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Model performances
To evaluate the model performances is a often a difficult problem. It is in particular the case when the
studied dynamic is characterized by a high sensitivity to the initial conditions, which is the case of many real
world system (climatic, hydrological, epidemiological, ecological systems, etc.). Indeed, such high sensitivity
lead to the following situation: a small difference in the initial state of the system (real or modeled) can
lead to different trajectories, even for the same governing equations. The consequence of this situation is
that, for slightly different initial conditions, the model simulations may be very different from the observed
measurements, even if the model is very good (or perfect).

One solution to avoid this difficulty is to use the nonlinear invariants for the model validation. Nonlinear
invariants are independent to the initial conditions and are thus well adapted in their design for this purpose.
Three types of nonlinear invariants can be used: dynamical1, geometrical2 and topological3. In their principle,
these invariants can provide powerful measures for validation, calibration etc. Unfortunately, in practice,
these may also have important limitations. One difficulty met with dynamical and geometrical invariants is
that their algorithms are generally quite sensitive to noise and thus difficult to use for a robust validation when
datasets from real world conditions are considered. Moreover, these two invariants correspond to statistical
properties and cannot guarantee that all the dynamical properties are preserved (dynamics characterized by
very different topology can have very similar statistical properties). Topological properties are much richer
because these can provide a detailed description of the dynamical properties based on integers and topological
invariants are less sensitive to noise. At present, their application is mainly adapted to three-dimensional
systems, although attempts have been made to extend their use to higher dimensions4, 5, 6.

Alternative approaches may thus sometimes be preferred, especially when considering real world situations
and noisy time series. Several alternatives of validations are given in reference 7. Model predictability is one
of these alternatives and is based the growth of the forecast error8, 9. The use of the 𝑑𝑀−Ψ distance may be
another alternative solution 10.

1A. Wolf, J. B. Swift, H. L. Swinney, & J. A. Vastano, 1985. Determining Lyapunov exponents from a time series, Physica
D, 16, 285-317.

2P. Grassberger and I. Procaccia, 1983. Characterization of strange attractors, Physical Review Letter, 50, 346-349.
3R. Gilmore, 1998. Topological analysis of chaotic dynamical systems, Review of Modern Physics, 70, 1455-1530.
4R. Gilmore & M. Lefranc, The Topology of Chaos (Wiley, New York), 2002.
5S. Mangiarotti, Modélisation globale et caractérisation topologique de dynamiques environnementales: de l’analyse des

enveloppes fluides et du couvert de surface de la Terre à la caractérisation topolodynamique du chaos, dissertation Habilitation
to Direct Researches, Université de Toulouse, 2014.,

6S. Mangiarotti & C. Letellier, 2015. Topological analysis for designing a suspension of the Hénon map, Physics Letters A,
379, 3069-3074.

7S. Mangiarotti, M. Peyre & M. Huc, 2016. A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–
2016). Chaos, 26, 113112.

8S. Mangiarotti, L. Drapeau & C. Letellier, 2014. Two chaotic global models for cereal crops cycles observed from satellite
in Northern Morocco, Chaos, 24, 023130.,

9S. Mangiarotti, 2015. Low dimensional chaotic models for the plague epidemic in Bombay (1896-1911), Chaos, Solitons &
Fractals, 81(A), 184-196.

10S. Mangiarotti, A.K. Sharma, S. Corgne, L. Hubert-Moy, L. Ruiz, M. Sekhar, Y. Kerr, 2018. Can the global modelling
technique be used for crop classification? Chaos, Solitons & Fractals, 106, 363-378.
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Predictability
One practical way to analyze a model performances is to quantify its forecasting error growth. To do so,
it is necessary to launch a forecast from some known initial conditions and to compare this forecast to the
original time series.

To illustrate the method, the global modelling technique is first applied in order to get an ensemble of models
for which predictability will be tested.

Eight models are here obtained:
sum(outputGPoM$okMod)

## [1] 8
which(outputGPoM$okMod == 1)

## [1] 1 2 3 5 6 7 9 10

For one single initial condition, the forecasting error is defined as:

𝑒(𝑡, ℎ) = 𝑦(𝑡 + ℎ) − 𝑦𝑜𝑏𝑠(𝑡 + ℎ),
with 𝑡 the time at which forecasting is launched, and ℎ the horizon of prediction.

Such a forecasting error 𝑒 can be estimated for one model, starting from one chosen initial state. Model #1
is defined by the following set of equations:
visuEq(outputGPoM$models$model1)

## dX1/dt = 1 X2

## dX2/dt = 1 X3

## dX3/dt = 0.516427583533677 X1 X2

The initial state can be chosen as:
x0 <- head(outputGPoM$filtdata, 1)[1:3]

This model can be integrated numerically, starting from this initial condition x0 using the numicano function,
and providing the prediction 𝑦(𝑡) to be compared to the original time series 𝑦𝑜𝑏𝑠(𝑡).
###############
# forecasting #
###############
outNumi <- numicano(nVar = 3, dMax = 2, Istep = 100, onestep = 0.08,

KL = outputGPoM$models$model7, v0 = x0, method = 'rk4')

plot(outputGPoM$tfilt, outputGPoM$filtdata[,1], xlim = c(0,10),
type='l', main = 'Observed and simulated',
xlab = expression(italic(h)), ylab = expression(italic(y(h))))

t0 = outputGPoM$tfilt[1]
lines(outNumi$reconstr[,1] + t0,outNumi$reconstr[,2], type='l', col = 'red')

nbpt <- length(outNumi$reconstr[,2])
lines(c(-5,30), c(0,0), type='l', col = 'gray')
lines(outNumi$reconstr[,1] + t0, outNumi$reconstr[,2] - outputGPoM$filtdata[1:nbpt,1],

type='l', col = 'green')
legend(0,-4, c("simulated", "observed", "difference"), col=c('red', 'black', 'green'),

lty=1, cex = 0.6)
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Since the system is characterized by a high sensitivity to the initial conditions, forecasting error growth
may depend on the chosen initial states. To get a more general picture of the error growth (here plotted in
green for the chosen initial condition x0), such error should be reestimated several times starting from other
initial states. The aim of the predictab function is to perform these iterations automatically. With this
function, predictability can be applied to these eight models, for an ensemble of Nech initial conditions, and
on prediction horizons of hp steps corresponding here to a time interval of 1.2 (since time sampling of tin
equals 0.08, see upper):
#######################
# test predictability #
#######################
outpred <- predictab(outputGPoM, hp = 15, Nech = 30, selecmod = 9, show = 0)

# manual visualisation of the outputs (e.g. for model 9):
plot(c(outpred$hpE[1], max(outpred$hpE)), c(0,0),

type='l', main = 'Error growth',
xlab = expression(h), ylab = expression(italic(e(h))),
ylim = c(min(outpred$Errmod9), max(outpred$Errmod9)))

for (i in 1:dim(outpred$Errmod9)[2]) {
lines(outpred$hpE, outpred$Errmod9[,i], col = 'green')

}
lines(c(outpred$hpE[1], max(outpred$hpE)), c(0,0), type='l')

# in terms of variance
# manual visualisation of the outputs (e.g. for model 9):
plot(c(outpred$hpE[1], max(outpred$hpE)), c(0,0),

type='l', main = 'Square error growth',
xlab = expression(italic(h)), ylab = expression(italic(e^2) (italic(h))),
ylim = c(0, 0.25*max(outpred$Errmod9)^2))
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for (i in 1:dim(outpred$Errmod9)[2]) {
lines(outpred$hpE, outpred$Errmod9[,i]^2, col = 'green')

}
lines(c(outpred$hpE[1], max(outpred$hpE)), c(0,0), type='l')
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Function predictab can be applied to several models and the forecasted error growth 𝑒(𝑡, ℎ) can also be plot-
ted as a bidimensionnal representation, where the color represents the forecasting error (note that different
palettes are here used for the two plots):
#######################
# test predictability #
#######################
outpred <- predictab(outputGPoM, hp = 15, Nech = 30, selecmod = c(1,9), show = 0)

# manual visualisation of the outputs (e.g. for model 1):
image(outpred$tE, outpred$hpE, t(outpred$Errmod1),

xlab = expression(italic(t)), ylab = expression(italic(h)),
main = expression(italic(e[model1](t,h))))

# (e.g. for model 9):
image(outpred$tE, outpred$hpE, t(outpred$Errmod9),

xlab = expression(italic(t)), ylab = expression(italic(h)),
main = expression(italic(e[model9])(italic(t),italic(h))))
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To have an interpretation of this kind of plot, see reference 11. By default, the predictab function will be
applied to all the unclassified models (that is such as okMod == 1). An overview can also be obtained at a
glance using the default parameterization (that is such as show = 1).
#######################
# test predictability #
#######################
outpred <- predictab(outputGPoM, hp = 15, Nech = 30)

Conclusions
You have reached the end of this tutorial. You should be able now to use most of the tools provided
in the GPoM package. We hope you can enjoy this package when applying it to your favorite data sets.
Two other vignettes are available which aim is to show the robustness of the global modelling under noisy
conditions, subsampling, short lenth time series (in 6 Sensitivity); and to illustrate its performances on
other dynamical systems (in 7 Retromodelling) since the previous tests were performed before almost
exclusively on the same system.

When presenting your results, please kindly quote the appropriate references to refer to the package, and to
the various techniques used (see the introducing vignette GeneralIntro).

11S. Mangiarotti, P. Mazzega, P. Hiernaux, and E. Mougin, 2012. Predictability of vegetation cycles over the semi-arid region
of Gourma (Mali) from forecasts of AVHRR-NDVI signals, Remote Sensing of Environment, 123, 246-257.
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