Package 'ICSsmoothing'

April 17, 2025

Type Package

Title Data Smoothing by Interpolating Cubic Splines

Version 1.2.9

Encoding UTF-8

Description We construct the explicit form of clamped cubic interpolating spline (both uniform - knots are equidistant and non-uniform - knots are arbitrary). Using this form, we propose a linear regression model suitable for real data smoothing.

Depends R (>= 3.5.0), polynom, ggplot2

License GPL-2

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2025-04-16 22:10:01 UTC

Author Juraj Hudak [aut], Csaba Torok [aut], Viliam Kacala [aut], Lubomir Antoni [aut, cre]

Maintainer Lubomir Antoni <lubomir.antoni@upjs.sk>

Contents

RN	2
s_explicit	2
s_explicit_smooth	4
s_unif_explicit	5
s_unif_explicit_smooth	7
licit_spline	8
ecast_demo	9

cics_explicit

ex		12
	tridiag_inv_unif_by_sums	11
	tridiag_inv_general	
	hermite_bf_matrix	

Index

CERN	277 measurements of the cross sections for π^-p collision (nuclear
	physics).

Description

277 measurements of the cross sections for $\pi^- p$ collision (nuclear physics).

Usage

CERN

Format

A data frame with 277 elements.

Source

https://link.springer.com/article/10.1007/BF02683433

cics_explicit	Construct the explicit form of non-uniform clamped interpolating cu-
	bic spline (NcICS).

Description

cics_explicit constructs the explicit form of non-uniform clamped interpolating cubic spline (via Hermite cubic spline) for nodes uu, function values yy and exterior-node derivatives d.

Usage

```
cics_explicit(
    uu,
    yy,
    d,
    clrs = c("blue", "red"),
    xlab = NULL,
    ylab = NULL,
    title = NULL
)
```

cics_explicit

Arguments

uu	a vector of arbitrary nodes (ordered ascendingly), with magnitude n+2, n \geq 1.
уу	a vector of function values pertaining to nodes in uu.
d	a vector of two values of derivative, in the first and the last node of uu.
clrs	a vector of colours that are used alternately to plot the graph of spline's components.
xlab	a title (optional parameter) for the x axis.
ylab	a title (optional parameter) for the y axis.
title	a title (optional parameter) for the plot.

Value

a list with components
 spline_coeffs matrix, whose i-th row contains coefficients of non-uniform ICS's i-th component.
 spline_polynomials list of NcICS's components string representations.
 B 4-element array of (n+1)x(n+4) matrices, whereas element in i-th row and j-th column of 1-th matrix contains coefficient by x^{1-1} of cubic polynomial that is in i-th row and j-th column of matrix B from spline's explicit form

 $S = B.\gamma.$

gamma	$\gamma =$ vector of spline coefficients - function values and exterior-node derivatives that takes part in the explicit form $S = B.\gamma$.	
aux_BF	A basis function of the spline	
aux_tridiag_inverse		
	An inverse of the tridiagonal matrix used for spline derivatives construction	

Examples

```
cics_explicit(
    uu = c(1, 2.2, 3, 3.8, 7),
    CERN$y[1:5],
    d=c(0,-2),
    xlab="X axis",
    ylab="Y axis"
)
uu <- c(0, 1, 4, 6);
yy <- c(4, 5, 2, 1.8);
sp <- cics_explicit(uu, yy, c(1,0))
sp$spline_polynomials
### <~~>
### Spline components' coefficients
explicit_spline(sp$B, sp$gamma)
sp$spline_coeffs == .Last.value
```

cics_explicit_smooth

Smooth given data set by k-component non-uniform clamped interpolating spline (NcICS).

Description

cics_explicit_smooth constructs the non-uniform clamped interpolating spline with k components that smoothes given data set $\{(xx[i],yy[i]), i=1..length(xx)\}$.

Usage

```
cics_explicit_smooth(
    xx,
    yy,
    uu,
    clrs = c("blue", "red"),
    d,
    xlab = NULL,
    ylab = NULL,
    title = NULL
)
```

Arguments

xx	a vector of data set's x-coordinates (that are in increasing order).
уу	a vector of data set's y-coordinates.
uu	a vector of arbitrary nodes, based on which we construct the smoothing spline. uu[1] and $uu[length(uu)]$ must be equal to $xx[1]$ and $xx[length(xx)]$, respectively.
clrs	a vector of colours that are used alternately to plot the graph of spline's compo- nents.
d	a vector (optional parameter) that contains two values of derivative, in the first and the last node from uu. If missing, values of derivative are estimated by given linear regression model. If present, their contribution is removed from linear model and only function values are estimated.
xlab	a title (optional parameter) for the x axis.
ylab	a title (optional parameter) for the y axis.
title	a title (optional parameter) for the plot.

Value

a list with components

```
est_spline_coeffs
```

4-element array of (k)x(k+3) matrices, whereas element in i-th row and j-th of 1-th matrix contains coefficient by x^{1-1} of cubic polynomial, which is in i-th row and j-th column of matrix B from smoothing spline's explicit form

 $S = B.\gamma.$

est_spline_polynomials		
	list of string representations of smoothing NcICS.	
est_gamma	vector of estimated smoothing spline's coefficients (function values and exterior- node derivatives).	
aux_BF	A basis function of the spline	
aux_tridiag_inverse		
	An inverse of the tridiagonal matrix used for spline derivatives construction	
aux_M	An estimation matrix used to compute est_gamma	

Examples

```
cics_explicit_smooth(
xx = CERN$x,
yy = CERN$y,
d = c(0, 1),
uu = c(1, sort(runif(20,1,277)), 277),
xlab = "X axis",
ylab = "Y axis"
)
yy <- c(1, 2, 3, 4, 3, 2, 2, 3, 5, 6, 7, 6, 5, 5, 4, 3, 2, 1, 0)
xx <- c(1:length(yy))</pre>
uu <- c(1,7,10,19)
sp <- cics_explicit_smooth(xx,yy,uu)</pre>
### We can change the derivatives at the end nodes:
sp <- cics_explicit_smooth(xx,yy, uu, d=c(3,-7/10))</pre>
### CERN:
uu <- c(1, 15, 26, 63, 73, 88, 103, 117, 132, 200, 203, 219, 258, 277)
sp <- cics_explicit_smooth(</pre>
  xx = CERN$x,
  yy = CERN$y,
  d = c(1, 0),
  uu
)
```

cics_unif_explicit

Construct the explicit form of uniform clamped interpolating cubic spline (UcICS).

Description

cics_unif_explicit constructs the explicit form of uniform clamped interpolating cubic spline (via Hermite cubic spline) for nodes uu, function values yy and exterior-node derivatives d.

Usage

```
cics_unif_explicit(
    uumin,
    uumax,
    yy,
    d,
    clrs = c("blue", "red"),
    xlab = NULL,
    ylab = NULL,
    title = NULL
)
```

Arguments

uumin	a starting node.
uumax	an ending node.
уу	a vector of function values pertaining to nodes in uu.
d	a vector of two values of derivative, in the first and the last node of uu.
clrs	a vector (optional parameter) of colours that are used alternately to plot the graph of spline's components.
xlab	a title (optional parameter) for the x axis.
ylab	a title (optional parameter) for the y axis.
title	a title (optional parameter) for the plot.

Value

A list of spline components

spline_coeffs matrix, whose i-th row contains coefficients of uniform ICS's i-th component. spline_polynomials

list of UcICS's components string representations.

B 4-element array of (n+1)x(n+4) matrices, whereas element in i-th row and j-th column of 1-th matrix contains coefficient by x^{1-1} of cubic polynomial that is in i-th row and j-th column of matrix B from spline's explicit form

```
S = B.\gamma.
```

gamma $\gamma =$ vector of spline coefficients - function values and exterior-node derivatives that takes part in the explicit form $S = B.\gamma$.

aux_BF A basis function of the spline

aux_tridiag_inverse

An inverse of the tridiagonal matrix used for spline derivatives construction

6

cics_unif_explicit_smooth

Examples

```
yy <- c(4, 5, 2, 1.8);
sp <- cics_unif_explicit(0, 6, yy, c(2, 0.9))
sp$spline_polynomials
### <~~>
### Spline components' coefficients
explicit_spline(sp$B, sp$gamma)
sp$spline_coeffs == .Last.value
```

cics_unif_explicit_smooth

Smooth given data set by k-component uniform clamped interpolating spline (UcICS).

Description

cics_unif_explicit_smooth constructs the uniform clamped interpolating spline with k components that smoothes given data set {(xx[i],yy[i]), i=1..length(xx)}.

Usage

```
cics_unif_explicit_smooth(
    xx,
    yy,
    k,
    clrs = c("blue", "red"),
    d,
    xlab = NULL,
    ylab = NULL,
    title = NULL,
    plotTF = TRUE
)
```

Arguments

xx	a vector of data set's x-coordinates (that are in increasing order).
уу	a vector of datanvidi set's y-coordinates.
k	a chosen number of components of smoothing UcICS (integer ≥ 2).
clrs	a vector of colours that are used alternately to plot the graph of spline's components.
d	a vector (optional parameter) that contains two values of derivative, in the first and the last computed node. If missing, values of derivative are estimated by given linear regression model. If present, their contribution is removed from linear model and only function values are estimated.
xlab	a title (optional parameter) for the x axis.

ylab	a title (optional parameter) for the y axis.
title	a title (optional parameter) for the plot.
plotTF	a boolean value (optional parameter), if TRUE then plot.

Value

a list with components

of 1-th matrix contains coefficient by x^{1-1} of cubic polynomial, which is in i-th row and j-th column of matrix B from smoothing spline's explicit form

 $S = B.\gamma.$

est_spline_polynomials		
	list of string representations of smoothing UcICS.	
est_gamma	vector of estimated smoothing spline's coefficients (function values and exterior- node derivatives).	
aux_BF	A basis function of the spline	
aux_tridiag_inverse		
	An inverse of the tridiagonal matrix used for spline derivatives construction	
aux_M	An estimation matrix used to compute est_gamma	

Examples

```
cp <- cics_unif_explicit_smooth(
xx = CERN$x,
  yy = CERN$y,
  k = 19, #23,
  d = c(1, 0),
  xlab = "X axis",
  ylab = "Y axis"
)
```

explicit_spline	The function computes the coefficients of the cubic polynomials as spline components of the clamped interpolating cubic spline of class (2^{2}) in its explicit form S=B + gamma
	C^2 <i>in its explicit form</i> S=B * gamma.

Description

The function computes the coefficients of the cubic polynomials as spline components of the clamped interpolating cubic spline of class C^2 in its explicit form S=B * gamma.

forecast_demo

Usage

explicit_spline(B, gamma)

Arguments

В	a 4-element array of $(n+1)x(n+4)$ matrices, whereas element in i-th row and j-th column of 1-th matrix contains coefficient by x^{1-1} of cubic polynomial that is in i-th row and j-th column of matrix B from spline's explicit form S=B. gamma.
gamma	a vector of spline coefficients - function values and exterior-node derivatives that takes part in the explicit form $S = B.\gamma$.

Value

a matrix with four columns, whose i-th row contains the coefficients of the splines's i-th component.

Examples

See functions cics_explicit, cics_unif_explicit and the vignette.

forecast_demo Forecasting demo using cics_unif_explicit_smooth.

Description

Forecasting demo using cics_unif_explicit_smooth.

Usage

forecast_demo()

Value

a forecast result

Examples

Plots as well as the process of computation of future derivatives and values using extrapolation. ud <- forecast_demo()</pre> hermite_bf_matrix Construct 4 Hermite basis functions.

Description

hermite_bf_matrix constructs matrix of Hermite basis functions' coefficients on [u,v], that is the matrix of 4 cubic polynomials' coefficients of one-component Hermite cubic spline.

Usage

```
hermite_bf_matrix(u, v)
```

Arguments

u	a left border of interval [u,v].
v	a right border of interval [u,v], $u \le v$.

Value

The matrix of 4 Hermite basis functions' coefficients.

Examples

hermite_bf_matrix(0,1)
hermite_bf_matrix(-2,3)

tridiag_inv_general Construct inverse of a general tridiagonal matrix.

Description

tridiag_inv_general constructs inverse of a general tridiagonal matrix T of order n, using Usmani's theorem.

Usage

```
tridiag_inv_general(T, n)
```

Arguments

Т	a tridiagonal matrix.
n	an order of given tridiagonal matrix.

Value

The inverse of matrix T.

Examples

```
tridiag_inv_general(matrix(c(1, 4, 0, -9), 2, 2), 2)
tridiag_inv_general(matrix(c(1, 3, 5, -2, 0, 8, 7, 6, 6), 3, 3), 3)
```

tridiag_inv_unif_by_sums

Construct inverse of a tridiagonal matrix $T_n(a,b,a)$.

Description

tridiag_inv_unif_by_sums constructs inverse of a regular tridiagonal matrix $T_n(a,b,a)$ with constant entries by a special algorithm using sums of matrix elements.

Usage

```
tridiag_inv_unif_by_sums(n, a, b)
```

Arguments

n	an order of given tridiagonal matrix.
а	a value of tridiagonal matrix elements that are off-diagonal.
b	a value of tridiagonal matrix diagonal elements.

Value

The inverse of matrix T_n(a,b,a).

Examples

```
tridiag_inv_unif_by_sums(5, 1, 4)
tridiag_inv_unif_by_sums(9, 10, -1)
```

Index

* datasets CERN, 2

CERN, 2
cics_explicit, 2
cics_explicit_smooth, 4
cics_unif_explicit, 5
cics_unif_explicit_smooth, 7

explicit_spline, 8

 $\texttt{forecast_demo, 9}$

 $\texttt{hermite_bf_matrix, 10}$

tridiag_inv_general, 10
tridiag_inv_unif_by_sums, 11