Package ‘HospitalNetwork’

January 20, 2025
Type Package
Title Building Networks of Hospitals Through Patients Transfers
Version 0.9.4

Description Set of tools to help interested researchers to build hospital networks
from data on hospitalized patients transferred between hospitals. Methods provided
have been used in Donker T, Wallinga J, Grund-
mann H. (2010) <doi:10.1371/journal.pcbi.1000715>,
and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-
020-71212-6>.

URL https://pascalcrepey.github.io/HospitalNetwork/

BugReports https://github.com/PascalCrepey/HospitalNetwork/issues
License GPL-3

Encoding UTF-8

LazyLoad true

Imports checkmate, igraph, lubridate, R6, ggplot2, ggraph

Depends data.table

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 2.1.0), shiny, shinyWidgets,
shinydashboard, DT, shinyalert, shinyjs, vdiffr, pander, glue,
golem, htmltools

VignetteBuilder knitr
Language en-US
NeedsCompilation no

Author Pascal Crépey [aut, cre, cph],
Tjibbe Donker [aut],
Clément Massonnaud [aut],
Michael Lydeamore [aut]

Maintainer Pascal Crépey <pascal.crepey@ehesp.fr>
Repository CRAN
Date/Publication 2024-12-22 04:30:02 UTC

https://doi.org/10.1371/journal.pcbi.1000715
https://doi.org/10.1038/s41598-020-71212-6
https://doi.org/10.1038/s41598-020-71212-6
https://pascalcrepey.github.io/HospitalNetwork/
https://github.com/PascalCrepey/HospitalNetwork/issues

2

adjust_overlapping_stays

Contents
adjust_overlapping_stays e e e e e e e 2
all_admissions_summary e e e e e 3
checkBase e e e e 4
checkFormat e e e 6
create_fake_subjectDB 7
create_fake_subjectDB_clustered L 8
create_Subject_Stay e e e e e e e 9
edgelist_from_base 9
GEL_DEIWEENNESS v v v vt e e e e e e e e e e e e e e e 11
get_closeness L e e e 12
get_clusters L e e 12
get_degree e 13
get_hubs_bycluster L 13
get_hubs_global 14
get_matrix_bycluster L 14
GEt_MELIICS e e e e 15
HospiNet e 16
hospinet_from_subject_database L 19
matrix_from_base e 21
matrix_from_edgelist 23
per_facility_summary oL 24
Index 25

adjust_overlapping_stays

Check and fix overlapping admissions.

Description

This function checks if a discharge (n) is not later than the next (n+1) admission. If this is the
case, it sets the date of discharge n to date of discharge n+1, and creates an extra record running
from discharge n+1 to discharge n. If the length of stay of this record is negative, it removes it. It
is possible that one pass of this algorithm doesn’t clear all overlapping admissions (e.g. when one
admission overlaps with more than one other admission), it is therefore iterated until no overlapping
admissions are found. Returns the corrected database.

Usage

adjust_overlapping_stays(

report,

maxIteration = 25,
verbose = FALSE,
retainAuxData = TRUE,

all_admissions_summary 3

Arguments

report

maxIteration

verbose

retainAuxData

Value

(list). A list containing the base and in which will be stored reporting vari-
ables. The base is a patient discharge database, in the form of a data.table. The
data.table should have at least the following columns: sID: subjectID (character)
fID: facilityID (character) Adate: admission date (POSIXct, but character can
be converted to POSIXct) Ddate: discharge date (POSIXct, but character can be
converted to POSIXct)

(integer) the maximum number of times the function will try and remove over-
lapping admissions.

(boolean) print diagnostic messages. Default is FALSE.

(boolean) allow retaining additional data provided in the database. Default is
TRUE.

other parameters passed on to internal functions

The corrected database as data.table.

all_admissions_summary

Summary statistics on entire database

Description

Function that extracts summary statistics from entire database

Usage
all_admissions_summary(base, verbose = FALSE, ...)
Arguments
base (data.table). A subject discharge database, in the form of a data.table. The
data.table should have at least the following columns: sID: subjectID (character)
fID: facilityID (character) Adate: admission date (date) Ddate: discharge date
(date)
verbose (boolean) print diagnostic messages. Default is TRUE.
other parameters passed on to internal functions
Value

a list of summary statistics: - meanLOS: The mean length of stay, in days - meanTBA: The mean
time between admissions, in days - totalAdmissions: Total number of admissions (i.e. number of
records in the database) - numSubjects: Number of unique subjects - numFacilities: Number of
unique facilities - LOSdistribution: Distribution of length of stay - TBAdistribution: Distribution of
time between admissions

4 checkBase
Examples
mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)
all_admissions_summary(myBase)
checkBase General check function
Description
Function that performs various checks to ensure the database is correctly formatted, and adjusts
overlapping patient records.
Usage
checkBase(
base,
convertDates = FALSE,
dateFormat = NULL,
deleteMissing = NULL,
deleteErrors = NULL,
subjectID = "sID",
facilityID = "fID",
disDate = "Ddate"”,
admDate = "Adate"”,
maxIteration = 25,
retainAuxData = TRUE,
verbose = TRUE,
)
Arguments
base (data.table). A patient discharge database, in the form of a data.table. The
data.table should have at least the following columns: sID: patientID (character)
fID: facilityID (character) Adate: admission date (POSIXct, but character can
be converted to POSIXct) Ddate: discharge date (POSIXct, but character can be
converted to POSIXct)
convertDates (boolean) indicating if dates need to be converted to POSIXct if they are not
dateFormat (character) giving the input format of the date character string (e.g. "ymd" for
dates like "2019-10-30") See parse_date_time for more information on the
format.
deleteMissing (character) How to handle records that contain a missing value in at least one of

the four mandatory variables: NULL (default): do not delete. Stops the function
with an error message. "record": deletes just the incorrect record. "patient":
deletes all records of each patient with one or more incorrect records.

checkBase 5

deleteErrors (character) How incorrect records should be deleted: "record" deletes just the
incorrect record "patient" deletes all records of each patient with one or more
incorrect records.

subjectID (character) the columns name containing the subject ID. Default is "sID"
facilityID (character) the columns name containing the facility ID. Default is "fID"
disDate (character) the columns name containing the discharge date. Default is "Ddate"
admDate (character) the columns name containing the admission date. Default is "Adate"

maxIteration (integer) the maximum number of times the function will try and remove over-
lapping admissions

retainAuxData (boolean) allow retaining additional data provided in the database. Default is
TRUE.

verbose (boolean) print diagnostic messages. Default is TRUE.

other parameters passed on to internal functions

Value

The adjusted database as a data.table with a new class attribute "hospinet.base" and an attribute
"report" containing information related to the quality of the database.

See Also

parse_date_time

Examples

create a "fake and custom” data base

mydb = create_fake_subjectDB(n_subjects = 100, n_facilities = 100)

setnames(mydb, 1:4, c("myPatientId”, "myHealthCareCenterID"”, "DateOfAdmission”, "DateOfDischarge”))
mydb[,DateOfAdmission:= as.character(DateOfAdmission)]

mydb[,DateOfDischarge:= as.character(DateOfDischarge)]

head(mydb)

myPatientId myHealthCareCenterID DateOfAdmission DateOfDischarge

#1: s001 fo78 2019-01-26 2019-02-01

#2: s002 f053 2019-01-18 2019-01-21

#3: 5002 049 2019-02-25 2019-03-05

#4: $002 033 2019-04-17 2019-04-21

#5: s003 fo45 2019-02-02 2019-02-04

#6: s003 087 2019-03-12 2019-03-19

str(mydb)

#Classes ‘data.table’ and 'data.frame': 262 obs. of 4 variables:

$ myPatientId : chr "s@01" "s002" "s002" "s002" ...

$ myHealthCareCenterID: chr "f@78" "f@53" "f@49" "f@33" ...

$ DateOfAdmission : chr "2019-01-26" "2019-01-18" "2019-02-25" "2019-04-17" ...
$ DateOfDischarge : chr "2019-02-01" "2019-01-21" "2019-03-05" "2019-04-21" ...
#- attr(*, ".internal.selfref”)=<externalptr>

my_checked_db = checkBase(mydb,

6 checkFormat

subjectID = "myPatientId”,
facilityID = "myHealthCareCenterID",
disDate = "DateOfDischarge”,

admDate = "DateOfAdmission”,
convertDates = TRUE,

dateFormat = "ymd")

#Converting Adate, Ddate to Date format
#Checking for missing values...
#Checking for duplicated records...
#Removed @ duplicates

#Done.

head(my_checked_db)

sID fID Adate Ddate

#1: s001 fO78 2019-01-26 2019-02-01

#2: s002 053 2019-01-18 2019-01-21

#3: s002 f049 2019-02-25 2019-03-05

#4: s002 f033 2019-04-17 2019-04-21

#5: s003 045 2019-02-02 2019-02-04

#6: s003 f087 2019-03-12 2019-03-19

str(my_checked_db)

#Classes ‘hospinet.base’, ‘data.table’ and 'data.frame': 262 obs. of 4 variables:
#$ sID : chr "s@01" "s@02" "s002" "s002" ...

#$ fID : chr "f@78" "f@53" "f@49" "f@33" ...

#$ Adate: POSIXct, format: "2019-01-26" "2019-01-18" "2019-02-25" "2019-04-17" ...
#$ Ddate: POSIXct, format: "2019-02-01" "2019-01-21" "2019-03-05" "2019-04-21" ...
...

Show the quality report
attr(my_checked_db, "report")

checkFormat Check database format

Description

Function that performs various generic checks to ensure that the database has the correct format

Usage

checkFormat(report, convertDates = FALSE, dateFormat = NULL, verbose = TRUE)

Arguments

report (list). A list containing the base and in which will be stored reporting vari-
ables. The base is a patient discharge database, in the form of a data.table. The
data.table should have at least the following columns: sID: subjectID (character)
fID: facilityID (character) Adate: admission date (POSIXct, but character can
be converted to POSIXct) Ddate: discharge date (POSIXct, but character can be
converted to POSIXct)

create_fake_subjectDB 7

convertDates (boolean) TRUE/FALSE: whether the dates should converted. Default is TRUE.

dateFormat (boolean) The format of date as a character string (e.g. %y%m%d for 20190524,
or %d-%m-%y for 24-05-2019).
verbose (boolean) print diagnostic messages. Default is FALSE.
Value

Returns either an error message, or the database (modified if need be).

create_fake_subjectDB Create a fake subject database

Description

Create a fake subject database

Usage

create_fake_subjectDB(
n_subjects = 100,
n_facilities = 10,
avg_n_stays = 3,
days_since_discharge = NULL,
length_of_stay = NULL,
start_id_subjects = 1,
start_id_facilities = 1,
with_errors = FALSE

Arguments

n_subjects the number of different subjects in the database
n_facilities the number of facility present in the database

avg_n_stays the average number of stays per subject
days_since_discharge
the number of days between a discharge date and an admission date (default:
max(0, rnorm(1, mean = 30, sd = 10)))
length_of_stay the length of stay (default: max(1, rnorm(l, mean =35, sd =3))
start_id_subjects, start_id_facilities
change starting ids (used for clustered network)

with_errors (boolean) introduce or not random errors in the database. Default to FALSE.

Value

a data.table containing all subjects stays

8 create_tfake_subjectDB_clustered

Examples

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
mydb

create_fake_subjectDB_clustered
Create a fake subject database with clustering

Description

Create a fake subject database with clustering

Usage

create_fake_subjectDB_clustered(
n_subjects = 50,
n_facilities = 10,
avg_n_stays = 3,
days_since_discharge = NULL,
length_of_stay = NULL,
n_clusters = 3

Arguments

n_subjects the number of different subjects in the database
n_facilities the number of facility present in the database

avg_n_stays the average number of stays per subject
days_since_discharge

the number of days between a discharge date and an admission date (default:
max (0, rnorm(1, mean = 30, sd = 10)))

length_of_stay the length of stay (default: max(1, rnorm(l, mean=35,sd=3))

n_clusters the number of cluster in the network

Value

a data.table containing all subjects stays

Examples

mydb <- create_fake_subjectDB_clustered(n_subjects = 100, n_facilities = 10)
mydb

create_subject_stay 9

create_subject_stay Create a fake subject stay

Description

create_subject_stay is an internal function used by create_fake_subjectDB.

Usage

create_subject_stay(
sID,
fID,
last_discharge_date = NULL,
days_since_discharge = NULL,
length_of_stay = NULL

)

Arguments
sID the subject ID
fID the facility ID

last_discharge_date
the last discharge date

days_since_discharge
the number of days since last discharge (default: max(0, rnorm(1, mean = 30, sd

=10)))
length_of_stay the length of stay (default: max(1, rnorm(1l, mean =35, sd = 3))

Value

a one row data.table corresponding to the subject stay.

edgelist_from_base Compute the edgelist of a network from a database of movements
records.

Description

This function computes the edgelist of a network of facilities across which subjects can be trans-
ferred. The edgelist is computed from a database that contains the records of the subjects’ stays in
the facilities.

10

Usage

edgelist_from_base

edgelist_from_base(

base,

window_threshold = 365,

count_option

prob_params
condition = "dates”,
noloops = TRUE,
nmoves_threshold = NULL,

flag_vars

= "successive”,
= c(0.0036, 1/365, 0.128),

NULL,

flag_values = NULL,
FALSE

verbose =

Arguments

base

(data.table) A database of records of stays of subjects in facilities. The table
should have at least the following columns:

* subjectID (character) unique subject identifier

* facilityID (character) unique facility identifier

* admDate (POSIXct) date of admission in the facility

* disDate (POSIXct) date of discharge of the facility

window_threshold

count_option

prob_params

condition

noloops

(integer) A number of days. If two stays of a subject at two facilities occurred
within this window, this constitutes a connection between the two facilities
(given that potential other conditions are met).

non

(character) How to count connections. Options are "successive", "probability"
or "all". See details.

(vector of numeric) Three numerical values to calculate the probability that a
movement causes an introduction from hospital A to hospital B. See Donker
T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715> for
more details. For use with count_option="probability". prob_params[1] is the
rate of acquisition in hospital A (related to LOS in hospital A). Default: 0.0036
prob_params[2] is the rate of loss of colonisation (related to time between ad-
missions). Default: 1/365 prob_params[4] is the rate of transmission to other
patients in hospital B (related to LOS in hospital B). Default: 0.128

(character) Condition(s) used to decide what constitutes a connection. Can be
"dates", "flags", or "both". See details.

(boolean). Should transfers within the same nodes (loops) be kept or set to 0.
Defaults to TRUE, removing loops (setting matrix diagonal to 0).

nmoves_threshold

flag_vars

(numeric) A threshold for the minimum number of subject transfer between two
facilities. Set to NULL to deactivate, default to NULL.

(list) Additional variables that can help flag a transfer, besides the dates of ad-
mission and discharge. Must be a named list of two character vectors which are

get_betweenness

flag_values

verbose

Details

11

the names of the columns that can flag a transfer: the column that can flag a
potential origin, and the column that can flag a potential target. The list must
be named with "origin" and "transfer". Eg: list("origin" = "varl", "target" =
"var2"). See details.

(list) A named list of two character vectors which contain the values of the vari-
ables in flag_var that are matched to flag a potential transfer. The list must
be named with "origin" and "transfer". The character vectors might be of length
greater than one. Eg: list("origin" = c("valuel", "value2"), "target" = c("value2",
"value2")). The values in “origin’ and ’target’ are the values that flag a potential
origin of a transfer, or a potential target, respectively. See details.

TRUE to print computation steps

The edgelist contains the information on the connections between nodes of the network, that is
the movements of subjects between facilities. The edgelist can be in two different formats: long
or aggregated. In long format, each row corresponds to a single movement between two facilities,
therefore only two columns are needed, one containing the origin facilities of a movement, the other
containing the target facilities. In aggregated format, the edgelist is aggregated by unique pairs of
origin-target facilities.

Value

A list of two data.tables, which are the edgelists. One in long format (el_long), and one aggregated
by pair of nodes (el_aggr).

See Also

matrix_from_edgelist, matrix_from_base

Examples

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)
edgelist_from_base(myBase)

get_betweenness

Compute the betweenness centrality

Description

Compute the betweenness centrality

Usage

get_betweenness(graph)

12

Arguments

graph an igraph object

Value

a data.table containing the centrality measure

get_clusters

get_closeness Compute closeness

Description

Compute one or several closeness measure for facility networks.

Usage

get_closeness(graph, modes = "total")
Arguments

graph an igraph object

modes option passed on to igraph::closeness : "out", "in", "all", "total"
Value

a data.table containing the closeness measure

See Also

closeness

get_clusters Compute the clusters

Description

Compute the clusters

Usage

get_clusters(graph, algos, undirected, ...)

get_degree 13

Arguments
graph an igraph object
algos the type of algorithm, single argument describing a cluster function from the
igraph package
undirected either "mutual” or "arbitrary"
other arguments to be passed on to the algorithm
Value

a data.table

get_degree Compute the degree of each nodes in the network

Description

Compute the degree of each nodes in the network

Usage

get_degree(graph, modes = c("in", "out"”, "total"))

Arguments

graph an igraph object

modes the type of degree: "in", "out", "total"
Value

a data.table of nodes degree

get_hubs_bycluster Function computing hub scores of nodes by group

Description

Function computing hub scores of nodes by group

Usage

get_hubs_bycluster(graphs, name, ...)

14 get_matrix_bycluster

Arguments
graphs A list of igraph graphs, one for each group within which the hub scores will be
computed
name [character (1)] The name of grouping variable (used only for naming the column
of the DT)
Optional arguments to be passed to igraph function hits_scores()’
See Also

hits_scores

get_hubs_global Function computing hub scores for each node. If bycluster = TRUE,
hub scores are computed by cluster

Description

Function computing hub scores for each node. If bycluster = TRUE, hub scores are computed by

cluster
Usage
get_hubs_global(graph, ...)
Arguments
graph An igraph graph
other arguments to be passed to igraph function hits_scores()
See Also

hits_scores

get_matrix_bycluster Function returning matrices of transfers within each by clusters

Description

Function returning matrices of transfers within each by clusters

Usage

get_matrix_bycluster(mat, DT, clusters)

get_metrics 15

Arguments
mat The adjacency matrix of the network
DT A data table with at least a column ’node’ and a factor column identifying the
node’s cluster
clusters A unique character vector of the name of the column identifying the nodes’
clusters
get_metrics Compute network metrics
Description

Function computing different network analysis metrics.

Usage

get_metrics(
network,
mode = "directed”,
weighted = TRUE,
transfers = TRUE,

metrics = c("degree”, "closeness”, "clusters"”, "betweenness"),
clusters = c("cluster_fast_greedy”, "cluster_infomap"”),
hubs = "all_clusters”,

n n

options = list(degree = list(modes = c("in", "out”, "total"”)), closeness = list(modes
"total"), betweenness = list(), cluster_fast_greedy = list(undirected = "collapse”),

cluster_infomap = list(undirected = "collapse”), clusters = list(algos =
c("cluster_fast_greedy”, "cluster_infomap"), undirected = "collapse"))

)

Arguments
network the network to analyze. Must be an igraph, HospiNet or a square adjacency
matrix (n*n).

mode either "directed" or "undirected" network measures

weighted TRUE if the network is weighted

transfers TRUE if metrics specific to subject transfers must be computed

metrics list of the metrics to compute

clusters choose between cluster algorithm: cluster_fast_greedy or cluster_infomap

hubs choose between getting hubs from "all_clusters" or "global"

options named list of options to be passed to the igraph functions

16 HospiNet

HospiNet Class providing the HospiNet object with its methods

Description

Class providing the HospiNet object with its methods
Class providing the HospiNet object with its methods

Format

R6: :R6Class object.

Value

Object of R6: :R6Class with methods for accessing facility networks.

Methods

new(edgelist, window_threshold, nmoves_threshold, noloops) This method is used to cre-
ate an object of this class with edgelist as the necessary information to create the network.
The other arguments window_threshold, nmoves_threshold, and noloops are specific to
the edgelist and need to be provided. For ease of use, it is preferable to use the function
hospinet_from_subject_database().

print() This method prints basic information about the object.

plot(type = "matrix”) This method plots the network matrix by default. The argument type can
take the following values:

matrix plot the network matrix,

clustered_matrix identify and plot cluster(s) in the matrix using the infomap algorithm (from
igraph),

degree plot the histogram of the number of neighbors by facility,

circular_network plot the network by clusters using a "spaghetti-like" layout. Only works
when there are at least 2 clusters.

Active bindings
edgelist (data.table) the list of edges (origin, target) and their associated number of movements
(N) (read-only)
edgelist_long (data.table) edgelist with additional information (read-only)
matrix (matrix) the transfer matrix (active binding, read-only)
igraph (igraph) the igraph object corresponding to the network (active binding, read-only)
n_facilities the number of facilities in the network (read-only)
n_movements the total number of subject movements in the network (read-only)

window_threshold the window threshold used to compute the network (read-only)

HospiNet 17

nmoves_threshold the nmoves threshold used to compute the network (read-only)

noloops TRUE if loops have been removed (read-only)

hist_degrees histogram data of the number of connections per facility

LOSPerHosp the mean length of stay for each facility (read-only)

admissionsPerHosp the number of admissions to each facility (read-only)

subjectsPerHosp the number of unique subjects admitted to each facility (read-only)

degrees number of connections for each facilities (total, in, and out)(read-only)

closenesss the closeness centrality of each facility (read-only)

betweennesss the betweenness centrality of each facility (read-only)

cluster_infomap the assigned community for each facility, based on the infomap algorithm (read-
only)

cluster_fast_greedy the assigned community for each facility, based on the greedy modularity
optimization algorithm (read-only)

hubs_global Kleinberg’s hub centrality scores, based on the entire network (read-only)

hubs_infomap same as hubs_global, but computed per community based on the infomap algorithm
(read-only)

hubs_fast_greedy same as hubs_global, but computed per community based on the infomap al-
gorithm (read-only)

metricsTable (data.table) all of the above metrics for each facility (read-only)

Methods

Public methods:

¢ HospiNet$new()

* HospiNet$print()
* HospiNet$plot()
¢ HospiNet$clone()

Method new(): Create a new HospiNet object.
Usage:
HospiNet$new(
edgelist,
edgelist_long,
window_threshold,
nmoves_threshold,
noloops,
prob_params,
fsummary = NULL,
create_MetricsTable = FALSE
)
Arguments:
edgelist Short format edgelist
edgelist_long Long format edgelist

18 HospiNet

window_threshold The window threshold used to compute the network
nmoves_threshold The nmoves threshold used to compute the network
noloops TRUE if loops have been removed

prob_params Currently unused

fsummary A pre-built data.table with the LOSPerHosp, subjectsPerHosp and admissionsPer-
Hosp that don’t need to be recomputed.

create_MetricsTable all of the metrics for each facility

Returns: A new ‘HospiNet* object

Method print(): Prints a basic description of the number of facilities and movements of a
HospiNet object.

Usage:
HospiNet$print ()
Returns: NULL

Method plot(): Plots various representations of the HospiNet network
Usage:
HospiNet$plot(type = "matrix”, ...)
Arguments:

"non "non

type One of "matrix", "degree", "clustered_matrix", "circular network" Choose what you would
like to plot - the connectivity matrix, degree distribution, the clusters, or the network in a
circle.

. Additional arguments to be provided. Only supported for ‘type == ’circular_network*’.

Returns: a ‘ggplot2‘ object

Method clone(): The objects of this class are cloneable with this method.

Usage:
HospiNet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples
mydbsmall <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
hn <- hospinet_from_subject_database(

base = checkBase(mydbsmall),
window_threshold = 10,

count_option = "successive",
condition = "dates”

)

hn

plot(hn)

plot(hn, type = "clustered_matrix")

hospinet_from_subject_database 19

hospinet_from_subject_database
Create HospiNet object from subject database

Description

This function creates a HospiNet object from the database containing subjects stays.

Usage

hospinet_from_subject_database(
base,
window_threshold = 365,
count_option = "successive”,
condition = "dates"”,
prob_params = c(0.0036, 1/365, 0.128),
noloops = TRUE,
nmoves_threshold = NULL,
flag_vars = NULL,
flag_values = NULL,
create_MetricsTable = TRUE,
verbose = FALSE,
shinySession = NULL,

Arguments

base (hospinet.base) A database of records of stays of subjects in facilities. This can
be obtained using the function checkBase.

window_threshold
(numeric) A threshold for the number of days between discharge and admission
to be counted as a transfer. Set to O for same day transfer, default is 365 days.

count_option (character) TODO. Default is "successive".
condition (character) TODO. Default is "dates".

prob_params (vector of numeric) Three numerical values to calculate the probability that a
movement causes an introduction from hospital A to hospital B. See Donker
T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715> for
more details. prob_params[1] is the rate of acquisition in hospital A (related to
LOS in hospital A). Default: 0.0036 prob_params[2] is the rate of loss of coloni-
sation (related to time between admissions). Default: 1/365 prob_params[4] is
the rate of transmission to other patients in hospital B (related to LOS in hospital
B). Default: 0.128

noloops (boolean). Should transfers within the same nodes (loops) be kept or set to 0.
Defaults to TRUE, removing loops (setting matrix diagonal to 0).

20

hospinet_from_subject_database

nmoves_threshold

flag_vars

flag_values

(numeric) A threshold for the minimum number of subject transfer between two
facilities. Set to NULL to deactivate, default to NULL.

(list) Additional variables that can help flag a transfer, besides the dates of ad-
mission and discharge. Must be a named list of two character vectors which are
the names of the columns that can flag a transfer: the column that can flag a
potential origin, and the column that can flag a potential target. The list must
be named with "origin" and "transfer". Eg: list("origin" = "varl", "target" =
"var2"). See details.

(list) A named list of two character vectors which contain the values of the vari-
ables in flag_var that are matched to flag a potential transfer. The list must
be named with "origin" and "transfer". The character vectors might be of length
greater than one. Eg: list("origin" = c("valuel", "value2"), "target" = c("value2",
"value2")). The values in ’origin’ and ’target’ are the values that flag a potential
origin of a transfer, or a potential target, respectively. See details.

create_MetricsTable

verbose

shinySession

Details

(boolean) Should the metrics table be created along with the network. Setting to
FALSE will speed up the results. Default is TRUE.

TRUE to print computation steps
(NULL) internal variable to deal with the progress bar

Additional parameters to be sent to checkBase in case the database has not been
checked yet.

This function will build a HospiNet object from a line-listed subject database. The HospiNet object
has all of the functions stored as active bindings which can be accessed in the usual way. For more
info, see HospiNet. Note that the subject database will need to be run through checkBase before
going into this function.

Value

The function returns a HospiNet object.

See Also

HospiNet

Examples

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)
hospinet_from_subject_database(myBase)

matrix_from_base 21

matrix_from_base Compute the adjacency matrix of a network from a database of move-
ments records.

Description

This function computes the adjacency matrix of a network of facilities across which subjects can be
transferred. The matrix is computed from a database that contains the records of the subjects’ stays
in the facilities. This function is a simple wrapper around the two functions edgelist_from_base,
which computes the edgelist of the network from the database, and matrix_from_edgelist, which
converts the edgelist into the adjacency matrix.

Usage
matrix_from_base(
base,
window_threshold = 365,
count_option = "successive”,
prob_params = c(0.0036, 1/365, 0.128),
condition = "dates"”,

noloops = TRUE,
nmoves_threshold = NULL,
flag_vars = NULL,
flag_values = NULL,
verbose = FALSE

Arguments

base (data.table) A database of records of stays of subjects in facilities. The table
should have at least the following columns:

* subjectID (character) unique subject identifier

* facilityID (character) unique facility identifier

* admDate (POSIXct) date of admission in the facility
* disDate (POSIXct) date of discharge of the facility

window_threshold
(integer) A number of days. If two stays of a subject at two facilities occurred
within this window, this constitutes a connection between the two facilities
(given that potential other conditions are met).

non

count_option (character) How to count connections. Options are "successive", "probability"
or "all". See details.

prob_params (vector of numeric) Three numerical values to calculate the probability that a
movement causes an introduction from hospital A to hospital B. See Donker
T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715> for
more details. For use with count_option="probability". prob_params[1] is the

22

condition

noloops

matrix_from_base

rate of acquisition in hospital A (related to LOS in hospital A). Default: 0.0036
prob_params[2] is the rate of loss of colonisation (related to time between ad-
missions). Default: 1/365 prob_params[4] is the rate of transmission to other
patients in hospital B (related to LOS in hospital B). Default: 0.128

(character) Condition(s) used to decide what constitutes a connection. Can be
"dates", "flags", or "both". See details.

(boolean). Should transfers within the same nodes (loops) be kept or set to 0.
Defaults to TRUE, removing loops (setting matrix diagonal to 0).

nmoves_threshold

flag_vars

flag_values

verbose

Details

(numeric) A threshold for the minimum number of subject transfer between two
facilities. Set to NULL to deactivate, default to NULL.

(list) Additional variables that can help flag a transfer, besides the dates of ad-
mission and discharge. Must be a named list of two character vectors which are
the names of the columns that can flag a transfer: the column that can flag a
potential origin, and the column that can flag a potential target. The list must
be named with "origin" and "transfer". Eg: list("origin" = "varl", "target" =
"var2"). See details.

(list) A named list of two character vectors which contain the values of the vari-
ables in flag_var that are matched to flag a potential transfer. The list must
be named with "origin" and "transfer". The character vectors might be of length
greater than one. Eg: list("origin" = c("valuel", "value2"), "target" = c("value2",
"value2")). The values in “origin’ and "target’ are the values that flag a potential
origin of a transfer, or a potential target, respectively. See details.

TRUE to print computation steps

The edgelist contains the information on the connections between nodes of the network, that is the
movements of subjects between facilities. The edgelist can be in two different formats: long or
aggregated. In long format, each row corresponds to a single movement between two facilities,
therefore only two columns are needed, one containing the origin facilities of a movement, the
other containing the target facilities. In aggregated format, the edgelist is aggregated by unique
pairs of origin-target facilities. Thus, each row corresponds to a unique connection between two fa-
cilities, and the table contains an additional variable which is the count of the number of movements
recorded for the pair. If the edgelist is provided in long format, it will be aggregated to compute the

matrix.

Value

A square matrix, the adjacency matrix of the network.

See Also

edgelist_from_base, matrix_from_edgelist

matrix_from_edgelist

Examples

23

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)
matrix_from_base(myBase)

matrix_from_edgelist Compute the adjacency matrix of a network from its edgelist

Description

Compute the adjacency matrix of a network from its edgelist

Usage

matrix_from_edgelist(

edgelist,
origin_name
target_name
count,
format_long

Arguments

edgelist

origin_name
target_name
count

format_long

Details

"origin”,
"target"”,

FALSE

(data.table) A table containing the edges (or links) of the network, i.e. represent-
ing the movements of subjects between facilities. Either in long format with at
least two columns (origin and target facilities of a link), each row corresponding
to a single movement, or aggregated by unique pairs of origin/target, therefore
with an additional variable for movements count (default). See details.

(character) Column of the origin facilities of the links.
(character) Column of the target facilities of the links.
(character) Column of the counts of movements by unique pair of facilities.

(logical) Whether the edgelist is in long format, with each row corresponding to
a single movement. If TRUE, the edgelist will be aggregated by unique pairs of
facilities to compute the matrix.

The edgelist contains the information on the connections between nodes of the network, that is the
movements of subjects between facilities. The edgelist can be in two different formats: long or
aggregated. In long format, each row corresponds to a single movement between two facilities,
therefore only two columns are needed, one containing the origin facilities of a movement, the
other containing the target facilities. In aggregated format, the edgelist is aggregated by unique
pairs of origin-target facilities. Thus, each row corresponds to a unique connection between two fa-
cilities, and the table contains an additional variable which is the count of the number of movements
recorded for the pair. If the edgelist is provided in long format, it will be aggregated to compute the

matrix.

24 per_facility_summary

Value

A square numeric matrix, the adjacency matrix of the network.

See Also

edgelist_from_base, matrix_from_base

Examples

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)

hospinet <- hospinet_from_subject_database(myBase)
matrix_from_edgelist(hospinet$edgelist, count = "N")

per_facility_summary Function that extracts summary statistics from entire database

Description

Function that extracts summary statistics from entire database

Usage
per_facility_summary(base, verbose = FALSE, ...)
Arguments
base (data.table). A subject discharge database, in the form of a data.table. The
data.table should have at least the following columns: sID: subjectID (character)
fID: facilityID (character) Adate: admission date (date) Ddate: discharge date
(date)
verbose (boolean) print diagnostic messages. Default is TRUE.
other parameters passed on to internal functions
Value

a data table with one row per facility, showing mean LOS, number of subjects, and number of
admissions

Examples

mydb <- create_fake_subjectDB(n_subjects = 100, n_facilities = 10)
myBase <- checkBase(mydb)
per_facility_summary(myBase)

Index

x data
HospiNet, 16

adjust_overlapping_stays, 2
all_admissions_summary, 3

checkBase, 4, 19, 20

checkFormat, 6

closeness, 12
create_fake_subjectDB, 7
create_fake_subjectDB_clustered, 8
create_subject_stay, 9

edgelist_from_base, 9, 21, 22, 24

get_betweenness, 11
get_closeness, 12
get_clusters, 12
get_degree, 13
get_hubs_bycluster, 13
get_hubs_global, 14
get_matrix_bycluster, 14
get_metrics, 15

hits_scores, 14

HospiNet, 16, 20
hospinet_from_subject_database, 19
hospinet_from_subject_database(), 16

matrix_from_base, 11,21, 24
matrix_from_edgelist, 11, 21, 22,23

parse_date_time, 4, 5
per_facility_summary, 24

R6::R6Class, 16

25

	adjust_overlapping_stays
	all_admissions_summary
	checkBase
	checkFormat
	create_fake_subjectDB
	create_fake_subjectDB_clustered
	create_subject_stay
	edgelist_from_base
	get_betweenness
	get_closeness
	get_clusters
	get_degree
	get_hubs_bycluster
	get_hubs_global
	get_matrix_bycluster
	get_metrics
	HospiNet
	hospinet_from_subject_database
	matrix_from_base
	matrix_from_edgelist
	per_facility_summary
	Index

