
ISEtools: Tools for Ion Selective Electrodes

Peter W. Dillingham

University of Otago

Basim S.O. Alsaedi

University of New England

Christina M. McGraw

University of Otago

Aleksandar Radu

Keele University

Abstract

Ion-selective electrodes (ISEs) are increasingly used in demanding applications near the

non-linear portion of the Nikolskii-Eisenman equation. The ISEtools package provides a

set of tools for analysing ISE data using the Nikolskii-Eisenman equation in a Bayesian

framework through R. ISEtools implements methods first described in Dillingham, Radu,

Diamond, Radu, and McGraw (2012) and expanded on in Dillingham, Alsaedi, and McGraw

(2017) and Dillingham, Alsaedi, Granados-Focil, Radu, and McGraw (2020). An introduc-

tion to its use is described in Dillingham, Alsaedi, Radu, and McGraw (2019); this vignette

provides greater detail and more examples.

Key features of ISEtools include:

• Use of OpenBUGS or JAGS to implement the Bayesian models through R.

• Substantial automation allowing scientists with limited knowledge of Bayesian methods

or R to apply these techniques.

• Characterisation of ISEs using calibration data, estimating model parameters and limit

of detection (LOD).

• Analysis of experimental samples, using basic or standard addition methods.

• Compatibility with single ISEs or multiple ISEs in an array.

Two examples are used to demonstrate use of ISEtools and its core functions, loadISEdata,

describeISE, analyseISE:

(1) Lead in soil: formatting requirements for external data, importing it for analysis using

loadISEdata, and performing basic analyses using describeISE and analyseISE.

(2) Carbonate in seawater: creating a customised analysis and plot, highlighting more

advanced features of the package.

Keywords: ion-selective electrodes, ISEs, calibration, electrochemistry, non-linear regression,

limit of detection, LOD, loadISEdata, describeISE, analyseISE, R, OpenBUGS, JAGS.
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1. Introduction

This document provides an overview of the functionality of the package ISEtools, and its use

analysing data from ISEs. It is assumed the reader has basic familiarity with R (e.g. installing li-

braries, scripting), and will install ISEtools, the required software OpenBUGS (www.openbugs.net),

and required library R2OpenBUGS1 prior to running examples themselves.

Ion-selective electrodes convert analyte activity to an electrical signal through an ion-selective

glass or polymer membrane, and are governed by the Nikolsii-Eisenman equation (Eisenman,

Rudin, and Casby 1957; Dillingham et al. 2012), parameratised in ISEtools as

y = a + b log10(x + c) + error, (1)

where error ∼ N(0, sigma2), y is the emf response of the ISE, x is the activity of the ion of

interest, a is a baseline emf, b is a slope linked to the valence of the primary ion, temperature,

and natural constants, c is a parameter linked to the interfering ions within the chemical matrix

(and dependent on materials/methods used to construct the ISE). For numerical reasons, the

model also uses a parameter cstar = c0.1.

The expected response is shown in Figure 1: the flat region occurs when the activity x ≪ c

and the Nernstian portion occurs where x ≫ c. ISEtools is designed for demanding applica-

tions where data are observed across the full response curve. For datasets entirely within the

Nernstian region, standard regression theory may be used instead.

There are (typically) two independent sources of data that are collected. First, there are cal-

ibration data, where both x and y are observed. The calibration data are used to estimate

model parameters a, b, c, cstar, sigma. Secondly, there may also be experimental data,

where only y is observed and inverse methods must be used to estimate x, conditional on model

parameters. Dillingham et al. (2012) describe a Bayesian approach to this problem, which al-

lows for complex sampling distributions and non-standard data sources, while Dillingham et al.

(2017) and Dillingham et al. (2020) expands the methods to estimate LOD in a manner con-

sistent with recommendations from the International Union of Pure and Applied Chemistry

(IUPAC) and others (Montville and Voigtman (2003); Eksperiandova, Belikov, Khimchenko,

and Blank (2010); Desimoni and Brunetti (2012)). For experimental samples, the Bayesian

approach also easily accommodates standard addition data, where an experimental sample has

an aliquot with known activity and volume added to the original sample and the change in emf

is recorded. Standard addition techniques are useful for combating drift in a, but often lead to

asymmetric sampling distributions.

In Section 2, data structures, key functions, and Bayesian methods are described. Section 3

provides examples demonstrating basic implementation and key features of ISEtools, with a

brief conclusion in Section 4.
1Alternatively, the program JAGS and library rjags may be used. See Section 2.3 for details.



Peter W. Dillingham, Basim S.O. Alsaedi, Christina M. McGraw, Aleksandar Radu 3

/ /

Blank LOD Nernstian region

log x              

em
f

/ /

Figure 1: The response of an ISE, showing the flat region indistinguishable from a blank, the

curvilinear response near the limit of detection (LOD), and the log-linear Nernstian region.

2. Methods

We describe data structures in Section 2.1, core functions in Section 2.2, and the Bayesian

methods in Section 2.3. Examples showing implementation are in Section 3.

2.1. Data Structures

As described in Section 1, ISE data includes calibration data, where both x and y are known

and used to estimate model parameters, and experimental data, where y is observed and

inverse methods are used to estimate x. The experimental data may come in two formats,

‘Basic’ or ‘Standard Addition’. Finally, data may be recorded for a single ISE, or for multiple

ISEs in a sensor array. Calibration data are required, while experimental data are optional.

Data are normally stored externally, e.g. in Excel or text files, and then imported into R. The

ISEtools library has a function loadISEdata described in Section 2.2 that imports tab-delimited

text files and processes the data for use in other functions. Data stored in Excel (and other

formats) can easily be saved in tab-delimited text format, e.g. via ‘Save as’.

The text files have specific formatting requirements, demonstrated in Figure 2:

• The calibration data must include a header row with the variable names ISEID, log10x,

and emf, followed by rows of data, as in Figure 2a.

– ISEID indicates the ISE making the measurement. Values must be sequentially

numbered, starting at 1 (even if there is only 1 ISE), e.g an array of three ISEs must

assign them the labels, 1, 2, 3.
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– log10x is the known log10 activity of the calibration sample; activity is often ap-

proximated by concentration. That is, log10x = log10 x.

– emf is the recorded emf, in mV. That is, emf = y.

– Additional variables (e.g. ‘batch’, as in the carbonate example in Section 3) may be

included if desired: avoid spaces and special characters in variable names.

– Note that variable names in R are case-sensitive, e.g. ISEID is correct, iseid is not.

• The (optional) experimental data, in either ‘Basic’ or ‘Standard Addition’ formats.

– The ‘Basic’ format must include a header row with the names ISEID, SampleID, and

emf, followed by rows of data, as in Figure 2b. ISEID and emf are defined as before;

SampleID indicates the experimental sample being measured (i.e. 1, 2, 3, . . . ).

– The ‘Standard Addition’ format must include a header row with the names ISEID,

SampleID, emf1, emf2, V.s, V.add, and conc.add, followed by rows of data, as in

Figure 2c. ISEID and SampleID are defined as before, while:

∗ emf1 is the emf (mV) of the sample before the aliquot is added;

∗ emf2 is the emf (mV) of the sample after the aliquot is added;

∗ V.s is the volume (ml) of the sample before the aliquot is added;

∗ V.add is the volume (ml) of the aliquot;

∗ conc.add is the concentration (or activity, if known) of the aliquot.

2.2. Functions

There are three core functions in ISEtools:

• loadISEdata, which imports and processes tab-delimited data files in the format de-

scribed in Section 2.1 and shown in Figure 2. Inputs are a file with calibration data and

(optionally) a file with experimental data. Returns an object of class ‘ISEdata’.

(a) Calibration data. (b) Experimental data, ba-

sic format.

(c) Experimental data, standard addition format.

Figure 2: Calibration and experimental data for three ISEs measuring lead in soil, originally

stored in a Microsoft Excel file and then exported to tab-delimited text files.
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• describeISE, which implements a Bayesian model to estimate a, b, c, cstar, sigma,

and LOD. Inputs an object of class ‘ISEdata’, as well as the valence Z and experimental

temperature (in ◦C, defaults to 21◦). Returns an object of class ‘ISEdescription’.

• analyseISE, which implements a Bayesian model to estimate model parameters a, b, c,

cstar, sigma, LOD and activities x for experimental samples. Inputs an object of class

‘ISEdata’ that includes experimental data, as well as the valence Z and experimental

temperature. Returns an object of class ‘analyseISE’.

• Both describeISE and analyseISE have a number of optional values, linked to numerical

options (Markov chain Monte Carlo (MCMC) options, initial values, convergence diagnos-

tics, saved output) and LOD calculation options. See ?describeISE and ?analyseISE

for further details.

Each of these functions has generic functions print, plot, summary associated with them,

whose functionality depends on the class of the inputted object. For example, the summary

command applied to an object of class ‘ISEdata’ will actually apply the associated command,

summary.ISEdata, while summary on an object of class ‘ISEdescription’ will actually apply

summary.ISEdescription. The user can find more details via the affiliated help files, e.g.

?summary.ISEdata.

2.3. Bayesian Methods

Once the dataset is loaded and the user is satisfied with data quality, Bayesian analyses may

be conducted. Here, we use the functions describeISE or analyseISE, which implement the

Bayesian models presented in Dillingham et al. (2012) to estimate model parameters and ex-

perimental activities (when using analyseISE), and the conditional-analytic method described

in Dillingham et al. (2017) and Dillingham et al. (2020) to estimate LOD for individual ISEs.

Dillingham et al. (2012) provides a brief introduction to Bayesian inference, e.g. how prior dis-

tributions for parameters are combined with a statistical model and data to generate posterior

distributions for the parameters; the Supporting Information introduces the BUGS code that

forms the basis of ISEtools.

In the standard implementation, analyses in ISEtools are conducted through the OpenBUGS

variant (Thomas, O’Hara, Ligges, and Sturtz 2006; Thomas 2006) of the BUGS language (Lunn,

Thomas, Best, and Spiegelhalter 2000) from within R via the R2OpenBUGS library (Thomas

et al. 2006; Sturtz, Ligges, and Gelman 2019). The function describeISE calls OpenBUGS,

feeding data, an (automatically chosen or user-specified) Bayesian model, and (automatically

generated or user-specified) initial values into it. The user does not need to interact with Open-

BUGS, but must have OpenBUGS installed on their computer. OpenBUGS works on Windows

and Unix/Linux, or via an emulator on macOS (e.g. Wine). An alternative implementation us-
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ing JAGS (Plummer et al. 2003) (which works across platforms) via the rjags library (Plummer

2013) is described on the next page.

OpenBUGS implements Markov chain Monte Carlo (MCMC) to numerically sample the joint

posterior distribution of model parameters.2 The user is given feedback during implementation

that the model compiled, initialised, and ran, or lets the user know if there was an error. Where

errors occur, our experience is that they are usually due to (1) incompatibility between data and

the model, e.g. due to a data entry error, or (2) a problem with the automatically-generated

initial values.

A key feature of ISEtools is that analyses are simple to implement and do not require knowledge

of Bayesian methodology. However, those that are familiar with Bayesian methods may exercise

control over technical aspects of the analysis if they so wish. The remainder of this Section

describes the technical aspects of the analyses. Users may skim Section 2.3.1 or skip to the

examples in Section 3 if not interested in technical details of the Bayesian models.

Technical Details

The Bayesian models are in the /models sub-directory of the ISEtools library, and are selected

based on analysis and data types. There are six included files, accommodating data from single

ISEs or an array of multiple ISEs, with or without experimental data, and in Basic or Standard

Addition format. Key priors for these models are:

• a ∼ N(0, σ = 1, 000), measured in mV;

• b ∼ N(E(b), σ = 10) mV/decade, where

E(b) = 8, 314.33 ln 10(temperature + 273.15)/(96, 487Z)

is the expected Nernstian slope (Eisenman et al. 1957; Dillingham et al. 2012);

• cstar ∼ U(0.1, 0.5) and c calculated as c = cstar10 (and hence a lower bound for c is

10−10 and the upper bound is approximately 10−3);

• sigma ∼ U(0, 10) mV;

• log10 x ∼ U(−12, −2), which allows for samples to fall in the flat portion of Figure 1.

In ISEtools, the ‘cut’ function is used, separating the calibration phase from the experimental

phase of the study. Specifically, parameter values for a, b, c, sigma are estimated using

2For each parameter, MCMC provides a sequence of values which, if the sequence is sufficiently long, will

provide a good approximation to the posterior distribution for that parameter. Across parameters, corresponding

entries in the sequences represent one sample from the joint posterior distribution, allowing easy cross-comparison

of two or more parameters, e.g. by plotting the sequences against each other.
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calibration data only. These feed into the experimental phase, so that the priors on experimental

samples do not influence the ISE parameter estimates, i.e. describeISE and analyseISE return

the same parameter estimates regardless of the experimental samples. Use of the cut function

is intuitively desirable in many settings (e.g. calibration data from a laboratory, experimental

data from the field), but the generic implementation in OpenBUGS may lead to poor model

behaviour due to the numerical updating procedures used (Plummer 2015). However, we have

performed extensive simulation tests and determined that its use with these models does not

lead to any substantive issues, and a model without the cut function will perform poorly if the

the ratio of experimental to calibration samples is high.

Alternatively, we provide JAGS as an alternative to OpenBUGS, primarily for macOS users with-

out access to Windows or Linux. First, install the external program jags and the R package rjags,

and load rjags along with ISEtools (i.e. library(ISEtools); library(rjags)). Then, simply

add the option program="jags" when calling describeISE or analyseISE. For describeISE,

there is no difference between the models except that the JAGS implementation is faster. How-

ever, JAGS does not implement the ‘cut’ function, so will produce different results when using

analyseISE for both model parameters and experimental samples. With redundant ISEs, a

good calibration dataset, and relatively few experimental samples, all of which lie in the Nern-

stian portion of the response curve, the difference is negligible. However, for a single ISE with

a large number of experimental samples, including samples in the flat portion of the response

curve, the difference can be substantial. A simple diagnostic is to compare parameter estimates

from describeISE and analyseISE: if they are substantively different, the JAGS results are not

trustworthy. In such cases, splitting the experimental dataset into multiple datasets, each with

just a few samples, and running a series of sub-analyses may suffice. Ultimately, we recommend

use of a Windows- or Linux-based machine in conjunction with OpenBUGS.

In ISEtools, users may also specify their own Bayesian models, so long as they have the same

parameters (e.g. keeping the same structure but setting priors specific to their analysis and

system). For variations beyond those which ISEtools can accommodate, users are encourage

to explore OpenBUGS and R2OpenBUGS (or other Bayesian programs) directly. Initial values

are generated via a pre-analysis (via functions gen.inits.single or gen.inits.multiple,

which users do not interact with) but can be specified by the user if required. Default MCMC

options are set to ensure good numerical behaviour for most datasets (e.g. the potential scale

reduction factor (Brooks and Gelman 1998), R̂ ≈ 1 for most datasets using the defaults of four

chains with a 25,000 iteration burn-in and an additional 25,000 samples retained per chain).

See ?describeISE and ?analyseISE for numerical options, and the example in Section 3.2 for

implementation details.
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Model Output

Users may choose to only interact with model output via the associated print, plot, summary

commands, but may also interact directly with the outputs of the functions, as follows:

• describeISE and analyseISE return estimates for model parameters a, b, c, cstar,

sigma as <parameter name>hat, a vector where each entry corresponds to an ISE. E.g.,

the first entry of ahat corresponds to â for ISE #1, the second to â for ISE #2, and so on.

Similarly, lower and upper limits of the 95% credible intervals are returned as <parameter

name>hat.lcl, <parameter name>hat.ucl.

• LOD is calculated using the conditional-analytic method described in Dillingham et al.

(2017) and Dillingham et al. (2020) as a function of a, b, c, sigma for each posterior

sample. The default is to base LOD on false positive and negative rates alpha, beta,

which default to 0.05. Alternatively, LOD based on a signal-to-noise ratio is specified

by providing a value for SN, e.g. SN = 3. In addition to point estimates (LOD.hat) and

95% credible intervals (LOD.lcl, LOD.ucl), the first and third quartiles for LOD are

also returned as LOD.Q1, LOD.Q3. Again, these are returned as vectors where each entry

corresponds to a given ISE.

• For describeISE, individual iterations for each parameter and LOD are returned if the

option keep.coda = TRUE as <parameter name>hat.coda and LOD.coda. The default

is to return 1000 random samples from the estimated posterior but can be modified by

setting coda.n to the desired level. A matrix is returned for each parameter, where rows

correspond to posterior samples and columns to their corresponding ISE.

• For analyseISE, activities for experimental samples (on the log10 scale) are returned as

log10x.exp. A matrix is returned where each row corresponds to an experimental sample,

the first column contains the point estimates, and the second and third columns contain

the lower and upper limits of the 95% credible interval. Similarly, the two columns of

log10x.exp.IQ contain the first and third quartiles for each experimental sample.

3. Examples

Examples for two different solid-state ISEs are provided to demonstrate use of the ISEtools

package. In addition, each example is also chosen to highlight some of the interesting patterns

that can occur with ISE data, particularly when developing new ISEs that may be noisy and/or

operate close to their limits of detection.

The first example starts with data measuring lead in soil, stored in a tab-delimited txt file

(exported from Excel). The example demonstrates how external data can be brought into R,



Peter W. Dillingham, Basim S.O. Alsaedi, Christina M. McGraw, Aleksandar Radu 9

with or without experimental samples, and with or without standard addition. It then estimates

model parameters, LODs, and experimental activities for three ISEs measuring lead in soil. The

second example modifies the standard Bayesian model to analyse an array of eight carbonate

ISEs to make a bespoke figure, demonstrating more advanced functionality of ISEtools.

3.1. Lead in soil: importing external data for analysis and plotting

McGraw, Radu, Radu, and Diamond (2008) describe the development of liquid- and solid-

contact ISEs for the measurement of lead in soil. Soil samples were collected at Silvermines,

County Tipperary, Ireland, where centuries of mining resulted in locally high levels of heavy

metals, including lead. They analysed the samples using a range of ISEs, and compared esti-

mated activities to atomic absorption spectroscopy (AAS) reference measurements. Here, we

present their data for three solid-contact ISEs, as analysed in Dillingham et al. (2012), in order

to demonstrate the three standard functions of the ISEtools library.

The Data

For the lead ISE data, three example files are included in the ‘/extdata’ sub-folder of the

ISEtools library (e.g. <pathname to R libraries>/ISEtools/extdata), with the files shown in

Figure 2. The pathname to ISEtools can be found via path.package('ISEtools'). Data files

are in tab-delimited text format3 as described in Section 2.1.

• Lead_calibration.txt contains calibration data for three ISEs on six datapoints.

• Lead_experimentalBasic.txt contains experimental measurements on 17 samples, in

the ‘Basic’ format.

• Lead_experimentalSA.txt contains experimental measurements on the same 17 samples,

in the ‘Standard Addition’ format.

The loadISEdata function imports tab-delimited text files, processes them, and returns an

object of class ‘ISEdata’. The returned object includes the original data, as well as additional

information (the number of ISEs, calibration points, experimental samples, whether the stan-

dard addition format was used) required for analysis using describeISE or analyseISE. As

described in Section 2.3, the additional information is used to determine which Bayesian model

is appropriate for the data, and automatically passed onto describeISE or analyseISE.

3User data files should be stored in a location linked to their analysis, not in the ISEtools library folder.
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The loadISEdata function basic call is:

# Calibration data only

loadISEdata(filename.calibration = "<pathname>/<calibration filename>.txt",

filename.experimental= "<pathname>/<experimental filename>.txt")

where ‘<pathname>’ is the user-specified folder (typically) linked to the research project and

‘<calibration filename>.txt’, ‘<experimental filename>.txt’ are the names of the tab-

delimited text files. If the dataset only has calibration data (i.e. there are no experimental

samples), the call reduces to:

loadISEdata(filename.calibration = "<pathname>/<calibration filename>.txt")

• On the machine that created this vignette, the lead calibration data is loaded via:

mypath = path.package('ISEtools')

lead.example1 = loadISEdata(filename.calibration =

paste(mypath, "/extdata/Lead_calibration.txt", sep=""))

Once loaded, the dataset can be printed (first 10 observations shown) and plotted (the first two

ISEs are shown in Figure 3), useful for ensuring we have the data we expect before proceeding

with further analysis, via:

print(lead.example1)

plot(lead.example1)

## ISEID log10x emf

## 1 1 -9.000116 8.558784

## 2 1 -6.996850 8.941667

## 3 1 -5.962362 13.824266

## 4 1 -4.970696 32.160924

## 5 1 -3.996123 56.683022

## 6 1 -3.076335 85.458353

## 7 2 -9.000116 -28.381216

## 8 2 -6.996850 -25.458333

## 9 2 -5.962362 -20.545734

## 10 2 -4.970696 -1.579076
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Figure 3: The response of the first two lead ISEs.

We may also see basic summary information (N (total number of calibration measurements), R

(number of ISEs), a logical flag (calibration.only) indicating this dataset only has calibration

data and no experimental samples, and missing values (NA) for two variables linked to experi-

mental data, M (number of experimental samples) and stdadd (a logical T/F flag for standard

addition data) using:

summary(lead.example1)

which returns

## $N

## [1] 18

##

## $R

## [1] 3

##

## $calibration.only

## [1] TRUE

##

## $M

## [1] NA

##

## $stdadd

## [1] NA

##

## attr(,"class")

## [1] "summary.ISEdata"
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• To include the experimental data in Basic or Standard Addition formats (with this par-

ticular pathname), the commands are:

# ... and with experimental data, Basic format

lead.example2 = loadISEdata(filename.calibration =

paste(mypath, "/extdata/Lead_calibration.txt", sep=""),

filename.experimental =

paste(mypath, "/extdata/Lead_experimentalBasic.txt", sep=""))

# ... and with experimental data, Standard Addition format

lead.example3 = loadISEdata(filename.calibration =

paste(mypath, "/extdata/Lead_calibration.txt", sep=""),

filename.experimental =

paste(mypath, "/extdata/Lead_experimentalSA.txt", sep=""))

We note that the dataset imported and stored as lead.example3 is also available pre-loaded in

ISEtools as LeadStdAdd, accessible via

data(LeadStdAdd)

Characterising the ISEs using describeISE

The basic invocation of the describeISE function is straightforward, requiring:

• a dataset of class ‘ISEdata’, e.g. data = lead.example1,

• the valence Z of the ion, e.g. Z = 2 for lead (Pb2+), and

• the temperature in ◦C, if much different from the assumed room temperature of 21◦C;

• valence and temperature form a prior distribution for b, per Section 2.3.1.

For the lead.example1 data,4 the model is run via describeISE5 and saved as example1:

example1 = describeISE(lead.example1, Z=2, temperature=21)

4Or any of the other lead datasets (lead.example2, lead.example3, or LeadStdAdd), as they contain identical

calibration data.
5The loadISEdata function recognised that the sourced data (Lead_calibration.txt) had calibration data for

multiple ISEs, but no experimental data, and added that information to lead.example1. When describeISE was

called, the appropriate Bayesian model, Multiple_ISE_calibration_model.txt was then automatically applied.
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Once the Bayesian model has run, we can use print, summary, plot on the saved R object

example1. The print command provides a point estimate (equal to the median of the posterior

distribution) and 95% credible interval for each ISE, along with the Nikolskii-Eisenman equation

(output for ISE #1 is shown below); summary provides similar output in abbreviated form

(output not shown); plot displays histograms of model parameters sampled from the posterior

distributions (ISE #1 shown in Figure 4).

print(example1)

summary(example1)

plot(example1)

##

##

## Non-linear parameter estimates and 95% CIs for

## y = a + b log(x + c)

##

## ISE #1:

## Parameter estimate Lower limit Upper limit

## a 1.76e+02 1.62e+02 1.92e+02

## b 2.95e+01 2.60e+01 3.38e+01

## c 2.18e-06 1.10e-06 4.45e-06

## sigma 1.36e+00 6.04e-01 5.67e+00

##

## Estimated log LOD{alpha=0.05, beta=0.05} (95% CI): -6.05 (-6.45, -5.07)

That is, for ISE #1, we estimate ŷ = 175.6 + 29.5 log10(x + 2.18e − 06). Figure 4 highlights the

asymmetric posterior distributions, common for ISE parameters. Users may also wish to create

their own plots with the automatically stored MCMC output – see Section 3.2 for an example.

The user may want to focus on a few of these parameters, e.g.

(1) Is the estimated slope b̂ (and credible interval) consistent with the theoretical Nernstian

slope,

1000(2.303RT )(ZF )−1 = 29.2mV/decade,

(where Z = 2 is the valence of lead, T is temperature (◦K), R is the universal gas constant,

and F is Faraday’s constant)?

(2) How does the limit of detection, log10 L̂ODα=0.05,β=0.05 = −6.05 (95% CI: −6.45, −5.07)

compare to other ISEs from this or other batches?

(3) Is this ISE likely to be able to adequately measure lead activity in soil down to a specified

value of interest, say [Pb2+] = 10−5.5?
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Figure 4: Posterior distribution of ISE parameter values for the first lead ISE.

In this case, the ISE appears to have (1) close to a Nernstian response; (2) have a similar LOD

to ISE #2 but likely worse than ISE #3; and (3) the LOD is at or near the required level,

indicating that it may perform adequately by itself but employing a sensor array of similar ISEs

would be beneficial.

Analysing experimental samples using analyseISE

These ISEs were specifically developed to allow field-based measurement of lead activities in

soil at Silvermines, Ireland. As part of the proof-of-concept development, ISEs were used to

measure activity of lead in 17 soil samples. For reference, lead concentration was measured

using AAS. Here, activity is estimated using two measurement approaches:

• Basic format: each ISE measures emf for each sample.

• Standard Addition format: two emf readings are made, comprising the original reading

from the Basic format and a second reading after adding an aliquot to each sample.

• The Standard Addition format is designed to minimise any effect of drift in a.
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The activity of lead in the 17 soil samples is estimated using the Basic format via:

example2 = analyseISE(lead.example2, Z=2, temperature=21)

plot(example2)

There are two aspects of this analysis that are not wholly satisfactory. First, the noted problem

with drift. These particular ISEs, like many ISEs in development, exhibited temporal drift in a;

other parameters were stable (McGraw et al. 2008). Second, the presentation in Figure 5 could

be improved with a better y-axis label and narrower limits.

To combat drift, the standard addition method was employed: an aliquot of known volume

and concentration is added to the sample, with the emf recorded before and after the addition,

leading to estimators for y that do not depend on a. The Bayesian analysis model uses the

difference in emf to estimate the unknown lead activity in each soil sample (see Equation 7 in

Dillingham et al. (2012) for details). Standard addition is particularly useful in settings with

complex chemical matrices, which may contribute to drift (Fayose, Thomas, Radu, Dillingham,

Ullah, and Radu 2021).

This leads to a revised call to analyseISE, using lead.example3 as the dataset and adding

options to improve the plot. Non-default values were set for ylim, which controls the lower and

upper values on the y-axis; ylab, which controls the label for the y-axis; and col, which controls

the colour of the plotted symbols (see ?plot.analyseISE for more details). Additionally, the

AAS reference measurements were added onto the plot.6

6A tab-delimited text file, aas.txt, with these data is included in the /extdata sub-folder of the ISE-

tools library, and was first loaded using aas = read.table("<ISEtools library pathname>/extdata/aas.txt",

Sample ID

lo
g 1

0 
{ 

x 
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

−15

−10

−5

0

Figure 5: Posterior distribution of lead activity in 17 experimental samples, recorded in the

‘Basic’ format. The 95% (thin lines) and 50% (thick lines) credible intervals are shown, along

with point estimates (–).
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# Revised analysis using Standard Addition; improvements to the plot

example3 = analyseISE(lead.example3, Z=2, temperature=21)

plot(example3,

ylab=expression(paste("log ", italic(a)[Pb^{paste("2","+")}],

" (mol ", L^-1, ")" )),

ylim=c(-7, -3), col="steelblue")

points(aas$Sample, log10(aas$AAS), col=colours()[214], cex=0.8, pch=16)

Lead Analysis: Results and Discussion

There was generally good agreement between estimates from the ISE sensor array and the

reference AAS measurements when using standard addition (Figure 6). AAS has high mea-

surement precision and accuracy, with errors contained within the plotting symbol in Figure

6. ISEs, however, are field deployable and low cost, and therefore useful for a broad range of

environmental analyses (Radu, Radu, McGraw, Dillingham, Anastasova-Ivanova, and Diamond

2013). Differences between ISE and AAS measurements overestimate bias,7 but the mean dif-

ference was within an acceptable level regardless. Similarly, while estimates from the ISE array

were noisy relative to AAS, the noise was also within acceptable levels. Therefore, the general

agreement with AAS and the acceptable accuracy suggest that these ISEs could be reasonably

employed for their intended purpose, particularly when used in a sensor array (McGraw et al.

2008; Dillingham et al. 2012).

3.2. Carbonate in seawater: estimating model parameters and LOD

Mendecki, Fayose, Stockmal, Wei, Granados-Focil, McGraw, and Radu (2015) described a con-

ditioning method to develop ultrasensitive and robust polymer membrane-based ISEs, applied

to carbonate in seawater. The ISEtools package includes carbonate data from a prototype ISE

developed during that project, with data originally presented in Dillingham et al. (2017). The

challenge developing these ISEs was due to the high levels of interfering ions in seawater rela-

tive to the trace levels of carbonate. However, this example is primarily about customising the

analysis beyond the default values in describeISE.

The dataset

The carbonate dataset contains calibration data in artificial seawater, i.e. where the car-

bonate activity is known and the focus is on estimating ISE model parameters and limits of

detection for each ISE, and is accessed via data(carbonate). In this example, there is no

header=T).
7ISEs measures activity, while AAS measures concentration, which here are close but not identical.
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corresponding experimental dataset, which is quite typical during the development of new ISEs.

The dataset contains N = 48 calibration measurements, from R = 8 individual ISEs, measuring

emf (mV) in artificial seawater at 6 carbonate levels. It includes the required variables ISEID,

log10x, and emf, as well as an additional variable, batch, which indicates the manufacturing

batch for these ISEs (all of the included data came from batch 2). The first 10 measurements

are shown below:

## ISEID log10x emf batch

## 1 1 -8.52 35.1 2

## 2 1 -7.31 34.1 2

## 3 1 -6.16 32.0 2

## 4 1 -5.87 30.5 2

## 5 1 -4.54 21.8 2

## 6 1 -3.35 6.8 2

## 7 2 -8.52 265.2 2

## 8 2 -7.31 258.0 2

## 9 2 -6.16 249.1 2

## 10 2 -5.87 243.5 2

The model

In this section, we implement a customised Bayesian model for demonstration. This model has

Sample ID

lo
g 

a
P

b2
+  (

m
ol

 L
−1

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

−7

−6

−5

−4

−3

Figure 6: Posterior distribution of lead activity in 17 experimental samples, recorded in the

‘Standard Addition’ format. The 95% (thin lines) and 50% (thick lines) credible intervals are

shown, along with point estimates (–) and AAS reference measurements (•).
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been saved in the /models sub-folder of ISEtools as Carbonate_ISE_calibration_example.txt.

In it, we make small alterations to the default model as follows:

• These prototype ISEs were quite noisy, so the prior for sigma was expanded to U(0, 15)

mV, compared to the default U(0, 10) mV.

• As prototypes, it was assumed that the ISEs might exhibit no response, sub-Nernstian

response, or Nernstian response, but not greater than Nernstian response, so the prior for

b was set to U(E(b), 0) mV, where E(b) = −29.2 mV/decade for CO2−

3 at 21 ◦C.

A flow-on consequence is the need to specify initial values for b. The initial value generator for b

is based on the default model, and allows values < E(b). However, these are incompatibile with

the customised model, and values within the range (−29.2, 0) mV/decade must be provided.

We also specify MCMC options and the level of output to store for further analysis. This leads

to the following call to describeISE:

example4 = describeISE(carbonate, Z=-2, temperature=21,

model.path=paste(mypath, "/models", sep=""),

model.name="Carbonate_ISE_calibration_example.txt",

burnin=5000, iters=10000, chains=4, thin=10,

b.init=runif(8, -25, -5),

keep.coda=TRUE, coda.n=1000)

Specifically,

• The location of the customised file must be specified:

– model.path contains the location of the customised model;

– model.name contains the filename of the customised model.

• MCMC options are specified rather than relying on defaults:

– burnin and iters are the number of iterations to discard and the total number of

iterations per MCMC chain;

– chains is the number of parallel MCMC chains to run;

– thin is the thinning rate, or 1 ÷ the proportion of simulations retained (e.g. thin

= 10 retains every tenth iteration);

– the total number of iterations calculated equals iters × chains;

– the number of iterations stored in memory and used to estimate parameters and

standard errors is (iters - burnin) × chains ÷ thin;
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– this control allows the user to balance robustness (via the burn-in length and diag-

nostics that rely on multiple MCMC chains), calculation time (via the total number

of iterations), and memory usage (via thinning, as neighbouring iterations may be

highly correlated with each other and add little to inference).

• Initial values for b are drawn from a U(−25, −5) for each of the eight ISEs via b.init =

runif(8, -25, -5).

• keep.coda = TRUE specifies that the user wishes to retain MCMC output for further

analysis, while coda.n specifies the number of samples the user wishes to retain (drawn

randomly with replacement from the internally stored sample, or all of the stored samples

if coda.n is greater than or equal to the number stored).

– This feature is only implemented for describeISE.

– The output will be used to create a plot examining relationships between parameters.

Results

Basic results can be shown using print and plot as before, with results shown for ISE #1

below and in Figure 7. In this case, the ISE appears to have (1) a sub-Nernstian response; (2)

have a higher LOD than the other ISEs in the same batch; and (3) most importantly, the LOD

is greater than carbonate levels expected in seawater. This leads to the conclusion that ISE

#1 was not fit for the purpose of measuring carbonate in seawater. Other ISEs in the batch,

especially where used in a sensor array, were able to successfully measure carbonate in seawater

(Dillingham et al. 2017) but not as well as the sensors decribed in Mendecki et al. (2015).

##

##

## Non-linear parameter estimates and 95% CIs for

## y = a + b log(x + c)

##

## ISE #1:

## Parameter estimate Lower limit Upper limit

## a -3.38e+01 -7.71e+01 -1.27e+01

## b -1.22e+01 -2.48e+01 -7.29e+00

## c 2.85e-06 1.77e-07 4.45e-05

## sigma 1.78e+00 7.74e-01 7.41e+00

##

## Estimated log LOD{alpha=0.05, beta=0.05} (95% CI): -5.27 (-6, -3.27)
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Figure 7: Sampling distribution of ISE parameters for ISE #1.

By using the stored output in example4, we are also able perform additional analyses. First,

output is stored for each parameter and each ISE in <parameter>hat.coda. That is, the

MCMC output for b, is stored in example4$bhat.coda, with the first nine iterations shown

below (rounded to 2 decimal places). The output is a matrix with 1,000 rows (because coda.n

= 1000) and 8 columns, where each row represents one MCMC iteration and each column

represents one of the ISEs, e.g. column #1 represents ISE #1.

head(round(example4$bhat.coda, 2), n = 9)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] -12.38 -5.71 -15.01 -22.59 -14.94 -19.38 -21.37 -13.60

## [2,] -13.63 -8.84 -14.15 -28.41 -18.18 -18.08 -28.83 -14.05

## [3,] -12.78 -8.50 -12.95 -27.78 -17.04 -21.25 -27.10 -19.27

## [4,] -12.46 -9.34 -13.05 -28.58 -16.40 -18.31 -28.49 -21.48
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## [5,] -13.43 -9.91 -16.08 -26.39 -23.65 -20.25 -28.92 -20.20

## [6,] -12.18 -9.20 -17.83 -21.35 -23.25 -20.78 -23.34 -19.23

## [7,] -12.74 -13.23 -14.56 -28.72 -16.63 -17.19 -27.19 -19.99

## [8,] -18.17 -12.36 -14.21 -26.76 -16.14 -18.48 -27.92 -22.47

## [9,] -15.48 -9.73 -14.91 -23.89 -15.86 -21.53 -26.74 -18.40

In Dillingham et al. (2017), the pattern of model parameters and their link to LOD was exam-

ined. Here, we create a simpler plot showing correlations between parameters for ISE #1 in

Figure 8. Unsurprisingly, the intercept a and slope b are highly correlated, while both are also

correlated with log
10

c.

# Set up a plot with 9 subplots in 3 rows and columns; set margins widths

# Examine ISE #1

par(mfrow=c(3, 3), mar=c(0, 4.5, 1.5, 0))

ISE = 1

# First row of plots: a (on y-axis) vs b, log c, sigma (on x-axis)

plot(example4$bhat.coda[,ISE], example4$ahat.coda[,ISE],

xlim=c(-30, 0), ylim=c(-100, 40), main="b",

cex.main=1, font.main=1, axes=F, ylab="a", xlab="", pch=20, cex=0.3)

plot(log10(example4$chat.coda[,ISE]), example4$ahat.coda[,ISE],

xlim=c(-10, -3), ylim=c(-100, 40),

main=expression(paste(log[10],"c", sep="")), cex.main=1, font.main=1,

axes=F, ylab="", xlab="", pch=20, cex=0.3)

plot(example4$sigmahat.coda[,ISE], example4$ahat.coda[,ISE],

xlim=c(0, 15), ylim=c(-100, 40), main="sigma", cex.main=1, font.main=1,

axes=F, ylab="", xlab="", pch=20, cex=0.3)

# Second row of plots: b vs blank, log c, sigma

plot(NA, xlab="", xlim=c(-30, 0), ylab="b", ylim=c(-30, 0), axes=F)

plot(log10(example4$chat.coda[,ISE]), example4$bhat.coda[,ISE],

xlim=c(-10, -3), ylim=c(-30, 0),xlab="", ylab="",axes=F,pch=20,cex=0.3)

plot(example4$sigmahat.coda[,ISE], example4$bhat.coda[,ISE],

xlim=c(0, 15), ylim=c(-30, 0), xlab="", ylab="", axes=F,pch=20,cex=0.3)

# Third row of plots: log c vs blank, blank, sigma

plot(NA, xlab="", xlim=c(-10, -3), ylab=expression(paste(log[10],"c", sep=" ")),

ylim=c(-10, -3), axes=F)

plot(NA, xlab="", xlim=c(-30, 0), ylab="", ylim=c(-10, -3), axes=F)

plot(example4$sigmahat.coda[,ISE], log10(example4$chat.coda[,ISE]),

xlim=c(0, 15), ylim=c(-10, -3), xlab="", ylab="", axes=F,pch=20,cex=0.3)
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Figure 8: Correlations between ISE parameters for ISE #1.

4. Conclusion

ISEtools is designed to be as easy-to-use as possible, while also encouraging and allowing users

to customise models and analyses. Three key functions, loadISEdata, describeISE, and

analyseISE are introduced allowing researchers to analyse ISE data without requiring in-depth

knowledge of Bayesian procedures or the R programming language. Summary output and stan-

dard plots are easily implemented via print, summary, plot commands, along with additional

ability to customise the standard plots. Users may also implement their own Bayesian models

and store MCMC output from their own model or the standard models. This allows customised

analyses and plots, encouraging users to delve deeper according to ability and interest.
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