Package ‘GillespieSSA2’

January 20, 2025
Type Package
Title Gillespie's Stochastic Simulation Algorithm for Impatient People
Version 0.3.0

Description A fast, scalable, and versatile framework for
simulating large systems with Gillespie's Stochastic Simulation
Algorithm ('SSA"). This package is the spiritual successor to the
'GillespieSSA' package originally written by Mario Pineda-Krch.
Benefits of this package include major speed improvements (>100x),
easier to understand documentation, and many unit tests that try to
ensure the package works as intended. Cannoodt and Saelens et al. (2021)
<doi:10.1038/s41467-021-24152-2>.

License GPL (>=3)

URL https://rcannood.github.io/GillespieSSA2/,
https://github.com/rcannood/GillespieSSA2

BugReports https://github.com/rcannood/GillespieSSA2/issues
Depends R (>=3.3)

Imports assertthat, dplyr, dynutils, Matrix, methods, purrr, Rcpp (>=
0.12.3), ReppXPtrUtils, readr, rlang, stringr, tidyr

Suggests covr, ggplot2, GillespieSSA, knitr, rmarkdown, testthat (>=
2.1.0)

LinkingTo Rcpp
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.2
NeedsCompilation yes

Author Robrecht Cannoodt [aut, cre] (<https://orcid.org/0000-0003-3641-729X>),
Wouter Saelens [aut] (<https://orcid.org/0000-0002-7114-6248>)

Maintainer Robrecht Cannoodt <rcannood@gmail.com>
Repository CRAN
Date/Publication 2023-01-23 19:20:02 UTC

https://doi.org/10.1038/s41467-021-24152-2
https://rcannood.github.io/GillespieSSA2/
https://github.com/rcannood/GillespieSSA2
https://github.com/rcannood/GillespieSSA2/issues
https://orcid.org/0000-0003-3641-729X
https://orcid.org/0000-0002-7114-6248

2 compile_reactions
Contents
compile_reactions e e e e 2
GillespieSSA2 e 3
ode_ €M e s 5
Plot_ssa L 5
POTt_TEACLIONS . . . v v v v o e e e i e e e e e e e e e e e e e e e e 6
print.SSA_reaction e e e e 6
TEACLION v e e e e e e e e e 7
SSA .t i e e e e e e e e e e 8
ssa_btl . . . e 10
Ssa_etl . . L e 11
SSA_EXACT . v v o e e e e e e e 12
Index 13
compile_reactions Precompile the reactions
Description
By precompiling the reactions, you can run multiple SSA simulations repeatedly without having to
recompile the reactions every time.
Usage
compile_reactions(
reactions,
state_ids,
params,
buffer_ids = NULL,
hardcode_params = FALSE,
fun_by = 10000L,
debug = FALSE
)
Arguments
reactions ‘reaction’ A list of multiple reaction() objects.
state_ids [character] The names of the states in the correct order.
params [named numeric] Constants that are used in the propensity functions.
buffer_ids [character] The order of any buffer calculations that are made as part of the

propensity functions.

hardcode_params

[logical] Whether or not to hardcode the values of params in the compilation
of the propensity functions. Setting this to TRUE will result in a minor sacrifice
in accuracy for a minor increase in performance.

fun_by [integer] Combine this number of propensity functions into one function.
debug [logical] Whether to print the resulting C++ code before compiling.

GillespieSSA2

Value

A list of objects solely to be used by ssa().

* x[["state_change"”]1]: A sparse matrix of reaction effects.

* x[["reaction_ids"]]: The names of the reactions.

* x[["buffer_ids"]]: A set of buffer variables found in the propensity functions.
* x[["buffer_size"]]: The minimum size of the buffer required.

e x[["function_pointers”]]: A list of compiled propensity functions.

* x[["hardcode_params"”]]: Whether the parameters were hard coded into the source code.*

Examples

1000, predators = 1000)
0.01, c3 = 10)

initial_state <- c(prey
params <- c(cl = 10, c2
reactions <- list(

propensity function effects name for reaction
reaction(~cl * prey, c(prey = +1), "prey_up"),
reaction(~c2 * prey * predators, c(prey = -1, predators = +1), "predation”),

reaction(~c3 * predators, c(predators = -1), "pred_down")

compiled_reactions <- compile_reactions(
reactions = reactions,
state_ids = names(initial_state),
params = params

)
out <-
ssa(
initial_state = initial_state,
reactions = compiled_reactions,
params = params,
method = ssa_exact(),
final_time = 5,
census_interval = .001,
verbose = TRUE
)

plot_ssa(out)

GillespieSSA2 GillespieSSA2: Gillespie’s Stochastic Simulation Algorithm for im-
patient people.

4 GillespieSSA2

Description

GillespieSSA2 is a fast, scalable, and versatile framework for simulating large systems with Gille-
spie’s Stochastic Simulation Algorithm (SSA). This package is the spiritual successor to the Gille-
spieSSA package originally written by Mario Pineda-Krch.

Details
GillespieSSA?2 has the following added benefits:

* The whole algorithm is run in Rcpp which results in major speed improvements (>100x). Even
your propensity functions (reactions) are being compiled to Rcpp!

* Parameters and variables have been renamed to make them easier to understand.

* Many unit tests try to ensure that the code works as intended.

The SSA methods currently implemented are: Exact (ssa_exact()), Explicit tau-leaping (ssa_et1()),
and the Binomial tau-leaping (ssa_bt1()).

The stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is a procedure for constructing simulated trajectories
of finite populations in continuous time. If X;(¢) is the number of individuals in population i
(i=1,...,N) at time ¢, the SSA estimates the state vector X(¢) = (X1 (t), ..., Xn(¢)), given that
the system initially (at time ¢() was in state X (¢p) = Xo.

Reactions are single instantaneous events changing at least one of the populations (e.g. birth, death,
movement, collision, predation, infection, etc). These cause the state of the system to change over
time.

The SSA procedure samples the time 7 to the next reaction I2; (j = 1,..., M) and updates the
system state X (¢) accordingly.

Each reaction R; is characterized mathematically by two quantities; its state-change vector v; and
its propensity function a;(x). The state-change vector is defined as v; = (v4,,...,vn;), where
v;; is the change in the number of individuals in population ¢ caused by one reaction of type j. The
propensity function is defined as a;(x), where a;(x)dt is the probability that a particular reaction j
will occur in the next infinitesimal time interval [¢, ¢ + dt].

Contents of this package

* ssa(): The main entry point for running an SSA simulation.

* plot_ssa(): A standard visualisation for generating an overview plot fo the output.
* ssa_exact(), ssa_etl(), ssa_btl(): Different SSA algorithms.

* ode_em(): An ODE algorithm.

e compile_reactions(): A function for precompiling the reactions.

See Also

ssa() for more explanation on how to use GillespieSSA2

ode_em 5

ode_em Euler-Maruyama method (EM)

Description

Euler-Maruyama method implementation of the ODE.

Usage

ode_em(tau = 0.01, noise_strength = 2)

Arguments

tau tau parameter

noise_strength noise_strength parameter

Value

an object of to be used by ssa().

plot_ssa Simple plotting of ssa output

Description

Provides basic functionally for simple and quick time series plot of simulation output from ssa().

Usage

plot_ssa(
ssa_out,
state = TRUE,
propensity = FALSE,
buffer = FALSE,
firings = FALSE,

geom = c("point”, "step")

)

Arguments
ssa_out Data object returned by ssa().
state Whether or not to plot the state values.
propensity Whether or not to plot the propensity values.
buffer Whether or not to plot the buffer values.
firings Whether or not to plot the reaction firings values.

non

geom Which geom to use, must be one of "point”, "step”.

6 print.SSA_reaction

port_reactions Port GillespieSSA parameters to GillespieSSA2

Description

This is a helper function to tranform GillesieSSA-style paramters to GillespieSSA2.

Usage

port_reactions(x@, a, nu)

Arguments
X0 The x0 parameter of GillespieSSA: :ssa().
a The a parameter of GillespieSSA: :ssa().
nu The nu parameter of GillespieSSA: :ssa().
Value

A set of reaction()s to be used by ssa().

Examples

x0 <- c(Y1 = 1000, Y2 = 1000)

a < c("cl*xY1","c2*Y1%Y2" "c3*Y2")

nu <- matrix(c(+1,-1,0,0,+1,-1),nrow=2,byrow=TRUE)
port_reactions(x@, a, nu)

print.SSA_reaction Print various SSA objects

Description

Print various SSA objects

Usage
S3 method for class 'SSA_reaction'
print(x, ...)

S3 method for class 'SSA_method'
print(x, ...)
Arguments

X An SSA reaction or SSA method
Not used

reaction 7

reaction Define a reaction

Description

During an SSA simulation, at any infinitesimal time interval, a reaction will occur with a probability
defined according to its propensity. If it does, then it will change the state vector according to its
effects.

Usage

reaction(propensity, effect, name = NA_character_)

Arguments
propensity [character/formula] A character or formula representation of the propensity
function, written in C++.
effect [named integer vector] The change in state caused by this reaction.
name [character] A name for this reaction (Optional). May only contain characters
matching [A-Za-z@-9_].
Details

It is possible to use "buffer’ values in order to speed up the computation of the propensity functions.
For instance, instead of "(c3 xs1) / (1 +c3 xc1)", it is possible to write "buf = c3 * s1; buf /
(buf + 1) " instead.

Value
[SSA_reaction] This object describes a single reaction as part of an SSA simulation. It contains
the following member values:
e r[["propensity”]]: The propensity function as a character.
* r[["effect”]1]: The change in state caused by this reaction.

* r[["name"]]: The name of the reaction, NA_character_ if no name was provided.

Examples
propensity effect
reaction(~ c1 * si, c(s1 = -1))
reaction(”c2 * s1 * s1", c(sl = -2, s2 = +1))
reaction("buf = ¢3 * s1; buf / (buf + 1)", c(s1 = +2))

8 ssa

ssa Invoking the stochastic simulation algorithm

Description

Main interface function to the implemented SSA methods. Runs a single realization of a predefined

system. For a detailed explanation on how to set up your first SSA system, check the introduction

vignette: vignette("an_introduction”, package = "GillespieSSA2"). If you're transitioning

from GillespieSSA to GillespieSSA2, check out the corresponding vignette: vignette(”converting_from_GillespieSSA
package = "GillespieSSA2").

Usage

ssa(
initial_state,
reactions,
final_time,
params = NULL,
method = ssa_exact(),
census_interval = 0,
stop_on_neg_state = TRUE,
max_walltime = Inf,
log_propensity = FALSE,
log_firings = FALSE,
log_buffer = FALSE,
verbose = FALSE,
console_interval = 1,
sim_name = NA_character_,
return_simulator = FALSE

Arguments

initial_state [named numeric vector] The initial state to start the simulation with.

reactions A list of reactions, see reaction().

final_time [numeric] The final simulation time.

params [named numeric vector] Constant parameters to be used in the propensity
functions.

method [ssa_method]] Which SSA algorithm to use. Must be one of: ssa_exact(),

ssa_btl(), or ssa_etl().

census_interval
[numeric] The approximate interval between recording the state of the system.
Setting this parameter to @ will cause each state to be recorded, and to Inf will
cause only the end state to be recorded.

stop_on_neg_state
[logical] Whether or not to stop the simulation when the a negative value in
the state has occured. This can occur, for instance, in the ssa_et1() method.

ssa

max_walltime [numeric] The maximum duration (in seconds) that the simulation is allowed

to run for before terminated.

log_propensity [logicall] Whether or not to store the propensity values at each census.

log_firings [logical] Whether or not to store number of firings of each reaction between
censuses.

log_buffer [logical] Whether or not to store the buffer at each census.

verbose [logical] If TRUE, intermediary information pertaining to the simulation will

be displayed.

console_interval

sim_name

[numeric] The approximate interval between intermediary information outputs.
[character] An optional name for the simulation.

return_simulator

Details

Whether to return the simulator itself, instead of the output.

Substantial improvements in speed and accuracy can be obtained by adjusting the additional (and
optional) ssa arguments. By default ssa uses conservative parameters (0.a. ssa_exact()) which
prioritise computational accuracy over computational speed.

Approximate methods (ssa_etl() and ssa_btl()) are not fool proof! Some tweaking might be
required for a stochastic model to run appropriately.

Value

Returns a list containing the output of the simulation:

out[["time"]1]: [numeric] The simulation time at which a census was performed.

out[["state”]]: [numeric matrix] The number of individuals at those time points.

out[["propensity”]]: [numeric matrix] If log_propensity is TRUE, the propensity
value of each reaction at each time point.

out[["firings"]1]: [numeric matrix] If log_firings is TRUE, the number of firings be-
tween two time points.

out[["buffer”]]: [numeric matrix] If log_buffer is TRUE, the buffer values at each time
point.

out[["stats”]]: [data frame] Various stats:

$method: The name of the SSA method used.

$sim_name: The name of the simulation, if provided.

$sim_time_exceeded: Whether the simulation stopped because the final simulation time
was reached.

$all_zero_state: Whether an extinction has occurred.

$negative_state: Whether a negative state has occurred. If an SSA method other than
ssa_etl() is used, this indicates a mistake in the provided reaction effects.
$all_zero_propensity: Whether the simulation stopped because all propensity values
are zero.

$negative_propensity: Whether a negative propensity value has occurred. If so, there
is likely a mistake in the provided reaction propensity functions.

10

See Also

time has been reached.

$walltime_elapsed: The duration of the simulation.
$num_steps: The number of steps performed.
$dtime_mean: The mean time increment per step.
$dtime_sd: THe standard deviation of time increments.
$firings_mean: The mean number of firings per step.

GillespieSSA2 for a high level explanation of the package

Examples

initial_state <- c(prey
params <- c(c1 = 10, c2

1000)

1000, predators
0.01, c3 =10)

reactions <- list(

#
reaction(~c1 * prey,
reaction(~c2 * prey * predators, c(prey
reaction(~c3 * predators,

effects
c(prey

propensity function

+1)?
-1, predators

-0,

+1)!
c(predators =

out <-
ssa(

)

initial_state = initial_state,
reactions = reactions,

params = params,

method = ssa_exact(),
final_time = 5,
census_interval = .001,
verbose = TRUE

plot_ssa(out)

$firings_sd: The standard deviation of the number of firings.

ssa_btl

$walltime_exceeded: Whether the simulation stopped because the maximum execution

name for reaction

"prey_up"),
"predation”),
"pred_down")

ssa_btl

Binomial tau-leap method (BTL)

Description

Binomial tau-leap method implementation of the SSA as described by Chatterjee et al. (2005).

Usage

ssa_btl(mean_firings

10)

ssa_etl 11

Arguments

mean_firings A coarse-graining factor of how many firings will occur at each iteration on
average. Depending on the propensity functions, a value for mean_firings will
result in warnings generated and a loss of accuracy.

Value

an object of to be used by ssa().

References

Chatterjee A., Vlachos D.G., and Katsoulakis M.A. 2005. Binomial distribution based tau-leap
accelerated stochastic simulation. J. Chem. Phys. 122:024112. doi: 10.1063/1.1833357.

ssa_etl Explicit tau-leap method (ETL)

Description

Explicit tau-leap method implementation of the SSA as described by Gillespie (2001). Note that this
method does not attempt to select an appropriate value for tau, nor does it implement estimated-
midpoint technique.

Usage

ssa_etl(tau = 0.3)

Arguments

tau the step-size (default 0.3).

Value

an object of to be used by ssa().

References

Gillespie D.T. 2001. Approximate accelerated stochastic simulation of chemically reacting systems.
J. Chem. Phys. 115:1716-1733. doi: 10.1063/1.1378322.

https://doi.org/10.1063/1.1833357
https://doi.org/10.1063/1.1378322

12 ssa_exact

ssa_exact Exact method

Description

Exact method implementation of the SSA as described by Gillespie (1977).

Usage

ssa_exact()

Value

an object of to be used by ssa().

References

Gillespie D.T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
81:2340. doi: 10.1021/j100540a008

https://doi.org/10.1021/j100540a008

Index

compile_reactions, 2
compile_reactions(), 4

GillespieSSA2, 3, 10
GillespieSSA2-package (GillespieSSA2), 3
GillespieSSA::ssa(), 6

ode_em, 5
ode_em(), 4

plot_ssa, 5

plot_ssa(), 4

port_reactions, 6

print.SSA_method (print.SSA_reaction), 6
print.SSA_reaction, 6

reaction, 2,7
reaction(), 2,6, 8

ssa, 8
ssa(),3-6,11, 12
ssa_btl, 10
ssa_btl(),4,8, 9
ssa_etl, 11

ssa_etl(), 4,8, 9
ssa_exact, 12
ssa_exact(), 4,8, 9

13

	compile_reactions
	GillespieSSA2
	ode_em
	plot_ssa
	port_reactions
	print.SSA_reaction
	reaction
	ssa
	ssa_btl
	ssa_etl
	ssa_exact
	Index

