GPoM : 4 Visualization of the outputs

Sylvain Mangiarotti & Mireille Huc

2023-06-15

Model vizualization

The GPoM package enables to explore large numbers of models in polynomial ODEs form in order to identify
which model can reproduce the observed behaviour. The present vignette aims to explain how to retrieve
the information obtained from the gPoMo function.

In practice, the gPoMo function will generate a list of variables hereafter called outputGPoM:

data("Ross76")

time wector

tin <- Ross76[seq(1, 3000, by = 8), 1]

single time series

data <- Ross76[seq(1, 3000, by = 8), 3]

global modelling

results are put in list outputGPoM

outputGPoM <- gPoMo(data, tin=tin, dMax = 2, nS=c(3), show = 0, method = 'rk4',
nPmin = 3, nPmax = 12, IstepMin = 400, IstepMax = 401)

For Istep = 400 (max: 401), models to test: 10 / 10
Number of unclassified models: 3 / 10

To test the potential of a given model to reproduce the observed dynamics, the numerical integrability of
each model is tested and the resulting behaviour may either diverge, converge to a trivial attractor (fixed
points, periodic cycles) or to a chaotic attractor.

The aim of the present vignette is to show how to have a rapid overview of the models explored or obtained
with the gPoMo function.

In order to keep a memory of the analyzed signal, the data used as an input are kept in $tin (for the
input time) and $inputdata (for the input time series). The filtered version obtained when computing the
derivatives is put in $tfilt (the vector time of the filtered time series which length is lower due to some lost
at the boundaries) and in $filtdata, a matrix with the filtered time series (first column) and its successive
derivatives (second and next columns).

plot data and models time series
plot (outputGPoM$tin, outputGPoM$inputdata,
xlab='t', ylab='y(t)', main = 'Time series', cex=0.4)
lines (outputGPoM$tfiltdata, outputGPoM$filtdatal,1], type='l', col='green')
legend(0,-5, c("original", "filtered"), col=c('black', 'green'),
lty=c(1,NA), pch=c(NA,1), cex = 0.8)

Time series

)) 14 ‘:\ :
(:) o] o L(), (’,)
© _| original ‘%V,;» o 9 (V]
I filtered v V
I I I I I I I
0 S 10 15 20 25 30
t

The original differential phase portrait can thus be plotted as follows:
plot data and models time series

plot (outputGPoM$filtdatal,1], outputGPoM$filtdatal,2], xlab='y'
ylab= expression(dy/dt), main =

'First projection', type = 'l', cex = 0.4)
plot (outputGPoM$filtdatal,1], outputGPoM$filtdatal,3], xlab='y',
ylab= expression(d~2+*y/dt~2), main = 'Second projection', type = 'l', cex = 0.4)

First projection Second projection

q._ —
<+ —
N_
o % o
\o_ ~—
3 S
Y ° 5
-
< | _
| o _|
| | | | | '

Information about the tested models are kept in the other variables: $okMod, $stockoutreg and $models.

Variable $okMod provides information about the obtained numerical integration of all the tested models:
values are chosen equal to zero when the integrated trajectory diverged during the numerical integration,
equal to 1 when the model could not be categorized (meaning that the model is still under categorizing test).

Since we are mainly interested in non-diverging models, these are expected to be detected in the $okMod
parameter such as: $okMod != 0. Note that diverging models may be identified as non-diverging if the
numerical integration was not performed on a sufficiently long duration. The number of $okMod identified
as non-diverging (based on the chosen maximum integration steps IStepMax) is obtained by:

How many models could not be identified as mon—-diverging
sum (outputGPoM$okMod)

[1] 3

The reference numbers of the uncategorized models can be retrieved as follows:

what ts the reference number of these models?
which(outputGPoM$okMod == 1)

[1] 7 9 10

The numerical integration of the tested models is kept in variable $stockoutreg. For example, it can be
plotted for models #7 and #9:

plot data and models time series
plot (outputGPoM$tin, outputGPoM$inputdata,
xlab='t', ylab='y(t)', cex = 0.4, main = 'Model 7')
lines(outputGPoM$tfiltdata, outputGPoM$filtdatal,1], type='l', col='green')
lines(outputGPoM$tout, outputGPoM$stockoutreg$model7[,1], type='1l', col='red')
legend(0,-4.5, c("original", "filtered", "model"), col=c('black', 'green', 'red'),
lty=c(NA,1,1), pch=c(1, NA, NA), cex = 0.6)
#
plot (outputGPoM$tin, outputGPoM$inputdata,
xlab='t', ylab='y(t)', cex = 0.4, main = 'Model 9')
lines(outputGPoM$tfiltdata, outputGPoM$filtdatal,1], type='l', col='green')
lines(outputGPoM$tout, outputGPoM$stockoutreg$model9[,1], type='l', col='red')
legend(0,-4.5, c("original", "filtered", "model"), col=c('black', 'green', 'red'),
lty=c(NA,1,1), pch=c(1, NA, NA), cex = 0.6)

o
o & Q /\
] >] Q) ‘\77
1 [} 9 Q 1 [}
[) 9) o
] [& Q
3 o P 0 ® @
4]] 3]] Q
) ? Y [5 o Q
o] 9 [[)
2 [< [0 o
[] [< 4 [} [b
3 [) S)9 o e
0
Q 0) [4 @
Q [} S [Q] [}
Q]
Py :,7 b $ Q “’7]
— (V]] ‘(,7 o 'Y 9 ? [4 (’,
~ | [} Py Q [q 3
0 L] o o o
[b d [o
[
'y] [S IS Py
Q o [
Q © @] f\;)) -]
Q o o (0 o O Q 9
o p 'Y 1 o [}
4] |4 [+
<t Q é 'Y o o P
| o Py o [“’) P
n ¢
°] L)) 0) ° Py
- P q o [
o original e 4 } 4 o o
filtered o 9 Y o % 9
o 9 o
(o) —— model [N4 o 0
I 0 [2]
Y;

o
9 ° 0 2
[0 1 ° F3 Q9
S o [° [@
P o 0 5 o o
o Q o b [o Q
? [9 [[} o °
0 [Q o 0] b
3 [) b4)9 o 9
9 [o o b $ "’
Q > ¢
Q ¢ © rf:’ [
3 [b F) $ 0
_ ° o 3
T Al] 0 o) 9 %
~— | [’}

y
_4
I
cc°°°oo°

P o 0
) Py o o ? P
¢))] ‘:7 ((77
O original b b 3 bt 3 8
filtered 5 o LI V3
© _| [— model % 8 8 U
I] D

t

In this example, only one iteration of the model test was performed (since IstepMin *2 < IstepMax). As a
consequence, the same initial conditions are used for both filtered data and model reconstruction:
head (outputGPoM$filtdatal1:3], 1)

[1] 1.126608

head (outputGPoM$stockoutreg$model7, 1)

time 1 2 3
[1,] 0 1.126608 0.1110817 -1.438434

(note that $filtdata has one more derivative which was necessary to identify the model parameters).

Original and models phase portraits can also be plotted for comparison as follows:

plot data and models phase portraits
plot (outputGPoM$filtdatal,1], outputGPoM$filtdatal,2], type='l', col='green',
xlab='y', ylab='dy/dt', main = 'Model 7')
lines (outputGPoM$stockoutreg$model7[,1], outputGPoM$stockoutreg$model7[,2],
type='1l', col='red')
legend(0,3.9,c("model", "filtered"), col=c('red', 'green'), lty=c(1,1), cex=0.6)

#
plot (outputGPoM$filtdatal,1], outputGPoM$filtdatal,2], type='l', col='green',
xlab='y', ylab='dy/dt', main = 'Model 9')
lines (outputGPoM$stockoutreg$model9[,1], outputGPoM$stockoutregmodel9[,2],
type='1l', col='red')
legend(0,3.9,c("model", "filtered"), col=c('red', 'green'), lty=c(1,1), cex=0.6)

Model 7 Model 9

< < -
—— model —— model
— filtered — filtered
=
Al Al —
+ +
32 o 32 O —
> >
© ©
Y YV -
T T
[[[[[[[[[[
-6 -4 -2 0 2 -6 -4 -2 0 2
y y

Finally, models coefficients are all kept in the sublist $models. These are separated in $models$mToTest#
where # should be replaced by the model number (the list of the models that were tested with the gPoMo
algorithm) and $models$model# (the list of uncategorized models). In both cases, models coefficients are in a
matrix of dimension pMax * nVar with pMax the maximal number of parameter (see vignette 1 Conventions)
and nVar the number of variables (also called model dimension). The corresponding equations can be edited
directly using the visuEq function as:

nVar <- dim(outputGPoM$models$model7) [2]
pMax <- dim(outputGPoM$models$model7) [1]
dMax <- p2dMax(nVar,pMaxKnown = pMax)

See equations

visuEq(outputGPoM$models$model7, approx = 2)

dX1/dt = 1 X2

dX2/dt = 1 X3

dX3/dt = -2.086 X3 + 0.647 X2 X3 -0.522 X272 -2.747 X1 -0.29 X1 X3 + 0.848 X1 X2
#

visuEq (outputGPoM$models$model9, approx = TRUE)

-0.375 X172

dX1/dt = 1 X2
dX2/dt = 1 X3
dX3/dt = -1.6 -3.1 X3 + 0.8 X2 + 0.9 X2 X3 -0.5 X2"2 -3.6 X1 -0.5 X1 X3 + 1.1 X1 X2 -0.5 X1~

By default, a large number of digits is provided for each parameter. To make its reading easier, this number
can be controlled by using the optional parameter approx = TRUE, the minimum number of digit will be
kept (the same for all the parameters) but keeping all the terms in the polynomial. The number of digits to
add to the minimum number of digits required can also be chosen manually.

The number of terms of each model can be obtained as follows:

for model #7
sum (outputGPoM$models$model7 != 0)

[1] 9

for model #9
sum(outputGPoM$models$model9d != 0)

[1] 11

Since these models have a canonical structure, it may also be interesting to know the number of terms in
the last equation (which polynomial defines the model), such as:

for model #7
colSums (outputGPoM$models$model? != 0)

mToTest
1 1 7

for model #9
colSums (outputGPoM$models$model9 != 0)

mToTest
1 1 9

Finally, to have an overview of the overall outputs of gPoMo at a glance for all the models, the following
command can be used:

HARABHARHBHBH AR BB AR HBAH
automatic #HH##A##AH#HAH
HARABARARURIRBRBAR R HH
visuOutGP (outputGPoM)

Next step

An overview of all the main elements of the global modelling technique and GPoM tools were presented
in the previous vignettes. An illustration of model validation will now be presented in the last vignette 5
Predictability based on the model forecasting performances.

	Model vizualization
	Next step

