Package ‘Glarmadillo’

January 20, 2025
Title Solve the Graphical Lasso Problem with 'Armadillo’

Version 1.1.1

Description Efficiently implements the Graphical Lasso algorithm,
utilizing the 'Armadillo’ 'C++' library for rapid computation. This algorithm
introduces an L1 penalty to derive sparse inverse covariance matrices from
observations of multivariate normal distributions. Features include the
generation of random and structured sparse covariance matrices, beneficial
for simulations, statistical method testing, and educational purposes in
graphical modeling. A unique function for regularization parameter selection
based on predefined sparsity levels is also offered, catering to users with
specific sparsity requirements in their models. The methodology for sparse
inverse covariance estimation implemented in this package is based on the
work of Friedman, Hastie, and Tibshirani (2008) <doi:10.1093/biostatistics/kxm045>.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.2.3

Imports stats, Repp (>= 0.12), ReppArmadillo
Depends R (>=3.3)

LinkingTo Rcpp (>=0.12), ReppArmadillo
Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Alessandro Meng [aut, cre]
Maintainer Alessandro Meng <mengfangeng@ruc.edu.cn>
Repository CRAN

Date/Publication 2023-12-15 12:40:09 UTC

Contents

find_lambda_by_sparsity
generate_sparse_cov_matrix

https://doi.org/10.1093/biostatistics/kxm045

2 find_lambda_by_sparsity

generate_specific_shape_sparse_cov_matrix 4
glarmao e 5
Index 7

find_lambda_by_sparsity
Find Optimal Lambda by Sparsity Level

Description

This function performs a grid search over a range of lambda values to identify the lambda that
achieves a desired level of sparsity in the precision matrix estimated by Graphical Lasso. Sparsity
is defined as the proportion of zero elements (excluding the diagonal) in the precision matrix.

Usage

find_lambda_by_sparsity(
S,
lambda_grid,
desired_sparsity,
mtol = 1e-04,
maxIterations = 10000,
1tol = 1e-06

Arguments

s The sample covariance matrix of the data.

lambda_grid A numeric vector of lambda values to be tested in the grid search.

desired_sparsity
The target sparsity level as a proportion of zero elements in the precision matrix.
This should be a value between 0 and 1.

mtol The convergence threshold for Graphical Lasso optimization.
maxIterations The maximum number of iterations for Graphical Lasso optimization.

1tol The tolerance for determining whether elements are considered zero when cal-
culating sparsity.

Value

A list containing the following components: - best_lambda: the lambda value that results in spar-
sity closest to the desired level. - best_sparsity_difference: the smallest difference between
achieved and desired sparsity. - actual_sparsity: a numeric vector of actual sparsity levels for
each lambda tested. - 1ambda_grid: the vector of lambda values tested.

generate_sparse_cov_matrix

Examples

Generate a sparse covariance matrix
values <- c(160, 50)

n <- values[1]

p <- values[2]

s <- generate_sparse_cov_matrix(n, p, standardize = TRUE, sparse_rho = @, scale_power = Q)

Define a sequence of lambda values for the grid search
lambda_find <- c(0.1, 0.2, 0.3, 0.4)

Perform a grid search to find the lambda value
that results in a precision matrix with approximately 80% sparsity
lambda_results <- find_lambda_by_sparsity(s, lambda_find, desired_sparsity = 0.8)

Inspect the optimal lambda value
optimal_lambda <- lambda_results$best_lambda

Inspect the sparsity levels for each lambda tested
sparsity_levels <- lambda_results$actual_sparsity

generate_sparse_cov_matrix
Generate Sparse Covariance Matrix

Description

Generates a sparse covariance matrix with specified dimension and rank. The generated matrix can

be scaled or standardized, and further sparsified based on a given threshold.

Usage

generate_sparse_cov_matrix(
n,
p)
standardize = TRUE,
sparse_rho = 0,
scale_power = @

)
Arguments
n The dimension of the covariance matrix (number of rows and columns).
p The rank of the covariance matrix (number of non-zero eigenvalues). Must be
less than or equal to n.
standardize Logical indicating whether to standardize the matrix, setting this to TRUE over-

rides scale_power and sparse_rho.

4 generate_specific_shape_sparse_cov_matrix

sparse_rho Numeric threshold for enforcing sparsity. Elements with absolute values below
sparse_rho are set to zero.
scale_power The exponent used to scale the matrix elements. Only used if standardize is
FALSE.
Value

A n by n covariance matrix with rank p. If sparse_rho is greater than zero and standardize is
FALSE, elements with absolute values below sparse_rho are set to zero to increase sparsity, while
ensuring that the matrix is at least semi-definite.

Examples

Generate a 10x10 sparse covariance matrix with rank 5
sparse_cov_matrix <- generate_sparse_cov_matrix(n = 10, p = 5)

Generate a sparser matrix with elements below 0.3 set to zero
sparser_cov_matrix <- generate_sparse_cov_matrix(n = 100, p = 50,
sparse_rho = 0.3,
standardize = FALSE)

Generate a standardized matrix
standardized_cov_matrix <- generate_sparse_cov_matrix(n = 100, p = 50, standardize = TRUE)

generate_specific_shape_sparse_cov_matrix
Generate Specific Shape Sparse Covariance Matrix

Description

Generates a covariance matrix and corresponding data matrix (Y) with a specific shape defined
by a given shape matrix (M). This function is particularly useful for simulating data with prede-
fined covariance structures, facilitating the testing of statistical methods such as sparse covariance
estimation.

Usage

generate_specific_shape_sparse_cov_matrix(n, p, M)

Arguments

n The number of variables (rows of Y and dimensions of M).
The number of samples (columns of Y).

The shape matrix used to define the structure of the covariance matrix. Must be
a positive definite square matrix of size n X n.

glarma 5

Value

A list containing two elements: - Y: A n by p data matrix, where each column represents a sample,
and each row represents a variable. - cov_Y: The n by n covariance matrix of the transposed data
matrix Y. This covariance matrix reflects the structure imposed by the shape matrix M.

Examples

Generate a 10x10 specific shape sparse covariance matrix

shape_matrix <- matrix(rnorm(100), 10, 10)

shape_matrix <- shape_matrix %x% t(shape_matrix) # Making it positive definite
result <- generate_specific_shape_sparse_cov_matrix(n = 10, p = 5, M = shape_matrix)
Y <- result$y

cov_Y <- result$cov_Y

glarma Solve Graphical Lasso with Armadillo

Description

This function solves the Graphical Lasso (GLasso) problem using the Armadillo library. GLasso is
a technique used in statistical learning and network analysis to estimate sparse inverse covariance
matrices from observed data.

Usage
glarma(s, rho, mtol = 1e-04, maxIterations = 10000, 1ltol = 1e-06)

Arguments

s A symmetric, positive-definite sample covariance matrix. It should be a square
matrix representing the covariance matrix of the variables.

rho A positive scalar representing the regularization parameter. It controls the spar-
sity level of the inverse covariance matrix.

mtol A numeric value representing the convergence threshold for the main algorithm.
It determines the condition under which the iterative process will stop. Default
is le-4.

maxIterations An integer value specifying the maximum number of iterations allowed for the
algorithm. Default is 10000.

1tol A numeric value representing the convergence threshold for the Lasso solver.
It is used to control the Lasso solving process within the algorithm. Default is
le-6.
Value

Returns a covariance matrix W and a estimated sparse inverse covariance matrix Theta estimated
by solving the Graphical Lasso problem. The sparsity is controlled by the 'rtho’ parameter.

6 glarma

Examples

Generate a sample covariance matrix

s <- matrix(runif(100), nrow = 10)

s <= t(s) %*% s

Solve the Graphical Lasso problem with default parameters

inv_cov_matrix <- glarma(s, rho = 0.1)

Solve with custom convergence thresholds and maximum iterations

inv_cov_matrix <- glarma(s, rho = 0.1, mtol = le-5, maxIterations = 5000, 1tol = 1e-6)

Index

find_lambda_by_sparsity, 2

generate_sparse_cov_matrix, 3

generate_specific_shape_sparse_cov_matrix,
4

glarma, 5

	find_lambda_by_sparsity
	generate_sparse_cov_matrix
	generate_specific_shape_sparse_cov_matrix
	glarma
	Index

