numeric vector of length n containing heritabilities for the traitsd_G_obsnamed numeric vector of length n containing the observed composition of the genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivative	Н	rive the residual variance-covariance matrix. If H contains more traits than r2, it
d_G_obsnamed numeric vector of length n containing the observed composition of the genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivative	i	Selection intensity
genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will be rescaled.deltasmall increment to calculate approximate first derivative	h2	named numeric vector of length n containing heritabilities for the traits
	d_G_obs	genetic gain scaled in genetic standard deviations. If sum(d_G_obs) != 1, it will
verbose Shall information be printed?	delta	small increment to calculate approximate first derivative
	verbose	Shall information be printed?

Details

The framework allows to have less traits in the selection index than in the breeding goal (m < n). Calculation of realized economic weights, however, requires m == n.

Value

A list of class SelInd

Examples

```
tn <- c("RZM", "RZN", "RZEo")</pre>
G <- matrix(
   c(1.0,0.13,0.13,
    0.13,1.0,0.23,
    0.13,0.23,1.0),
    3, 3, dimnames = list(tn,tn)
    ) * 144
w <- c(0.7, 0.3, 0)
names(w) <- tn</pre>
r2 <- c(0.743, 0.673)
names(r2) <- tn[1:2]
SelInd(
 w = w,
 G = G,
 r2 = r2
)
```

summary.SelInd	Function to summarize the content of a SelInd object.
----------------	---

Description

Function to summarize the content of a SelInd object.

Usage

```
## S3 method for class 'SelInd'
summary(object, ...)
```

Arguments

object	An object of class SelInd
	does nothing, only for compatibility with the generic function

Value

No return value, only prints a summary of the SelInd object.

summary.SelInd

Examples

```
tn <- c("RZM", "RZN", "RZEo")</pre>
G <- matrix(
   c(1.0,0.13,0.13,
    0.13,1.0,0.23,
   0.13,0.23,1.0),
   3, 3, dimnames = list(tn,tn)
   ) * 144
w <- c(0.7, 0.3, 0)
names(w) <- tn
r2 <- c(0.743, 0.673)
names(r2) <- tn[1:2]
res <- SelInd(</pre>
 w = w,
 G = G,
  r2 = r2
)
summary(res)
```

Index

print.SelInd, 2

SelInd, 3 summary.SelInd, 4