Package ‘ICvectorfields’

January 20, 2025

Title Vector Fields from Spatial Time Series of Population Abundance
Version 0.1.2

Description Functions for converting time series of spatial abundance or density
data in raster format to vector fields of population movement using the digital
image correlation technique. More specifically, the functions in the package
compute cross-covariance using discrete fast Fourier transforms for computational
efficiency. Vectors in vector fields point in the direction of highest two
dimensional cross-covariance. The package has a novel implementation of the
digital image correlation algorithm that is designed to detect persistent
directional movement when image time series extend beyond a sequence of
two raster images.

License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2

Suggests ggnewscale, ggplot2, knitr, metR, ncf, rmarkdown, testthat
(>=3.0.0)

Config/testthat/edition 3

Imports fftwtools, Rcpp, terra (>= 1.5-21)
Depends R (>=2.10)

VignetteBuilder knitr

BugReports https://github.com/goodsman/ICvectorfields/issues

LinkingTo Rcpp

NeedsCompilation yes

Author Devin Goodsman [aut, cre] (<https://orcid.org/0000-0003-1935-5779>)
Maintainer Devin Goodsman <goodsman@ualberta.ca>

Repository CRAN

Date/Publication 2022-02-26 22:30:02 UTC


https://github.com/goodsman/ICvectorfields/issues
https://orcid.org/0000-0003-1935-5779

2 DispField

Contents
DispField . . . . . . . e 2
DispFieldbb . . . . . . . . . e 4
DispFieldST . . . . . . . . e e e 6
DispFieldSTall . . . . . . . . . . 8
DispFieldSTbb . . . . . . . . . 10
DispFieldSTbball . . . . . . . . . . . . 12
DispMoransl . . . . . . .. e 14
GetRowCol . . . . . . . e 17
Moransl . . . . . . L 18
PatternDetect . . . . . . . . L 19
PixelCt . . . . . e 20
RastStackData . . . . . . . . . . . . e e e 21
RooksGradient . . . . . . . . . . .. 22
RooksNeighCt. . . . . . . . . . e 23
RooksNeighFind . . . . . . . . . . . . . e 25
RotationDetect . . . . . . . . . . . e 26
SimData . . . . . . e e e e e e e e 27
SubgridMoransl . . . . . . ..o L 29
Xcov2D ..o e 30

Index 32

DispField Displacement fields based on 2D cross-covariance
Description

Calculates a displacement field based on the cross-covariance of two input rasters presumably rep-
resenting spatial population abundance or density at two different instances of time.

Usage

DispField(inputrastl, inputrast2, factvl, facthl, restricted = FALSE)

Arguments
inputrasti a raster as produced by terra::rast
inputrast2 a raster of equivalent dimension to inputrastl as produced by terra::rast
factvi an odd integer for the vertical dimension of sub-grids
facth an odd integer for the horizontal dimension of sub-grids

restricted logical (TRUE or FALSE)



DispField 3

Details

The input rasters are first converted to equivalent matrices. The function then divides the domain
up into sub-grids of size factvl X facthl, which are vertical and horizontal sub-grid dimensions.

If restricted is set to FALSE (the default), the function computes cross-covariance between each
sub-grid of the first input raster and the entirety of the second input raster and then uses the location
of maximum cross-covariance to estimate displacement in the vertical and horizontal directions
from the centre of each sub-grid.

If restricted is set to TRUE, the function uses cross-covariance between each sub-grid in the first
input raster and the equivalent sub-grid in the second input raster to estimate vertical and horizontal
displacement.

Reference coordinates and cell size are extracted from the first input raster such that the locations
from whence displacement is estimated as well as displacement estimates can be expressed in the
units of the projected coordinates.

The coordinates are assumed to increase vertically and horizontally from the lower left corner of
the two-dimensional domain.

Caution is warranted when defining the sub-grid dimensions because the function can produce er-
roneous results when sub-grids are too small.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row
and column indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the displacement in the horizontal and vertical directions in
the same units as the projected coordinates of the raster input files.

See Also

DispFieldbb for a similar function using a bounding box to define a focal region, DispFieldST
for a version designed to quantify persistent directional movement when the time series features
more than two time instances, DispFieldSTall for a version designed to quantify persistent di-
rectional movement when velocity is variable in space, and Xcov2D for demonstration of how two-
dimensional cross-covariance is used to determine displacement (see examples of Xcov2D function
documentation).

Examples

(Mat1 <- matrix(rep(c(1:5, @, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat2 <- matrix(rep(c(@, 1:5, @, @, @), 9), nrow = 9, byrow = TRUE))

# rasterizing

rastl <- terra::rast(Mat1l)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)



4 DispFieldbb

(VFdf1 <- DispField(rastl, rast2, factvl = 9, facthl = 9))
# The second raster is shifted right by 1 unit relative to the first raster

# dispx =1
DispFieldbb Displacement fields based on 2D cross-covariance using bounding box
Description

Calculates a displacement field based on the cross-covariance of two input rasters presumably rep-
resenting spatial population abundance or density at two different instances of time. This version
differs from DispField in that the user defines a bounding box that determines a single sub-grid.
The center of the bounding box is the location from whence displacement is estimated.

Usage
DispFieldbb(
inputrasti,
inputrast2,
rowmn,
rowmx,
colmn,
colmx,
restricted = FALSE
)
Arguments
inputrasti a raster as produced by terra::rast
inputrast2 a raster of equivalent dimension to inputrastl as produced by terra::rast
rowmn an integer denoting the minimum row index of the sub-grid
rowmx an integer denoting the maximum row index of the sub-grid
colmn an integer denoting the minimum column index of the sub-grid
colmx an integer denoting the maximum column index of the sub-grid
restricted logical (TRUE or FALSE)
Details

The input rasters are first converted to equivalent matrices. If restricted is set to FALSE (the default),
the function computes cross-covariance between the sub-grid of the first input raster and the entirety
of the second input raster and then uses the location of maximum cross-covariance to estimate
displacement in the vertical and horizontal directions from the centre of the sub-grid.

If restricted is set to TRUE, the function uses cross-covariance between the sub-grid of the first
input raster and the equivalent sub-grid of the second input raster to estimate vertical and horizontal
displacement.



DispFieldbb 5

Reference coordinates and cell size are extracted from the first input raster such that the locations
from whence displacement is estimated as well as displacement estimates can be expressed in the
units of the projected coordinates.

The coordinates are assumed to increase vertically and horizontally from the lower left corner of
the two-dimensional domain.

Caution is warranted when defining the bounding box because the function can produce erroneous
results when the bounding box is too small.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row
and column indices for the center of the sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the displacement in the horizontal and vertical directions in
the same units as the projected coordinates of the raster input files.

See Also

DispField for a similar function with a grid of focal regions, DispFieldSTbb for a version de-
signed to quantify persistent directional movement when the time series features more than two
time instances, DispFieldSTbball for a version designed to quantify persistent directional move-
ment when velocity is variable in space, and Xcov2D for demonstration of how two-dimensional
cross-covariance is used to determine displacement (see examples of Xcov2D function documenta-
tion).

Examples

rseq <- stats::runif(72)
Matl <- matrix(rep(@, 81), nrow = 9)

Mat2 <- Matl

Mat1[1:9, 1:8] <- rseq
Mat1

Mat2[1:9, 2:9] <- rseq
Mat2

# rasterizing

rastl <- terra::rast(Mat1)
terra::plot(rasti)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

(VFdf1 <- DispFieldbb(rast1, rast2, 2, 8, 2, 8))
# The second raster is shifted right by 1 unit relative to the first raster
# dispx = 1



6 DispFieldST

DispFieldST Displacement fields for spatiotemporal data when velocity is spatially
constant

Description

This is an implementation of a novel algorithm that differs from more traditional digital image corre-
lation implementations that are applied in the DispField and DispFieldbb functions. The function
calculates a displacement field representing persistent movement based on the cross-covariance in
a raster stack (in this case a sequential series of rasters) presumably representing spatial population
abundance or density at more than two different instances of time. If analysis is restricted to only
two time instances, DispField is more appropriate.

Usage

DispFieldST(inputstackl, lagl, factvl, facthl, restricted = FALSE)

Arguments
inputstacki a raster stack with each raster layer representing an instance of time. The raster
stack should be organized such that the first raster in the stack is the first ob-
served spatial dataset and time progresses forward with the third dimension in-
dex of the raster stack. The raster stack should contain only numeric values.
Any NA value will be converted to a zero
lagil an integer time lag
factvi an odd integer for the vertical dimension of subgrids
facth an odd integer for the horizontal dimension of subgrids
restricted logical (TRUE or FALSE)
Details

The input rasters in the raster stack are first converted to equivalent matrices, which together repre-
sent a three-dimensional array with two spatial dimensions and one time dimension. The prescribed
lag is applied to the three dimensional array derived from the raster stack by first producing two
equivalent arrays and then removing appropriate numbers of layers from the top of one and the
bottom of the other. These are referred to as unlagged and lagged spatiotemporal arrays in the
description that follows.

Prior to computing displacement based on direction of maximum cross-covariance, the function
divides the spatial domain up into sub-grids of size factv1 X facth1, which are vertical and horizontal
sub-grid spatial dimensions.

The function converts three dimensional lagged and unlagged spatiotemporal arrays to two-dimensional
lagged and unlagged spatiotemporal matrices by averaging along one of the spatial dimensions (ei-
ther rows or columns) to obtain two pairs of two-dimensional matrices in which one dimension is
spatial (either rows or columns) and one dimension is temporal. One of each pair corresponds to
the unlagged spatiotemporal array and the other corresponds to the lagged spatiotemporal array.



DispFieldST 7

Displacement in the vertical direction is computed using unlagged and lagged matrices that have
been averaged along rows and displacement in the horizontal direction is computed using unlagged
and lagged matrices that have been averaged along columns.

If restricted is set to FALSE (the default), the function computes cross-covariance between each
sub-grid of the unlagged row-averaged spatiotemporal matrix and the whole row-averaged lagged
spatiotemporal matrix and between each sub-grid of the unlagged column-averaged spatiotemporal
matrix and the entirety corresponding lagged matrix.

If restricted is set to TRUE, the function uses cross-covariance between lagged and unlagged version
of row-averaged and column averaged spatiotemporal matrices that have all been either row or
column-averaged within sub-grids to estimate vertical and horizontal displacement.

Regardless of whether restricted is set to TRUE or FALSE, for each sub-grid, displacement in the x
and y direction is divided by the shift in the time dimension to produce orthogonal velocity vetors.
Note that for this reason, the lagl argument of the function does not necessarily determine the time
lag that is used to produce each orthoganal velocity vector.

Reference coordinates and cell size are extracted from the first raster stack such that the locations
from whence displacement is estimated as well as displacement (or velocity) estimates can be ex-
pressed in the units of the projected coordinates.

The coordinates are assumed to increase vertically and horizontally from the lower left corner of
the two-dimensional domain.

Caution is warranted when defining the sub-grid dimensions because the function can produce er-
roneous results when sub-grids are too small.

In addition, results can be quite sensitive to specification of the time lag. If velocities are highly vari-
able in space or over time, avoid specifying a single time lag by calling the related DispFieldSTall
function.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row
and column indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the orthoganal velocity vectors in units of space per timestep
in the horizontal and vertical directions in the same spatial units as the projected coordinates of the
raster input files.

See Also

DispField for a similar function with a grid of focal regions for only two time instances, DispFieldSTbb
for a version designed to quantify persistent directional movement when the time series features
more than two time instances but using a bounding pox to define a focal region, see DispFieldSTall

for a version designed to quantify persistent directional movement when velocity is variable in
space, and Xcov2D for demonstration of how two-dimensional cross-covariance is used to deter-
mine displacement (see examples of Xcov2D function documentation).



8 DispFieldSTall

Examples
(Mat1 <- matrix(rep(c(1:5, @0, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat2 <- matrix(rep(c(@, 1:5, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat3 <- matrix(rep(c(@, @, 1:5, @, @), 9), nrow = 9, byrow = TRUE))
(Mat4 <- matrix(rep(c(0, @, @, 1:5, @), 9), nrow = 9, byrow = TRUE))

# rasterizing

rastl <- terra::rast(Mat1l)
terra::plot(rasti)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

rast3 <- terra::rast(Mat3)
terra::plot(rast3)

rast4 <- terra::rast(Mat4)
terra::plot(rast4)

teststackl <- c(rastl, rast2, rast3, rast4)
(VFdf2 <- DispFieldST(teststackl, lagl = 1, factvl =9, facthl = 9))
# block is moving rightward at a speed of 1 unit of space per unit of time

# dispx =1
DispFieldSTall Diplacement fields for spatiotemporal data when velocity varies spa-
tially
Description

This is an implementation of a novel algorithm that differs from more traditional digital image
correlation implementations that are applied in the DispField and DispFieldbb functions. This
version is similar to the DispFieldST function except that it does not require a specific time lag.
Instead the user specifies a maximum time lag and the function computes displacement vectors
using the time lag that produces the maximum speed (magnitude of displacement divided by time
lag). The function calculates a displacement field representing persistent movement based on the
cross-covariance in a raster stack (in this case a sequential series of rasters) presumably representing
spatial population abundance or density at more than two different instances of time. If analysis is
restricted to only two time instances, DispField is more appropriate.

Usage

DispFieldSTall(inputstackl, lagmax, factvl, facthl, restricted = FALSE)

Arguments

inputstacki a raster stack with each raster layer representing an instance of time. The raster
stack should be organized such that the first raster in the stack is the first ob-
served spatial dataset and time progresses forward with the third dimension in-
dex of the raster stack. The raster stack should contain only numeric values.
Any NA value will be converted to a zero



DispFieldSTall 9

lagmax an integer representing the maximum time lag
factvi an odd integer for the vertical dimension of subgrids
facth an odd integer for the horizontal dimension of subgrids
restricted logical (TRUE or FALSE)

Details

The DispFieldSTall function has the same inner workings as the DispFieldST function except that
instead of specifying a specific time lag, the user specifies a maximum time lag. The function then
cycles through all lags up to the maximum time lag and chooses the for each location the maxi-
mum speed. The DispFieldSTall function is more appropriate than DispFieldST when velocity is
variable in space.

Caution is warranted when defining the sub-grid dimensions because the function can produce er-
roneous results when sub-grids are too small.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row
and column indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the orthoganal velocity vectors in units of space per timestep
in the horizontal and vertical directions in the same spatial units as the projected coordinates of the
raster input files.

See Also

DispField for a similar function with a grid of focal regions for only two time instances, DispFieldST
for a version designed to quantify persistent directional movement when the time series features
more than two time instances and the velocity is constant in space, DispFieldSTbball for a version
designed to quantify persistent directional movement when velocity is variable in space and the fo-
cal region is defined using a bounding box, and Xcov2D for demonstration of how two-dimensional
cross-covariance is used to determine displacement (see examples of Xcov2D function documenta-

tion).

Examples
(Mat1 <- matrix(rep(c(1:5, @, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat2 <- matrix(rep(c(@, 1:5, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat3 <- matrix(rep(c(@, @, 1:5, @, @), 9), nrow = 9, byrow = TRUE))
(Mat4 <- matrix(rep(c(@, @, @, 1:5, @), 9), nrow = 9, byrow = TRUE))

# rasterizing

rastl <- terra::rast(Mat1l)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

rast3 <- terra::rast(Mat3)



10 DispFieldSTbb

terra::plot(rast3)
rast4 <- terra::rast(Mat4)
terra::plot(rast4)

teststackl <- c(rastl, rast2, rast3, rast4)
(VFdf4 <- DispFieldSTall(teststackl, lagmax = 2, factvl = 9, facthl = 9))
# block is moving rightward at a speed of 1 unit of space per unit of time

# dispx =1
DispFieldSTbb Displacement fields for spatiotemporal data using a bounding box
Description

This is an implementation of a novel algorithm that differs from more traditional digital image corre-
lation implementations that are applied in the DispField and DispFieldbb functions. The function
calculates a displacement field representing persistent movement based on the cross-covariance in
a raster stack (in this case a sequential series of rasters) presumably representing spatial population
abundance or density at more than two different instances of time. If analysis is restricted to only
two time instances, DispFieldbb is more appropriate.

Usage
DispFieldSThb(
inputstackl,
lag1,
rowmn,
rowmx,
colmn,
colmx,
restricted = FALSE
)
Arguments
inputstacki a raster stack with each raster layer representing an instance of time. The raster
stack should be organized such that the first raster in the stack is the first ob-
served spatial dataset and time progresses forward with the third dimension in-
dex of the raster stack. The raster stack should contain only numeric values.
Any NA value will be converted to a zero
lagil an integer time lag
rowmn an integer for the minimum row index of the bounding box
rowmx an integer for the maximum row index of the bounding box
colmn an integer for the minimum column index of the bounding box
colmx an integer for the maximum column index of the bounding box

restricted logical (TRUE or FALSE)



DispFieldSTbb 11

Details

The input rasters in the raster stack are first converted to equivalent matrices, which together repre-
sent a three-dimensional array with two spatial dimensions and one time dimension. The prescribed
lag is applied to the three dimensional array derived from the raster stack by first producing two
equivalent arrays and then removing appropriate numbers of layers from the top of one and the
bottom of the other. These are referred to as unlagged and lagged spatiotemporal arrays in the
description that follows.

The function converts three dimensional lagged and unlagged spatiotemporal arrays to two-dimensional
lagged and unlagged spatiotemporal matrices by averaging along one of the spatial dimensions (ei-
ther rows or columns) to obtain two pairs of two-dimensional matrices in which one dimension is
spatial (either rows or columns) and one dimension is temporal. One of each pair corresponds to
the unlagged spatiotemporal array and the other corresponds to the lagged spatiotemporal array.
Displacement in the vertical direction is computed using unlagged and lagged matrices that have
been averaged along rows and displacement in the horizontal direction is computed using unlagged
and lagged matrices that have been averaged along columns.

If restricted is set to FALSE (the default), the function computes cross-covariance between the
values within the bounding box of the unlagged row-averaged spatiotemporal matrix and the whole
row-averaged lagged spatiotemporal matrix and between the values within the bounding box of the
unlagged column-averaged spatiotemporal matrix and the entirety corresponding lagged matrix.

If restricted is set to TRUE, the function uses cross-covariance between lagged and unlagged version
of row-averaged and column averaged spatiotemporal matrices that have all been either row or
column-averaged within the bounding box to estimate vertical and horizontal displacement.

Regardless of whether restricted is set to TRUE or FALSE, for each sub-grid, displacement in the x
and y direction is divided by the shift in the time dimension to produce orthogonal velocity vetors.
Note that for this reason, the lagl argument of the function does not necessarily determine the time
lag that is used to produce each orthoganal velocity vector.

Reference coordinates and cell size are extracted from the first raster stack such that the locations
from whence displacement is estimated as well as displacement (or velocity) estimates can be ex-
pressed in the units of the projected coordinates.

The coordinates are assumed to increase vertically and horizontally from the lower left corner of
the two-dimensional domain.

Caution is warranted when defining the sub-grid dimensions because the function can produce er-
roneous results when sub-grids are too small.

# In addition, results can be quite sensitive to specification of the time lag. If velocities are
highly variable in space or over time, avoid specifying a single time lag by calling the related
DispFieldSTbball function.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row
and column indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the orthoganal velocity vectors in units of space per timestep



12 DispFieldSTbball

in the horizontal and vertical directions in the same spatial units as the projected coordinates of the
raster input files.

See Also

DispField for a similar function with a grid of focal regions for only two time instances, DispFieldST
for a version designed to quantify persistent directional movement when the time series features
more than two time instances but using a grid to define focal regions, see DispFieldSTbball for

a version designed to quantify persistent directional movement when velocity is variable in space,
and Xcov2D for demonstration of how two-dimensional cross-covariance is used to determine dis-
placement (see examples of Xcov2D function documentation).

Examples

rseq <- stats::runif(54)

Mat1l <- matrix(rep(@, 9%9), nrow = 9)
Mat2 <- Matl; Mat3 <- Matl; Mat4 <- Matl
Mat1[1:9, 1:6] <- rseq

Mat1

Mat2[1:9, 2:7] <- rseq

Mat2

Mat3[1:9, 3:8] <- rseq

Mat3

Mat4[1:9, 4:9] <- rseq

Mat4

# rasterizing

rastl <- terra::rast(Matl)
terra::plot(rasti)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

rast3 <- terra::rast(Mat3)
terra::plot(rast3)

rast4 <- terra::rast(Mat4)
terra::plot(rast4)

teststackl <- c(rastl, rast2, rast3, rast4)
(VFdf3 <- DispFieldSTbhb(teststackl, lagl =1, 2, 8, 2, 8))
# block is moving rightward at a speed of 1 unit of space per unit of time

# dispx = 1
DispFieldSTbball Diplacement fields using bounding box when velocity varies spatially
Description

This is an implementation of a novel algorithm that differs from more traditional digital image
correlation implementations that are applied in the DispField and DispFieldbb functions. This
version is similar to the DispFieldSTbb function except that it does not require a specific time



DispFieldSTbball 13

lag. Instead the user specifies a maximum time lag and the function computes displacement vectors
using the time lag that produces the maximum speed (magnitude of displacement divided by time
lag). The function calculates a displacement field representing persistent movement based on the
cross-covariance in a raster stack (in this case a sequential series of rasters) presumably representing
spatial population abundance or density at more than two different instances of time. If analysis is
restricted to only two time instances, DispFieldbb is more appropriate.

Usage
DispFieldSTbball(
inputstackil,
lagmax,
rowmn,
rowmx,
colmn,
colmx,
restricted = FALSE
)
Arguments
inputstacki a raster stack with each raster layer representing an instance of time. The raster
stack should be organized such that the first raster in the stack is the first ob-
served spatial dataset and time progresses forward with the third dimension in-
dex of the raster stack. The raster stack should contain only numeric values.
Any NA value will be converted to a zero
lagmax an integer representing the maximum time lag
rowmn an integer denoting the minimum row index of the sub-grid
rowmx an integer denoting the maximum row index of the sub-grid
colmn an integer denoting the minimum column index of the sub-grid
colmx an integer denoting the maximum column index of the sub-grid
restricted logical (TRUE or FALSE)
Details

The DispFieldSTbball function has the same inner workings as the DispFieldSTbb function except
that instead of specifying a specific time lag, the user specifies a maximum time lag. The function
then cycles through all lags up to the maximum time lag and chooses the for each location the
maximum speed. The DispFieldSTbball function is more appropriate than DispFieldSTbb when
velocity is variable in space.

Caution is warranted when defining the bounding box dimensions because the function can produce
erroneous results when the bounding box is too small.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, centx, centy, dispx, and dispy. The rowcent and colcent column names are the row



14 DispMoransl

and column indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum
and maximum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column
indices; centx and centy are the projected coordinates of the centre of the subgrid derived from the
raster input files; dispx and dispy are the orthoganal velocity vectors in units of space per timestep
in the horizontal and vertical directions in the same spatial units as the projected coordinates of the
raster input files.

See Also

DispFieldbb for a similar function with focal region defined using a bounding box for only two
time instances, DispFieldSTbb for a version designed to quantify persistent directional move-
ment when velocity is constant in space and the focal region is defined using a bounding box, see
DispFieldSTall for a version designed to quantify persistent directional movement when velocity
is variable in space and focal regions are defined based on a grid, and Xcov2D for demonstration of
how two-dimensional cross-covariance is used to determine displacement (see examples of Xcov2D
function documentation).

Examples
(Mat1 <- matrix(rep(c(1:5, @, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat2 <- matrix(rep(c(@, 1:5, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat3 <- matrix(rep(c(@, @, 1:5, @, @), 9), nrow = 9, byrow = TRUE))
(Mat4 <- matrix(rep(c(@, @, @, 1:5, @), 9), nrow = 9, byrow = TRUE))

# Rasterizing

rastl <- terra::rast(Mat1)
terra::plot(rasti)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

rast3 <- terra::rast(Mat3)
terra::plot(rast3)

rast4 <- terra::rast(Mat4)
terra::plot(rast4)

teststackl <- c(rastl, rast2, rast3, rast4)
(VFdf5 <- DispFieldSTbball(teststackl, lagmax =2, 1, 9, 1, 9))
# block is moving rightward at a speed of 1 unit of space per unit of time

# dispx = 1
DispMoransI Calculate statistics in source or sink regions
Description

Functions for computing the statistics which may be driving variables of movement that has been
quantified using the DispField or DispFieldbb functions. The same raster data as were supplied
to the aforementioned functions must be supplied to these in addition to a raster layer for which
statistics are sought. Then for each region of interest defined when DispField or DispFieldbb



DispMoransl

15

were called, these functions compute statistics for presumed source (sourceloc = TRUE) locations
or presumed sink locations (sourceloc = FALSE). Note that in the DispMornasl function, defining
radius using distance means that a radius of one corresponds to the rook’s neighbourhood.

Usage

DispMoransI(inputrastl, inputrast2, statrast, vfdf, sourceloc =

DispStats(

inputrasti,
inputrast2,

statrast,
vfdf,

sourceloc
statistic

Arguments

inputrasti
inputrast2

statrast

vfdf

sourceloc

radil

statistic

Value

TRUE, radl)

TRUE,
”Var”

a raster as produced by terra::rast
a raster of equivalent dimension to inputrastl as produced by terra::rast

a raster of equivalent dimension to inputrastl as produced by terra::rast which
contains the variable that will be used to compute statistics

a data frame returned by the DispField or DispFieldbb functions, which con-
tains all of the information necessary for defining regions of interest as well as
the displacement estimates

logical (TRUE or FALSE) indicating whether statistics are to be returned at
source or sink locations

an ingeger indicating the neighbourhood radius for Moran’s I statistic calcula-
tions in rows/columns. Any cell within a distance of radl cells of the focal cell
is considered to be in its neighbourhood.

desired output statistic: It should be one of "mean", "var", or "sum". Default
setting is var.

A data frame is returned with all of the same columns as the vfdf input data frame plus an additional
column containing the computed statistic in each region of interest defined in vfdf.

Examples

# Illustrating use of DispMoransI:

1,1,0.1,0,0,0,0,0,0,
1,0.1,1,0,0,0,0,0,0,
0.1,1,0.1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,



16

,0,0,0,0,0,
,0,0,0,0,0,
,0,0,0,0,0,

nrow
(Mat2 <- matrix(c(0,

# Note that rasterizing a matrix causes it to be rotated 90 degrees.

# Therefore, any shift in the x direction is in fact now a shift in
rastl <- terra::rast(Matl)

terra::plot(rast1)

rast2 <- terra::rast(Mat2)

terra::plot(rast2)

(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl = 3))
# The second raster is shifted down by -0.6666667 units relative to
# dispy = -0.6666667 (the width of each box is 0.1111111).

# Now to compute the statistics at the source: the Moran's I of the
# in each region of interest (should be minus one in first row)

(VFdf2 <- DispMoransI(rastl, rast2, rastl, VFdf1, sourceloc = TRUE,

# Illustrating use of DispStats:

(Mat1 <- matrix(c(1,1,1,0,0,0,0,0,0,
1,1,1,0,0,0,0,0,0,
1,1,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0),

nrow = 9))

(Mat2 <- matrix(c(0,90,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
1,1,1,0,0,0,0,0,0,
1,1,1,0,0,0,0,0,0,
1,1,1,0,0,0,0,0,0),

nrow = 9))

DispMoransl

the y direction

the first raster

original values

radl = 1))



GetRowCol 17

# Note that rasterizing a matrix causes it to be rotated 90 degrees.

# Therefore, any shift in the x direction is in fact now a shift in the y direction
rastl <- terra::rast(Mat1)

terra::plot(rast1)

rast2 <- terra::rast(Mat2)

terra::plot(rast2)

(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl = 3))
# The second raster is shifted down by -0.6666667 units relative to the first raster
# dispy = -0.6666667 (the width of each box is 0.1111111).

# Now to compute the statistics at the source: the mean of the original values
# in each region of interest (should be one in first row)

(VFdf2 <- DispStats(rastl, rast2, rastl, VFdf1, sourceloc = TRUE, statistic
# sum in each region of interest (should be nine in first row)

(VFdf3 <- DispStats(rastl, rast2, rastl, VFdf1, sourceloc = TRUE, statistic = "sum"))
# variance in each region of interest (should be zero in all rows)

(VFdf4 <- DispStats(rastl, rast2, rastl, VFdf1, sourceloc = TRUE, statistic = "var"))

"mean”))

GetRowCol Retrieve matrix row and column indices

Description

Here is a function that will find the row and column indices of a matrix that are associated with a
vector index.

Usage

GetRowCol(Index, diml, dim2)

Arguments
Index an integer vector index
dim1 integer row dimension of the matrix from which the row and column indices are
to be extracted
dim2 integer column dimension of the matrix from which the row and column indices
are to be extracted
Details

Often when applying functions like the R function which.max(matrix) to a matrix, a vector index is
returned when the coder would prefer to have a row and column indices. This function converts the
vector index to row and column indices.

The function assumes that the elements of the matrix are filled by column (byrow = FALSE), which
is the default R matrix behaviour.



18 Moransl

Value

a numeric vector of length two with two integers indicating row and column respectively

Examples

GetRowCol (6, diml = 3, dim2 = 3) # should return c(3, 2)

MoransI Efficiently compute Moran’s I statistic

Description

Compute Moran’s I for a matrix. A fast implementation of Moran’s I for gridded data, with neigh-
bours defined based on a radial distance. Note that when using radius to define the neighbourhood,
a radius of one corresponds to the rook’s neibhourhood. There is currently no equivalent to queen’s
neighbourhood.

Usage

MoransI(matl, r1)

Arguments
mat1 a matrix of values; NA/Inf values must be coded as NA and are ignored
ri an integer representing the distance (radius), within which nearby cells are con-
sidered neighbours in units of rows/columns
Value

a single numeric value for Moran’s [

Examples
(TestMat <- matrix(c(1, o, 1, 0, 1,
o, 1, 0, 1, 0,
1, 0, 1, o, 1,
o, 1, 0, 1, 0,
1, 0, 1, 0, 1),
nrow =5))

# the code below should return -1
MoransI(TestMat, r1 = 1)



PatternDetect 19

PatternDetect Detect Patterns in Vector Fields

Description

Detect patterns in vector fields represented on a grid by looking in the rook’s neighbourhood of each
grid cell. Four patterns are detected: convergences occur when the vectors in the four adjacent cells
in the rook’s neighbourhood point towards the focal cell; divergences occur when the vectors in the
four adjacent cells point away from the focal cell; Partial convergences occur when three of the four
vectors point towards the focal cell and the final vector points neither towards nor away from the
focal cell; Partial divergences occur when three of the four vectors point away the focal grid cell and
the final vector points neither towards nor away from the focal grid. For all of the patterns above a
sub-pattern is specified if all arrows point clockwise or counter-clockwise.

Usage
PatternDetect (vfdf)
Arguments
vfdf A data frame as returned by DispField, DispFieldST, or DispFieldSTall
with at least five rows (more is better)
Value

A data frame as returned by DispField, DispFieldST, or DispFieldSTall, with three additional
columns. The first additional column is called Pattern in which the patterns around each focal
cell are categorized as convergence, divergence, partial convergence, partial divergence, or NA.
The second additional column, called SubPattern, indicates whether all arrows point clockwise or
counter-clockwise. The third additional column is called PatternCt, which contains a one if all four
neighbourhood grid cells contain displacement estimates, and a NA otherwise.

Examples

# creating convergence/divergence patterns
Matl <- matrix(rep(0,9%*9), nrow = 9)
Mat1[3, c(4, 6)]1 <- 1

Mat1[7, c(4, 6)] <=1

Mat1[c(4, 6), 3] <- 1

Mat1[c(4, 6), 71 <- 1

Mat1

Mat2 <- matrix(rep(@,9%9), nrow = 9)
Mat2[2, c(4, 6)] <=1

Mat2[8, c(4, 6)] <- 1

Mat2[c(4, 6), 2] <- 1

Mat2[c(4, 6), 8] <- 1

Mat2



20 PixelCt

# rasterizing

rastl <- terra::rast(Mat1l)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

# Detecting a divergence
(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl = 3, restricted
(patdf1 <- PatternDetect(VFdf1))

TRUE))

# Detecting a convergence
(VFdf2 <- DispField(rast2, rastl, factvl = 3, facthl = 3, restricted = TRUE))
(patdf2 <- PatternDetect(VFdf2))

PixelCt Count populated pixels in a raster stack

Description

In order to produce reliable results, the cross-covariance approach implemented in DispField.
DispFieldST, and DispFieldSTall needs a certain minimum number of non-zero or non-NA val-
ued pixels in pairs of images or pairs of arrays derived from a raster stack that it uses to compute
cross-covariance. The user may define a threshold such as ten percent of the pixels within each sub-
grid. This function allows the user to assess whether the minimum threshold number of non-zero
pixels per sub-grid are surpassed by returning the number of non-zero pixels within each sub-grid
over all of the time instances in the user-supplied raster stack. The user may choose to disregard
or mistrust displacement or velocity estimates derived from sub-grids with insufficient numbers of
non-zero pixels. This function is designed to be called before or after one of the functions refer-
enced above in order to enable the user to quantify their confidence in displacement or velocity
estimates.

Usage

PixelCt(inputstackl, factvl, facthl)

Arguments
inputstacki a raster stack with each raster layer representing an instance of time. The raster
stack should be organized such that the first raster in the stack is the first ob-
served spatial dataset and time progresses forward with the third dimension in-
dex of the raster stack. The raster stack should contain only numeric values.
Any NA value will be converted to a zero
factvi an odd integer for the vertical dimension of subgrids

facth1 an odd integer for the horizontal dimension of subgrids



RastStackData 21

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, and PixelCt. The rowcent and colcent column names are the row and column
indices for the center of each sub-grid; frowmin and frowmax are the sub-grid minimum and max-
imum row indices; fcolmin and fcolmax are the sub-grid minimum and maximum column indices;
pixelct is the count of non-zero pixels in the sub-grid over the entire time period covered by the
input raster stack.

Examples

# below the example in the DispField function documentation is reproduced
(Mat1 <- matrix(rep(c(1:5, @0, @, @, @), 9), nrow = 9, byrow = TRUE))
(Mat2 <- matrix(rep(c(@, 1:5, @, @, @), 9), nrow = 9, byrow = TRUE))

# Note that rasterizing a matrix causes it to be rotated 90 degrees.

# Therefore, any shift in the x direction is in fact now a shift in the y direction
rast1l <- terra::rast(Matl)

terra::plot(rast1)

rast2 <- terra::rast(Mat2)

terra::plot(rast2)

(Confdf1 <- PixelCt(c(rastl, rast2), factvl = 9, facthl = 9))
# This should return a pixel count of 54: This is the number
# of pixels that were occupied in either the first or second
# time instance.

RastStackData Creating a raster stack from formatted datasets

Description

This function converts the data that accompany the ICvectorfields R package to a raster stack.
The raster stack is the only accepted data input format for the following ICvectorfields functions:
DispFieldST, DispFieldSTbb, DispFieldSTall, DispFieldSTbball.

Usage

RastStackData(inputdf)

Arguments

inputdf a data frame object in which the first column is longitude (or x coordinate), the
second column is latitude (or y coordinate), and all of the subsequent columns
represent a measure of population abundance or density at a unique instance of
time. Each row of the input data frame, therefore, represents a unique spatial
location, which should be on an evenly spaced grid. Note, however, that not all
grid locations need to have observations; some grid locations can have values of
NA or can be missing entirely.



22 RooksGradient

Details

Once a raster stack has been created, individual layers can be subsetted using rasterstack[[index]],
where index is an integer index for the third dimension of the raster stack.

Value

The function returns a raster stack constructed using inputdf. Each layer in the stack corresponds
to a column of the input dataset (after the first two columns, which are longitude and latitude). The
extent of all of the rasters in the stack is constructed using the minimum and maximum longitudes
and latitudes.

Examples

# creating random data in the correct data format
xyzdf <- expand.grid(x = c(1:3), y = c(1:3))
xyzdf$z1 <- runif(9)

xyzdf$z2 <- runif(9)

xyzdf$z3 <- runif(9)

zstack <- RastStackData(xyzdf)

dim(zstack)

terra::plot(zstack[[1]1])
terra::plot(zstack[[21])
terra::plot(zstack[[31])

RooksGradient Calculate Gradient Statistics in the Rook’s Neighbourhood

Description

The movement of populations into adjacent cells may sometimes be influenced by the gradient of
some predictive variable. This function enables the calculation of a simple gradient statistic in the
rook’s neighbourhood of each cell in a dataset. The statistic must first be computed for each grid
cell using SubgridStats. Then for each grid, the RooksGradient function computes the arithmetic
average of the difference between the statistic at the focal grid cell and the statistic in the four (or
fewer) adjacent neighbours in its Rook’s neibourhood. This arithmetically averaged difference is
then returned under the column header of *Gradient’. A negative gradient estimate indicates that
the statistic in the central cell is higher than that in neighbouring cells whereas a positive gradient
estimate indicates the opposite.

Usage

RooksGradient (vfdf, statistic = "mean"”)



RooksNeighCt 23

Arguments
vfdf A data frame as returned by SubgridStats
statistic desired output statistic: It should be one of "mean", "var", or "sum". Default
setting is mean.
Value

A data frame similar to vfdf except that it includes an additional column called Gradient as described
above.

Examples

# creating pattern patterns

Mat1l <- matrix(rep(@,9%9), nrow = 9)
Mat1[c(4:6), c(4:6)] <- 2
Mat1[c(4:6), c(1:3)] <- 1
Mat1[c(1:3), c(4:6)] <-

Mat1[c(7:9), c(4:6)] <-
Mat1[c(4:6), c(7:9)] <-
Mat1

1
1
1

Rast1 <- terra::rast(Matl)
terra::plot(Rast1)

# calculating the mean in 9 subgrids
(statsdf1 <- SubgridStats(Rastl1, factvl = 3, facthl = 3, statistic = "mean”))

# computing the gradient statistic on the mean

(graddf1 <- RooksGradient(statsdf1, statistic = "mean”))

# the Gradient statistic in the central grid in row 5 should
# be equal to negative one

RooksNeighCt Define a subset of grid locations with non-overlapping rook neighbor-
hoods

Description

This function prunes the data frame returned by the PatternDetect function such that it includes
only rook’s neighborhoods that do not overlap. Pruning is done by sequential removal of obser-
vations that are too near one another and as a result are overlapping. Locations that are the most
highly connected are removed first.

Usage
RooksNeighCt (vfdf)



24 RooksNeighCt

Arguments

vfdf A data frame as returned by PatternDetect

Details

The reason for this function’s existence is to facilitate probabilistic calculations regarding whether
certain patterns are occurring more or less often that would be expected by chance. If rook’s neigh-
borhoods in which patterns are observed overlap, then the assumption of probabilistic independence
is necessarily incorrect. Thus, overlap invalidates any calculation of the probability of occurrence of
a particular pattern if that calculation assumes independence. The pruning actions of this function
enable the user to more safely assume probabilistic independence.

Value

A data frame similar to vfdf except that it includes only grid locations with speed estimates in all
four adjacent grid locations in their rook’s neighborhood. An additional column called IndPatternCt
is appended which contains NA values for locations that are overlapping other locations and ones
for all non-overlapping locations that have speed estimates in all four adjacent cells.

Examples

# creating convergence/divergence patterns
Matl <- matrix(rep(@,9*9), nrow = 9)
Mat1[3, c(4, 6)]1 <- 1

Mat1[7, c(4, 6)] <- 1

Mat1[c(4, 6), 3] <=1

Mat1[c(4, 6), 71 <- 1

Mat1

Mat2 <- matrix(rep(@,9%9), nrow = 9)
Mat2[2, c(4, 6)] <=1

Mat2[8, c(4, 6)]1 <- 1

Mat2[c(4, 6), 2] <- 1

Mat2[c(4, 6), 8] <- 1

Mat2

Mat1l <- cbind(Matl, Mat1)
Matl <- rbind(Mat1, Matl)

Mat2 <- cbind(Mat2, Mat2)
Mat2 <- rbind(Mat2, Mat2)

# rasterizing

rastl <- terra::rast(Matl)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

# Detecting a divergence
(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl = 3, restricted = TRUE))
(patdf1 <- PatternDetect(VFdf1))



RooksNeighFind 25

(subdf1 <- RooksNeighCt(patdf1))
# The last call should print a data table with four rows, each with a one under
# the column header of IndPatternCt

RooksNeighFind Classify Rook’s Neighbours Comprising Spread Patterns in Vector
Fields

Description

After running the PatternDetect function, this function enables classification of neighbour cells.
Because the pattern detect function classifies central cells according to the patterns of vector di-
rection in their Rook’s neighbourhood, the neighbouring grid locations that comprise the pattern
are not labeled. This is remedied by the RooksNeighFind function which classifies neighbour cells
around focal grids classified with one of the four patterns that the PatternDetect function is able
to recognize. The function returns a data frame similar to the input data frame with a column
appended. In the appended column, neighbours surrounding focal cells labeled with a particular
pattern will be labeled as follows: neighbours of the divergence pattern are labeled with a one,
neighbours of the convergence pattern are labeled with a two, neighbours of the partial divergence
pattern are labeled with a three, and neighbours of the partial convergence pattern are labeled with
a four. In cases where neighbours are shared, the priority order from lowest to highest is four for
partial convergence to one for divergence. Thus, a neighbour that is shared between a focal grid
classified as a convergence and a nearby focal grid classified as a divergence will be labeled with a
one instead of a two.

Usage

RooksNeighFind(vfdf)
Arguments

vfdf A data frame as returned by PatternDetect
Value

A data frame similar to vfdf except that it includes an additional column called NeighType as de-
scribed above.

Examples

# creating convergence/divergence patterns
Matl <- matrix(rep(@,9*9), nrow = 9)
Mat1[3, c(4, 6)]1 <- 1

Mat1[7, c(4, 6)] <=1

Mat1[c(4, 6), 3] <- 1

Mat1[c(4, 6), 71 <- 1

Mat1

Mat2 <- matrix(rep(@,9%9), nrow = 9)



26

Mat2[2, c(4, 6)]
Mat2[8, c(4, 6)]
Mat2[c(4, 6), 2]
Mat2[c(4, 6), 8]
Mat2

# rasterizing

rastl <- terra::rast(Mat1l)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

# Detecting a divergence

(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl =
(patdf1 <- PatternDetect(VFdf1))

(neighdf1 <- RooksNeighFind(patdf1))

# Rook's neighbour grids are labeled with a one.

# Detecting a convergence

(VFdf2 <- DispField(rast2, rastl, factvl = 3, facthl =
(patdf2 <- PatternDetect(VFdf2))

(neighdf2 <- RooksNeighFind(patdf2))

# Rook's neighbour grids are labeled with a two.

3, restricted

3, restricted

RotationDetect

TRUE))

TRUE))

RotationDetect Detect Rotating Patterns in Vector Fields

Description

Detect patterns in vector fields represented on a grid by looking in the rook’s neighbourhood of
each grid cell. This function is analogous to PatternDetect, except that it detects rotational pat-
terns. Four patterns are detected: clockwise rotation when rotation in all four neighbbour grids
appears clockwise, counter clockwise rotation when rotation in all four neighbour grids appears
counter-clockwise, and partial clockwise and counter-clockwise rotation, when all but one of the
four adjacent neighbour cells has vectors that indicate rotation. For all of the patterns above a sub-
pattern is specified as convergence when all of the vectors in the four adjacent grids point towards
the focal cell or a divergence when all of the vectors in the four adjacent grids point away from the

focal cell.
Usage
RotationDetect(vfdf)
Arguments
vfdf A data frame as returned by DispField, DispFieldST, or DispFieldSTall

with at least five rows (more is better)



SimData 27

Value

A data frame as returned by DispField, DispFieldST, or DispFieldSTall, with three additional
columns. The first additional column is called Pattern in which the patterns around each focal cell
are categorized as clockwise, counter-clockwise, partial clockwise, partial counter-clockwise, or
NA. The second additional column, called SubPattern, indicates whether all arrows point towards
(convergence) or away (divergence) from the focal cell. The third additional column is called Pat-
ternCt, which contains a one if all four neighbourhood grid cells contain displacement estimates,
and a NA otherwise.

Examples

# creating rotation patterns
Mat1l <- matrix(rep(@,9%9), nrow
Mat1[c(1:3), 4] <- 1
Mat1[c(7:9), 6] <- 1

Mat1[4, c(7:9)] <- 1

Mat1[6, c(1:3)] <- 1

Mat1

9

Mat2 <- matrix(rep(@,9%9), nrow = 9)
Mat2[c(1:3), 5] <- 1

Mat2[c(7:9), 5] <- 1

Mat2[5, c(7:9)] <- 1

Mat2[5, c(1:3)] <- 1

Mat2

# rasterizing

rast1l <- terra::rast(Matl)
terra::plot(rast1)

rast2 <- terra::rast(Mat2)
terra::plot(rast2)

# Detecting clockwise rotation

(VFdf1 <- DispField(rastl, rast2, factvl = 3, facthl = 3, restricted = TRUE))
(patdf1 <- RotationDetect(VFdf1))
# Detecting counter-clockwise rotation
(VFdf2 <- DispField(rast2, rastl, factvl = 3, facthl = 3, restricted = TRUE))
(patdf2 <- RotationDetect(VFdf2))

SimData Simulated movement data

Description

Data based on a partial differential equation were simulated using the ReacTran R package (see
details).



28 SimData

Usage

data(SimData)

Format

A data-frame with 40804 rows and 8 columns.

xcoord in arbitrary units

ycoord in arbitrary units

t1l concentration in arbitrary units at t = 1
t2 concentration in arbitrary units at t =2
t3 concentration in arbitrary units at t = 3
t4 concentration in arbitrary units at t = 4
tS concentration in arbitrary units at t =5

t6 concentration in arbitrary units at t = 6

Details

The simulation algorithm uses a finite differencing scheme with backwards differencing. The model
used for simulation is a reaction diffusion-advection equation in which the advection term is variable
in space but diffusion and reactions are constant in space see convection-diffusion equation for an
example.

The parameters used in the general partial differntial equation in the link above are
D =0.01 per squared spatial unit
R =0.5 per unit time

v (advection is variable in space): in the upper left quadrant of the square domain v = (0.2, 0); in
the upper right quadrant v = (0, -0.2); in the lower right quadrant v = (-0.2, 0); in the lower right
quadrant v = (0, 0.2). Obviously v is discontinous at the quadrant boundaries, which causes some
interesting model behaviour that is limited by considering only the first six time steps such that the
bulk of the concentration in each quadrant does not cross a quadrant boundary.

The intial condition at time = 0 is a concentration of one unit per arbitrary unit of volume in the
central cell of each quadrant.

External boundary conditions are zero-gradient (reflecting).

The data are formatted such that they can easily be converted to a raster stack using ICvector-
fields::RastStackData(SimData).


https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation

SubgridMoransI 29

SubgridMoransI Compute statistics for subgrids

Description

Functions that facilitate calculation of statistics at the sub-grid level. These may be useful for drivers

of movement speed or direction if used in tandem with DispField, DispFieldST, or DispFieldSTall.
Usage

SubgridMoransI(inputrastl, factvl, facthl, radl = 1)

SubgridStats(inputrasti1, factvl, facthl, statistic = "var")

Arguments
inputrasti a raster as produced by terra::rast
factv1 an odd integer for the vertical dimension of sub-grids
facthi an odd integer for the horizontal dimension of sub-grids
radi an integer indicating the neighbourhood radius for Moran’s I statistic calcula-
tions in rows/columns. Any cell within a distance of radl cells of the focal cell
is considered to be in its neighbourhood.
statistic desired output statistic: It should be one of "mean", "var", or "sum". Default
setting is var.
Details

Note that when using radius to define the neighbourhood in Moran’s I calculations, a radius of one
corresponds to the rook’s neibhourhood. Values that are NA or Inf are not included in calculations
of the Moran’s I statistic nor in any of the other statistics that can be computed.

Value

A data frame is returned with the following column names: rowcent, colcent, frowmin, frowmax,
fcolmin, fcolmax, and a column for the output statistic.

See Also

DispStats and DispMoransIfor functions that compute statistics at presumed source or sink loca-
tions in each region of interest.



30 Xcov2D

Examples
(TestMat <- matrix(c(1, @, 1, 0, 1,
0, 1, 0, 1, 0,
1, o, 1, o, 1,
o, 1, o0, 1, 0,
1, 0, 1, 0, 1),
nrow = 5))

TestRast <- terra::rast(TestMat)
terra::plot(TestRast)

SubgridMoransI(TestRast, factvl = 5, facthl =5, radl = 1)
# using radl = 1 is equivalent to using the rooks neighbourhood

# and so the output should be -1.

(TestMat <- matrix(c(1, @, 1, 0, 1,

0, 1, 0,1, 0,
1, o, 1, o, 1,
0, 1, 0, 1, 0,
1, 0, 1, 0, 1),
nrow = 5))

TestRast <- terra::rast(TestMat)
terra::plot(TestRast)

SubgridStats(TestRast, factvl = 5, facthl = 5, statistic = "mean”)

SubgridStats(TestRast, factvl = 5, facthl = 5, statistic = "var")

SubgridStats(TestRast, factvl = 5, facthl = 5, statistic = "sum")
Xcov2D Cross-covariance in two spatial dimensions

Description
This function efficiently computes two dimensional cross-covariance of two equal dimensioned
matrices of real numbers using efficient discrete fast Fourier trasforms.

Usage

Xcov2D(mat1, mat2)

Arguments

mat1 a real valued matrix

mat2 a real valued matrix of equal dimension to matl



Xcov2D 31

Details

The algorithm first pads each matrix with zeros so that the outer edges of the matrices do not
interact with one another due to the circular nature of the discrete fast Fourier transform. Cross-
covariance calculations require computation of the complex conjugate of one of the two imput
matrices. Assuming all of it’s elements are real, computing the complex conjugate is equivalent to
flipping the matrix in the horizontal and vertical directions. Then to compute cross-covariance, the
first matrix is convolved with the flipped second matrix as described in the convolution theorem.

This function is called by the main functions that compute displacement fields and vector fields and
is included here primarily for demonstration purposes. Specifically, the method for computing the
magnitude and direction of shifts is demonstrated in the examples.

The shift that produces the maximum cross-covariance between the two input matrices can be ob-
tained by finding the row and column indices associated with the maximum cross-covariance. The
shift in each direction is obtained by subracting one plus the half the dimension of the output matrix
(the same for rows and columns) from the row and column values that are associated with the max-
imum cross-covariance as demonstrated in the examples below. Note that shifts to the right and up
are denoted with positive numbers and shifts to the left and down are denoted by negative numbers.
This is contrary to some conventions but efficient for producing vector fields. For more details on
cross-covariance see cross-correlation.

Value

a real valued matrix showing cross-covariance in each direction

Examples

matrix(c(1:6, rep(@, 3)), nrow = 3); matrix(c(rep(@, 3), 1:6), nrow = 3)
dim(Xcov2D(matrix(c(1:6, rep(@, 3)), nrow = 3),
matrix(c(rep(@, 3), 1:6), nrow = 3)))
ICvectorfields: :GetRowCol
which.max(Xcov2D(matrix(c(1:6, rep(@, 3)), nrow = 3),
matrix(c(rep(@, 3), 1:6), nrow = 3))),
diml = dim(Xcov2D(matrix(c(1:6, rep(@, 3)), nrow = 3),
matrix(c(rep(@, 3), 1:6), nrow = 3)))[1],
dim2 = dim(Xcov2D(matrix(c(1:6, rep(@, 3)), nrow = 3),
matrix(c(rep(@, 3), 1:6), nrow = 3)))[2]
)
# This implies that the shift is 6 - (10/2 + 1) in the vertical
# direction and 7 - (10/2 + 1) in the horizonatal direction.


https://en.wikipedia.org/wiki/Cross-correlation

Index

x datasets
SimData, 27

DispField, 2,4-10, 12, 14, 15, 19, 20, 26, 27,
29

DispFieldbb, 3,4, 6,8, 10, 12-15

DispFieldST, 3,6, 8, 9, 12, 19-21, 26, 27, 29

DispFieldSTall, 3, 7,8, 14, 19-21, 26, 27, 29

DispFieldSThb, 5, 7, 10, 12-14, 21

DispFieldSTbball, 5,9, 11, 12,12, 21

DispMoranslI, 14, 29

DispStats, 29

DispStats (DispMoransI), 14

GetRowCol, 17
MoransI, 18

PatternDetect, 19, 23-26
PixelCt, 20

RastStackData, 21
RooksGradient, 22
RooksNeighCt, 23
RooksNeighFind, 25
RotationDetect, 26

SimData, 27

SubgridMoransI, 29
SubgridStats, 22, 23

SubgridStats (SubgridMoransI), 29

Xcov2D, 3,5,7,9, 12, 14, 30



	DispField
	DispFieldbb
	DispFieldST
	DispFieldSTall
	DispFieldSTbb
	DispFieldSTbball
	DispMoransI
	GetRowCol
	MoransI
	PatternDetect
	PixelCt
	RastStackData
	RooksGradient
	RooksNeighCt
	RooksNeighFind
	RotationDetect
	SimData
	SubgridMoransI
	Xcov2D
	Index

