Package ‘GPoM’

January 20, 2025

Type Package

Title Generalized Polynomial Modelling

Version 1.4

Date 2023-06-16

Maintainer Mireille Huc <mireille.huc@u-paris2.fr>

Description Platform dedicated to the Global Modelling technique. Its aim
is to obtain ordinary differential equations of polynomial form directly
from time series. It can be applied to single or multiple time series under
various conditions of noise, time series lengths, sampling, etc. This platform
is developped at the Centre d'Etudes Spatiales de la Biosphere (CESBIO),
UMR 5126 UPS/CNRS/CNES/IRD, 18 av. Edouard Belin, 31401 TOULOUSE, FRANCE.
The developments were funded by the French program Les Enveloppes Fluides
et I'Environnement (LEFE, MANU, projets GloMo, SpatioGloMo and MoMu). The
French program Defi InFiNiTi (CNRS) and PNTS are also acknowledged (projects
Crops'IChaos and Musc & SlowFast). The method is described in the article :
Mangiarotti S. and Huc M. (2019) <doi:10.1063/1.5081448>.

License CeCILL-2

LazyData TRUE

RoxygenNote 7.1.1

Depends R (>= 3.6), deSolve, rgl
Imports float

Suggests signal, knitr, rmarkdown
VignetteBuilder knitr

Encoding UTF-8
NeedsCompilation no

Author Sylvain Mangiarotti [aut],
Mireille Huc [cre, aut],
Flavie Le Jean [ctb],
Malika Chassan [ctb],
Laurent Drapeau [ctb],
Institut de Recherche pour le Développement [fnd],
Centre National de la Recherche Scientifique [fnd]

1

https://doi.org/10.1063/1.5081448

2 Contents

Repository CRAN
Date/Publication 2023-06-16 08:10:10 UTC

Contents
GPoM-package 3
allMod_nVar3_dMax2 dataset e 4
allToTest e e e 5
autoGPoMoSearch e 6
autoGPoMoTest e e e e e e 7
bDrvFilt e 10
cano2M . . . L e e 10
combiEq e 11
compDeriv. 13
CONCAL . . . o v v i e i e e e e e e e e e e e e e e e e 14
concatMulTS e e e e 15
d2pMax e 16
data_vignetteIlll dataset. 17
data_vignetteVIdataset 18
data_vignetteVIL dataset 18
derivODE2 e e e e e 19
derivODEWMUItiX e e e e e 19
detectP1limCycl e 21
drvSuce e e e e e 22
extractEq L 24
findAIISets e 25
gloMold e e 26
gPOMo . . . e 29
GSproc e e 34
NDVI . e e e 35
NUMICANO . . . v v v v e o e 36
numiMultiX 39
NUMINOISY .+ .« v v v o e e e e e e e e e e e e e e e e e e e 41
odeBruitMult2 e 44
PIFXCh e e 45
PIFXChP2 e e e e 46
P2dMax . ..o e 46
paramld L. 47
polabs e e e e 48
predictab e 49
PTImEvV e 51
regOrd e e e e 52
TEESEIIES v e e e e e 53
Rossler-1976 dataset e 54
RosYco e e e e e 55
subSysD . . . e 55

SVIITS & o o e 57

GPoM-package 3

testP . . e e 57
TS o e e e 58
TSallMod_nVar3_dMax2 dataset v 59
ViSuUEQ 60
visuOutGP e 61
winProd e 63

Index 64

GPoM-package GPoM package: Generalized Polynomial Modelling
Description

GPoM is a platform dedicated to the Global Modelling technique. Its aim is to obtain deterministic
models of Ordinary Differential Equations from observational time series. It applies to single and to
multiple time series. With single time series, it can be used: to detect low-dimnesional determinism
and low-dimensional (deterministic) chaos. It can also be used to characterize the observed behav-
ior, using the obtained models as a proxy of the original dynamics, as far as the model validation
could be checked. With multiple time series, it can be used: to detect couplings between observed
variables, to infer causal networks, and to reformulate the original equations of the observed sys-
tem (retro-modelling). The present package focuses on models in Ordinary Differential Equations
of polynomial form. The package was designed to model weakly predictable dynamical behaviors
(such as chaotic behaviors). Of course, it can also apply to more of fully predictable behavior,
either linear or nonlinear. Several vignettes are associated to the package which can be used as a
tutorial, and it also provides an overlook of the diversity of applications and at the performances
of the tools. Users are kindly asked to quote the corresponding references when using the package
(see hereafter).

Note

FOR USERS

This package was developped at Centre d’Etudes Spatiales de la Biosphere (Cesbio, UMR 5126,
UPS-CNRS-CNES-IRD, http://www.cesbio.ups-tlse.fr). An important part of the developments
were funded by the French program Les Enveloppes Fluides et I’Environnement (LEFE, MANU,
projets GloMo, SpatioGloMo and MoMu). The French program Défi InFiNiTi (CNRS) and PNTS
are also acknowledged (projects Crops’IChaos and Musc & SlowFast).

If you apply this package to single time series, please quote [6]. If you apply it to multivariate time
series, please quote [10]. If you apply it to infer couplings among time series, please quote [8]. If
you apply it to classification, please quote [11].

HISTORICAL BACKGROUND

The global modelling technique was initiated during the early 1990s [1-3]. It takes its background
from the Theory of Nonlinear Dynamical Systems. Earlier investigations can also be found in the
fields of Electrical Engineering and Statistics but these mainly focused on linear problems [4]. The
approach became applicable to the analysis of real world environmental behaviours by the end of
the 2000s [5-7]. Recent works have shown that the approach could be applied to numerous other
dynamical behaviors [8-10]. Global modelling aims to obtain deterministic models directly from
observed time series.

4 allMod_nVar3 dMax2 data set

Author(s)

Sylvain Mangiarotti, Flavie Le Jean, Malika Chassan, Laurent Drapeau, Mireille Huc.

Maintainer: M. Huc <mireille.huc @u-paris2.fr>

References

[1]J. P. Crutchfield and B. S. McNamara, 1987. Equations of motion from a data series, Complex
Systems. 1, 417-452.

[2] Gouesbet G., Letellier C., 1994. Global vector-field reconstruction by using a multivariate poly-
nomial L2 approximation on nets, Physical Review E, 49 (6), 4955-4972.

[3] C. Letellier, L. Le Sceller, E. Marechal, P. Dutertre, B. Maheu, G. Gouesbet, Z. Fei, and J.
L. Hudson, 1995. Global vector field reconstruction from a chaotic experimental signal in copper
electrodissolution, Physical Review E, 51, 4262-4266.

[4] L. A. Aguirre & C. Letellier, Modeling nonlinear dynamics and chaos: A review, Mathematical
Problems in Engineering, 2009, 238960.

C. Letellier, L. Le Sceller, E. Marechal, P. Dutertre, B. Maheu, G. Gouesbet, Z. Fei, and J. L.
Hudson, 1995. Global vector field reconstruction from a chaotic experimental signal in copper
electrodissolution, Physical Review E 51, 4262-4266.

[5]J. Maquet, C. Letellier, and L. A. Aguirre, 2007. Global models from the Canadian Lynx cycles
as a first evidence for chaos in real ecosystems, Juornal of Mathematical Biology. 55(1), 21-39.

[6] Mangiarotti S., Coudret R., Drapeau L., & Jarlan L., 2012. Polynomial search and global mod-
eling : Two algorithms for modeling chaos, Physical Review E, 86, 046205.

[7] Mangiarotti S., Drapeau L. & Letellier C., 2014. Two chaotic models for cereal crops observed
from satellite in northern Morocco. Chaos, 24(2), 023130.

[8] Mangiarotti S., 2015. Low dimensional chaotic models for the plague epidemic in Bombay
(1896-1911). Chaos, Solitons and Fractals, 81A, 184-186.

[9] Mangiarotti S., Peyre M. & Huc M., A chaotic model for the epidemic of Ebola Virus Disease
in West Africa (2013-2016). Chaos, 26, 113112, 2016.

[10] Mangiarotti S., 2014. Modelisation globale et Caracterisation Topologique de dynamiques
environnementales - de I’analyse des enveloppes fluides et du couvert de surface de la Terre a la
caracterisation topolodynamique du chaos. Habilitation to Direct Research, University of Toulouse
3, France.

[11] Mangiarotti S., Sharma A.K., Corgne S., Hubert-Moy L., Ruiz L., Sekhar M., Kerr Y., Can the
global modelling technique be used for crop classification? Chaos, Solitons & Fractals, in press.

allMod_nVar3_dMax2 data set
Numerical description of a list of eighteen three-dimensional chaotic
sytems (see vignette 7_Retro-Modelling)

Description

A list named al1Mod_nVar3_dMax2 of matrix providing the numerical description of eighteen three-
dimensional chaotic systems:
Lorenz-1963 ($L63), Rossler-1976 ($R76), Burke & shaw 1981 ($BS81), Lorenz-1984 ($L84), Nosé

allToTest 5

& Hooer 1986 ($NH86), Genesio & Tosi 1992 ($GT92), Spott systems 1994 ($SprF, $SprH, $Sprk,
$Spro, $SprP, $SprG, $SprM, $SprQ, $SprsS), Chlouverakis & Sprott 2004 ($CS2004), Li 2007
($L12007) and the Cord system by Aguirre & Letellier 2012 ($Cord2012). Each dynamical system
is provided as a matrix: each column corresponds to one equation, each lines to the polynomial
coefficients which order is following the convetion defined by function poLabs(nVar = 3, dMax =
2).

Usage

allMod_nVar3_dMax2

Format

An object of class 1ist of length 18.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

All the references are provided in vignette 7_retro-modelling.

allToTest A list providing the description of six models tested by the function
autoGPoMoTest.

Description

List of 6 models available for tests (by autoGPoMoTest). Each model ($mToTest1, $mToTest2,
etc.) is provided as a matrix of dimension 10 * 3. Each column corresponds to one equation. The
order of the coefficients follows the conventions defined by poLabs(nVar = 3, dMax = 2).

Usage

allToTest

Format

An object of class 1ist of length 6.

Author(s)

Sylvain Mangiarotti, Mireille Huc

autoGPoMoSearch

Examples

HHHHHHAE

example

HHEHHHHHEHRE

data("allToTest")

6 models are available in this list:
names(allToTest)

The parameter of their formulation (nVar and dMax)
can be retrieved:

nVar <- dim(allToTest$mToTest6)[2]

dMax <- p2dMax(nVar = 3, pMaxKnown = dim(allToTest$mToTest6)[1])
Their equation can be edited as follows:
visuEq(allToTest$mToTest6, nVar, dMax, approx = 2)

autoGPoMoSearch Automatic search of polynomial Equations

Description

This algorithm aims to get an ensemble of possible models which integrability will be tested later
with function autoGPoMoTest. By default, all the terms are considered available (Some of the terms
can be excluded intentionally using the option filterReg). The maximum size of the equation de-
pends on the model dimension nVar, and on the maximum polynomial degree dMax. The algorithm
removes polynomial terms one by one using a leave-one-out method.

Usage
autoGPoMoSearch(
data,
dt,
nVar,
dMax,
dMin = 0,
weight = NULL,
show = 0,
underSamp = NULL,
filterReg = NULL
)
Arguments
data Input Time series: Each column is one time series that corresponds to one vari-
able.
dt Time sampling of the input series.
nVar Number of variables considered in the polynomial formulation.

dMax Maximum degree of the polynomial formulation.

autoGPoMoTest 7

dMin The minimum negative degree of the polynomial formulation (0 by default).

weight A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.

show Provide (2) or not (0-1) visual output during the running process.

underSamp Number of points used for undersampling the data. For undersamp = 1 the com-
plete time series is used. For undersamp = 2, only one data out of two is kept,
etc.

filterReg A vector that specifies the template for the equation structure (for one single

equation). The convention defined by poLabs is used. Value is 1 if the regressor
is available, O if it is not.

Value

A list of two matrices:
$filtMemo describes the selected terms (1 if the term is used, O if not)

$KMemo provides the corresponding coefficients

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

See Also

autoGPoMoTest, gPoMo, findAllSets, poLabs

Examples

Load data
data('RosYco')
Search for potential models
filt = autoGPoMoSearch(RosYco[,2], nVar = 3, dMax = 2,
dt = 1/125, show = 1)
As an example, the equations of the fourth line has the following terms:
poLabs(nVar = 3, dMax = 2)[filt$filtMemo[5,] != 0]
which coefficients correspond to
cbind(filt$kMemo[5,], poLabs(nVar = 3, dMax = 2))[filt$filtMemo[5,] != 0,]

autoGPoMoTest Tests the numerical integrability of models and classify their dynami-
cal regime

Description

Tests the numerical integrability of provided models (these may have been obtained with function
autoGPoMoSearch), and classify these models as Divergent, Fixed Points, Periodic or not Unclas-
sified (potentially chaotic).

8 autoGPoMoTest

Usage
autoGPoMoTest (
data,
nVar,
dMax,
dMin = 0,
tin = NULL,
dt = NULL,
show = 1,
verbose = 1
allKL = allKL,
numValidIC = 1,
weight = NULL,
IstepMin = 10,
IstepMax = 10000,
tooFarThr = 4,
FxPtThr = 1e-08,
LimCyclThr = 1e-06,
method = "rk4"
)
Arguments
data Input Time series: Each column is one time series that corresponds to one vari-
able.
nvar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
dMin The minimum negative degree of the polynomial formulation (0 by default).
tin Input date vector which length should correspond to the input time series.
dt Sampling time of the input time series.
show Provide (2) or not (0-1) visual output during the running process.
verbose Gives information (if set to 1) about the algorithm progress and keeps silent if
set to 0.
allKL A list of all the models $mToTest1, $mToTest2, etc. to be tested. Each model is
provided as a matrix.
numValidIC Line number of the first valid initial conditions, that is, such as weight is not
equal to zero.
weight A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.
IstepMin The minimum number of integration step to start of the analysis (by default
IstepMin = 10).
IstepMax The maximum number of integration steps for stopping the analysis (by default

IstepMax = 10000).

autoGPoMoTest 9

tooFarThr Divergence threshold, maximum value of the model trajectory compared to the
data standard deviation. By default a trjactory is too far if the distance to the
center is larger than four times the variance of the input data.

FxPtThr Threshold used to detect fixed points.
LimCyclThr Threshold used to detect the limit cycle.
method The integration technique used for the numerical integration. By default, the

fourth-order Runge-Kutta method (method = 'rk4') is used. Other methods
such as ode45’ or ’lsoda’ may also be chosen. See package deSolve for de-
tails.

Value

A list containing:

$okMod A vector classifying the models: diverging models (0), periodic models of period-1 (-1),
unclassified models (1).

$okMod A matrix classifying the model variables: diverging variable (0), period-1 variable (-1),
period-2 variable (-2), fixed point variable (2), unclassified models (1).

$coeff A matrix with the coefficients of one selected model

$models A list of all the models to be tested $mToTest1, $mToTest2, etc. and of all selected models
$model1, $model2, etc.

$tout The time vector of the output time series (vector length corresponding to the longest numer-
ical integration duration)

$stockoutreg A list of matrices with the integrated trajectories (variable X1 in column 1, X2 in 2,
etc.) for all the models $model1, $model?2, etc.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

See Also

autoGPoMoSearch, gPoMo, polLabs

Examples

#Example

Load data:

data('RosYco')

Structure choice

data('allToTest')

Test the models

outGPT <- autoGPoMoTest(RosYco, nVar= 3, dMax = 2, dt = 1/125, show=1,
allkL = allToTest, IstepMax = 60)

10 cano2M

bDrvFilt Builds the derivative filter

Description

Build the Savitzky-Golay derivative filter (Savitzky-Golay, 1964).

Usage

bDrvFilt(nDrv, tstep, winL = 9)

Arguments

nDrv The number of derivatives to be computed.

tstep Sampling time.

winL The local window length to be used for computing the derivatives [1].
Value

dFIt A matrix of size (nDrv+1) * winLL

Author(s)

Sylvain Mangiarotti

References

[1] Savitzky, A.; Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry 36 (8), 1627-1639, 1964.

cano2M cano2M : Converts a model in canonical form into a matrix form

Description

Converts the vectorial formulation of canonical models into a matrix formulation (that is, including

explicitely all the equations). For both input, the list of terms follows the convention defined by
polLabs.

Usage

cano2M(nVar, dMax, poly, dMin = @)

combiEq

Arguments

nVar
dMax
poly
dMin

Value

11

The number of variables
The maximum degree allowed in the formulation
A vector of coefficients corresponding to the regressor of the canonical function

The minimum negative degree of the polynomial formulation (0 by default).

Kmod A matrix with nVar columns of the complete description of the equations. The first columns
relates to the canonical part dX1/dt = X2, dX2/dt = X3 etc. and the column is the polynomial term

itself

Author(s)

Sylvain Mangiarotti, Mireille Huc

See Also

drvSucc, gPoMo, polLabs

Examples

A vector of polynomial terms corresponding to a canonical form:
polyTerms <- ¢(0.2,0,-1,0.5,0,0,0,0,0,0)

Convert this vector into a matrix formulation with all the equations:
K <- cano2M(3,2,polyTerms)

Visualize the equations:

visuEq(K, 3,2)

combiEq

combiEq : Combine Equations from different sources

Description

Combines equations of different sources into a single system. During this combination, the poly-
nomial maximal degree can be either imposed or optimized to reduce the model size. All the input
have to follow the convention defined by polLabs.

Usage

combiEq(allKL, eqOrder = NULL, dMaxOut = NULL)

12 combiEq
Arguments
allKL A list of models, each provided as a matrix. A single matrix can also be pro-
vided, it will be transformed into a list containing a single matrix.
eqOrder A list of vector, providing each the equations number (relating to the input mod-
els) to be kept in the output equation system. If not provided, all the equations
are kept. A single matrix can also be provided, it will be transformed into a list
containing a single matrix.
dMaxOut The maximal polynomial degree of the output equation system (if not provided,
this degree is deduced from the input models)
Value

KLout A matrix of the combined model

Author(s)

Sylvain Mangiarotti

See Also

gPoMo, poLabs

Examples

Load models

data(”allMod_nVar3_dMax2")

Display equations of system 1

visuEg(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$NH86, substit = 1)
Display equations of system 2

visuEg(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$R76, substit = 1)
put the two systems in a list

allk <- list()

allK[[1]] <- allMod_nVar3_dMax2$NH86

allK[[2]] <- allMod_nVar3_dMax2$R76

Example 1: reformulate two autonomous system in a single matrix
visuEq(K = allK[[1]], substit = c('u', 'v', 'w"))

visuEq(K = allK[[2]], substit = c('X', 'Y', 'Z'))

Knew <- combiEq(allK)

visuEq(K = Knew, substit = c('u', 'v', 'w', 'X', 'Y', 'Z"))

Example 2

inXnote = list()

inXnote[[11] <- c('u', 'v', 'w")

inXnote[[2]] <- c('X', 'Y', 'Z")

visuEq(K = allK[[1]], substit = inXnote[[1]])
visuEq(K = allK[[2]], substit = inXnote[[2]])
XnoteOut = c('X', 'Y', 'Z', 'u', 'v', 'w")
Knew2 <- combiEq(allK, eqOrder=c(4,5,6,1,2,3))
visuEq(K = Knew2, substit = XnoteOut)

compDeriv 13

Example 3

inXnote = list()

inXnote[[11] <= c('u', 'v', 'w')

inXnote[[2]] <- c('X", "Y', 'Z")

visuEq(K = allK[[1]], substit = inXnote[[1]])

visuEq(K = allK[[2]], substit = inXnote[[2]])

XnoteOut = c('u', 'X', 'v', "Y', 'w', 'Z")

Knew3 <- combiEq(allK, eqOrder=c(1,4,2,5,3,6), dMaxOut = 3)
visuEq(K = Knew3, substit = XnoteOut)

compDeriv Computes the successive derivatives of a time series

Description
Computes the successive derivatives from one single time series, with the Savitzky-Golay approach
(1964).

Usage

compDeriv (TS, nDrv, tstep, winL = 9)

Arguments
TS A single time series provided as a single vector.
nDrv The number of derivatives to be computed from the input series. The resulting
number of outpout time series will thus be nVar = nDrv + 1.
tstep Sampling Time of the input time series TS.
winL The local window length used for computing the derivatives [1-2].
Value

drv A matrix containing the original variable (smoothed by the filtering process) in the first coml-
umn and its nDrv+1 first derivatives in the next columns (note that winL values of the original time
series will be lost both at the begining and the end of the time series due to boundary effect).

Author(s)

Sylvain Mangiarotti

References

[1] Savitzky, A.; Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry 36 (8), 1627-1639, 1964.

[2] Steinier J., Termonia Y., Deltour, J. Comments on smoothing and differentiation of data by sim-
plified least square procedure. Analytical Chemistry 44 (11): 1906-1909, 1972.

14 concat

See Also

gloMold, gPoMo, polLabs

Examples

load data:
data(NDVI)

Compute the derivatives:
drv <- compDeriv(NDVI[,1], nDrv = 3, tstep = 1/125)

concat Concat Concatenates separated time series

Description

The aim of this code is to provide, from a set of multiple time series, a single concatenated time
series for applying the global modeling technique to all the time time series in association.

Usage

concat(svrlTS, winL = 9)

Arguments
svrlTs All separated time series.
winL Total number of points used for computing the derivatives of the input time
series. This parameter will be used as an input in function drvSucc to compute
the derivatives.
Value

concaTS The concatenated time series.

Author(s)

Sylvain Mangiarotti, Mireille Huc

References

S. Mangiarotti, F. Le Jean, M. Huc & C. Letellier, 2016. Global modeling of aggregated and
associated chaotic dynamics, Chaos, Solitons & Fractals, 83, 82-96.

concatMulTS 15

Examples

load data
data("svrlTS")
Concatenate the data set into a single time series
winL = 55
concaTS <- concat(svrlTS, winL = winL)
Plot the concatenated time series
plot(concaTS$sglTS$TS[,1], concaTS$sglTS$TS[, 2],
main = 'Concatenated time series',
xlab 'Time (concatenated)', ylab = 'y(t)',
type = 'l', col = 'gray')
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 1,11,
concaTS$sglTS$TS[concaTS$sglTS$W == 1,21, type = 'p', col = 'green', cex = 0.5)
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 0,11,
concaTS$sglTS$TS[concaTS$sglTS$W == 0,2], type = 'p', col = 'red', cex = 0.5)
lines(concaTS$sglTS$TS[,1], concaTS$sglTS$W, type = '1')

The concatenated data set can be used for global modelling:

GPout1 <- gPoMo(data = concaTS$sglTS$TS[,2], tin = concaTS$sglTS$TS[, 1],
dMax = 2, nS = 3, winL = winL, weight = concaTS$sglTS$W, show = 1,
IstepMin = 10, IstepMax = 6000, nPmin = 11, nPmax = 11, method = 'rk4')

concatMulTS ConcatMulTS Concatenates separated time series (of single or multi-
ples variables)

Description

The aim of this code is to provide, from multiple sets of (single or multiple) time series, a single
concatenated set of time series for applying the global modeling technique to all the time time series
in association.

Usage

concatMulTS(svrlTS, winL = 9)

Arguments
svrlTS All separated sets of time series.
winL Total number of points used for computing the derivatives of the input time
series. This parameter will be used as an input in function drvSucc to compute
the derivatives.
Value

concaTsS A single set of concatenated time series.

16 d2pMax

Author(s)

Sylvain Mangiarotti, Mireille Huc

References

S. Mangiarotti, F. Le Jean, M. Huc & C. Letellier, 2016. Global modeling of aggregated and
associated chaotic dynamics, Chaos, Solitons & Fractals, 83, 82-96.

Examples

load data
data("svrlTS")
Concatenate the data set into a single time series
winL = 55
concaTlS <- concat(svrlTS, winL = winL)
Plot the concatenated time series
plot(concaTS$sglTS$TS[,1], concaTS$sglTS$TS[, 2],
main = 'Concatenated time series',
xlab = 'Time (concatenated)', ylab = 'y(t)',
type = 'l', col = 'gray')
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 1,117,
concaTS$sglTS$TS[concaTS$sglTS$W == 1,21, type = 'p', col = 'green', cex = 0.5)
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 0,11,
concaTS$sglTS$TS[concaTS$sglTS$W == 0,2], type = 'p', col = 'red', cex = 0.5)
lines(concaTS$sglTS$TS[, 1], concaTS$sglTS$W, type = '1")

The concatenated data set can be used for global modelling:

GPout1 <- gPoMo(data = concaTS$sglTS$TS[,2], tin = concaTS$sglTS$TS[,11],
dMax = 2, nS = 3, winL = winL, weight = concaTS$sglTS$W, show = 1,
IstepMin = 10, IstepMax = 6000, nPmin = 11, nPmax = 11, method = 'rk4')

d2pMax Provides the number of polynomial terms pMax given dMax and nVar

Description
Computes the number of polynomial terms pMax used to formulate an equation given the maximal
polynomial degree dMax and the number of variables nVar following the conventions as defined by
fuction polLabs.

Usage

d2pMax(nVar, dMaxKnown, dMin = Q)

data_vignettelll data set 17

Arguments

nVar Number of variables considered in the polynomial formulation.

dMaxKnown The maximum polynomial degree dMax

dMin The minimum negative degree of the polynomial formulation (0 by default).
Value

The number pMax of polynomial terms used to code a polynomial equation

Author(s)

Sylvain Mangiarotti

See Also

gloMoId, gPoMo, polLabs

Examples

SHEHEHARERHE

Example 1

AR

Maximum polynomial degree ?

number of variables:

nVar <- 3

polynomial degree:

dMax <- 3

The maximal polynomial degree used for coding the polynomial is:
d2pMax(nVar, dMax)

data_vignettelIIl data set
Output of the vignette I11_Modelling

Description
To reduce the computation time, the outputs of the simulations presented in vignette VI have been
run beforehand and saved in this file.

Usage

data_vignetteIll

Format

An object of class 1ist of length 12.

18 data_vignette VII data set

Author(s)

Sylvain Mangiarotti, Mireille Huc.

data_vignetteVI data set
Output of the vignette VI_Sensitivity

Description

To reduce the computation time, the outputs of the simulations presented in vignette VI have been
run beforehand and saved in this file.

Usage

data_vignetteVI

Format

An object of class 1ist of length 6.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

data_vignetteVII data set
Output of the vignette VII_Retro-Modelling

Description
To reduce the computation time, the outputs of the simulations presented in vignette VII have been
run beforehand and saved in this file.

Usage

data_vignetteVII

Format

An object of class 1ist of length 29.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

derivODE2 19

derivODE2 A subfonction for the numerical integration of polynomial equations
provided in a generic form following the convetion defined by function
polLabs.
Description

This function provides the one step integration of polynomial Ordinary Differential Equations
(ODE). This function requires the function ode (deSolve package).

Usage
derivODE2(t, x, K, dMin = @, regS = NULL)

Arguments
t All the dates for which the result of the numerical integration of the model must
be provided
Current state vector (input from which the next state will be estimated)
A matrix providing the model description: each column corresponds to one
equation which polynomial organisation is following the convention defined by
function polLabs.
dMin The minimum negative degree of the polynomial formulation (0 by default).
regs Current states of each polynomial terms used in poLabs. These states can be
deduced from the current state vector x (using the function regSeries). When
available, it can be provided as an input to avoid unecessary computation.
Author(s)

Sylvain Mangiarotti

See Also

numicano, numinoisy

derivODEwMultiX deriveODEwMultiX : A Subfonction for the numerical integration of
polynomial equations in the generic form defined by function poLabs
and with External Forcing F(t)

Description

This function provides the one step integration of polynomial Ordinary Differential Equations
(ODE). This function requires the function ode ("deSolve" package). This function has to be run
with the Runge-Kutta method (method = 'rk4’)

20

Usage

derivODEwMultiX

derivODEwMultiX(t, x, K, extF, regS = NULL)

Arguments

t

extF

regS

Value

XXX

Author(s)

All the dates for which the result of the numerical integration of the model will
have to be provided

Current state vector (input from which the next state will be estimated)

is the model: each column corresponds to one equation which organisation is
following the convention given by function poLabs which requires the definition
of the model dimension nVar (i.e. the number of variables) and the maximum
polynomial degree dMax allowed. The last Equation correspond to the forcing
variable that is artificially set to 0.

is the external forcing. It is defined by two columns. The first colomn corre-
spond to time t. The second column to F(t) the forcing at time t. Note that when
launching the integration function ode, the forcing F(t) should be provided with
a sampling time twice the sampling time used in t (because rk4 method will
always use an intermediate time step).

Current states of each polynomial terms used in poLabs. These states can be
deduced from the current state vector x (using function regSeries). When
available, it can be provided as an input to avoid unecessary computation.

Sylvain Mangiarotti

Examples

build a non autonomous model

nVar = 4
dMax = 3

omega = 0.2

gamma = 0.05

KDf=matrix(@, nrow = d2pMax(nVar = nVar, dMax = dMax), ncol = nVar)

KDF[11,1] = 1

KDf[2,2] 1

KDf[5,2] 1

KDf[11,2] = -gamma

KDf[35,2] = -1

KDf[2,3] NA

KDf[2,4] NA

visuEq(K = KDf, substit = c('x', 'y', 'u', 'v'))
#

Prepare the external forcing

number of integration time step

detectP1limCycl 21

Istep <- 500
time step
smpl <- 1/ 20
output time vector
dater <- (@:Istep) * smpl
hald step time vector (for Runge-Kutta integration)
daterdbl <- (@:(Istepx2 + 1)) * smpl / 2
generate the forcing (here variables u and v)
extF = cbind(daterdbl, -0.1 * cos(daterdbl * omega), ©.05 * cos(daterdbl * 16/3*omega))
#
Initial conditions to be used (external variables can be set to 0)
etatInit <- c(-0.616109362 , -0.126882584 , 0, 0)
#
Numerical integration
reconstr2 <- ode(etatInit, dater, derivODEwMultiX,
KDf, extF = extF, method = 'rk4')
Reconstruction of the output
nVarExt <- dim(extF)[2] - 1
reconstr2[, (nVar - nVarExt + 2):(nVar + 1)] <- extF[(0:Istep+1)*2, 2:(nVarExt+1)]

detectP11limCycl Detection of limit cycles of period-1

Description
This algorithm aim to detect period-1 limit cycles from trajectories in the phase sapce considered in
a bidimensional projection.

Usage

detectP11imCycl(data, LimCyclThreshold = 0.01, show = 2)

Arguments
data A matrix of the trajectory in a 2D space (if more than two columns are provided,
only the two first columns are considered)
LimCyclThreshold
The detection threshold
show Indicates the deepness of the feedback (from 0 to 2)
Value

Indicates if a limit cycle is detected (1) or not (0)

Author(s)

Sylvain Mangiarotti

22

See Also

autoGPoMoTest

drvSucc

drvSucc

drvSucc : Computes the successive derivatives of a time series

Description

Computes the successive derivatives from one single time series, using the Savitzky-Golay algo-

rithm (1964).

Usage

drvSucc(tin = NULL, serie, nDeriv, weight = NULL, tstep = NULL, winL = 9)

Arguments
tin
serie
nDeriv
weight

tstep

winL

Value

A list containing:

Input date vector which length should correspond to the input time series.
A single time series provided as a single vector.

The number of derivatives to be computed from the input time series. The re-
sulting number of time series obtained in output will be nDeriv + 1.

A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.

Sampling time of the input time series. Used only if time vector tin is not
provided.

Number (exclusively odd number) of points of the local window used for com-
puting the derivatives along the input time series. The Savitzky-Golay filter is
used for this purpose [1,2].

$serie The original time serie

$tin The time vector containing the dates corresponding to the original time series

$tstep The time step (assumed to be regular)

$tout The time vector of the output series

seriesDeriv A matrix containing the original time series (smoothed by the filtering process) in the
first column and its nDeriv + 1 successive derivatives in the next ones. Note that winL values of the
original time series will be lost, that is (winL - 1)/2 at the begining and (winL - 1)/2 at the end
of the time series due to a computation boundary effect).

Author(s)

Sylvain Mangiarotti, Mireille Huc

drvSucc 23

References

[1] Savitzky, A.; Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry 36 (8), 1627-1639, 1964.

[2] Steinier J., Termonia Y., Deltour, J. Comments on smoothing and differentiation of data by sim-
plified least square procedure. Analytical Chemistry 44 (11): 1906-1909, 1972.

See Also

gloMoId, gPoMo, polLabs, compDeriv

Examples

AR

Example 1

HHHHHHHEEEE

Generate a time series:

tin <- seq(@, 5, by = 0.01)

data <- 2 * sin(5%tin)

dev.new()

oldpar <- par(no.readonly = TRUE)

on.exit(par(oldpar))

par(mfrow = c(3, 1))

Compute its derivatives:

drv <- drvSucc(tin = tin, nDeriv = 2, serie = data, winL = 5)

#

plot original and filtered series

plot(tin, data, type='l', col = 'black', xlab = 't', ylab = 'x(t)")
lines(drv$tout, drv$seriesDeriv[,1], 1ty = 3, 1lwd = 3, col = 'green')
#

analytic 1st derivative

firstD <- 10 * cos(5 * tin)

plot both

plot(tin, firstD, type = 'l', col = 'black', xlab = 't', ylab = 'dx/dt")
lines(drv$tout, drv$seriesDeriv[,2], 1ty = 3, lwd = 3, col = 'green')
#

analytic 2nd derivative

scdD <- -50 * sin(5 * tin)

plot both

plot(tin, scdD, type = '1', col = 'black', xlab = 't', ylab = 'd2x/dt2")
lines(drv$tout, drv$seriesDeriv[,3], 1ty=3, 1lwd = 3, col = 'green')

HHHHHHHEEEE

Example 2
WA

load data:
data("Ross76")

tin <- Ross76[,1]
data <- Ross76[,2]

Compute the derivatives
drvOut <- drvSucc(tin, data, nDeriv=4)

24

extractEq

dev.new()
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = c(3, 1))
original and smoothed variable:
plot(drvOut$tin, drvOut$serie,

type='p', cex = 1, xlab = 'time', ylab = 'x(t)')
lines(drvOut$tout, drvOut$seriesDeriv[,1], type='p', col='red')
lines(drvOut$tout, drvOut$seriesDeriv[,1], type='l', col='red')
1st derivative:
plot(drvOut$tout, drvOut$seriesDeriv[,2],

type='p', col="red', xlab = 'time', ylab = 'dx(t)/dt"')
lines(drvOut$tout, drvOut$seriesDeriv[,2], type='l', col='red')
2nd derivative:
plot(drvOut$tout, drvOut$seriesDeriv[,3],

type='p', col='red', xlab = 'time', ylab = 'd2x(t)/dt2')
lines(drvOut$tout, drvOut$seriesDeriv[,3], type='l', col='red')

extractEq extractEq : Extracts Equations from one system

Description

Combines equations of different sources into a single system. During this combination, the poly-
nomial maximal degree can be either imposed or optimized to reduce the model size. All the input
have to follow the convention defined by poLabs.

Usage

extractEq(KL, eqgVect)

Arguments
KL A model, provided as a matrix.
eqVect A vector of integers, providing the equations numbers to be kept in the output
equation system.
Author(s)

Mireille Huc

findAllSets 25

findAllSets Find all possible sets of equation combinations considering an ensem-
ble of possible equation.

Description

For each equation to be retrieved, an ensemble of potential formulation is given. For instance, if
three possible formulations are provided for equation (1), one for equation (2) and two for equation
(3). In this case, six (i.e. 3*1*2) possible sets of equations can be obtained from these potential
formulations. The aim of this program is to formulate all the potential systems from the individual
formulations provided of the individual equations.

Usage

findAllSets(allFilt, nS = c(3), nPmin = 1, nPmax = 14)

Arguments
allFilt A list with: (1) A matrix al1Filt$Xi of possible formulations for each equation
(corresponding to variable Xi); And (2) a vector allFilt$Npi providing the
number of polynomial terms contained in each formulation.
nS A vector providing the number of dimensions used for each input variables
(see Examples 1 and 2). The dimension of the resulting model will be nVar
=sum(nS).
nPmin Corresponds to the minimum number of parameters (and thus of polynomial
term) allowed.
nPmax Corresponds to the maximum number of parameters (and thus of polynomial)
allowed.
Value

SetsNp A list of two matrices $Sets A matrix defining all the sets the equation combination (each
line provides a combination, for instance, a line with 1,2,2 means the first equation of allFilt$X1, the
second one of allFilt$X2 and the second one of allFilt$X3) $Np A matrix providing the number of
parameters of all equation combination (each line provides the number of parameter of the selected
equations)

Author(s)

Sylvain Mangiarotti

See Also

autoGPoMoSearch

26 gloMold

Examples

HHHHHHHEHEEE
Example 1
HHHHHHHEE
We build an example
allFilt <- list()
For equation 1 (variable X1)
allFilt$Npl <- 1 # only one formulation with one single parameter
For equation 2 (variable X2)
allFilt$Np2 <- c(3, 2) # two potential formulations, with respectively three and four parameters
For equation 3 (variable X3)
allFilt$Np3 <- c(4, 2) # two potential formulations, with respectively two and four parameters
Formulations for variables Xi:
For X1:
allFilt$X1 <- t(as.matrix(c(0,0,0,1,0,0,0,0,0,0)))
For X2:
allFilt$X2 <- t(matrix(c(0,-0.85,0,-0.27,0,0,0,0.46,0,0,
0,-0.64,0,0,0,0,0,0.43,0,0),
ncol=2, nrow=10))
For X3:
allFilt$X3 <- t(matrix(c(@, ©.52, 0, -1.22e-05, 0, 0, 0.99, 5.38e-05, 0, 0,
9, 0.52, 0, 0, @, 9, 0.99, 0, 0, 0),
ncol=2, nrow=10))
From these individual we can retrieve all possible formulations
findAllSets(allFilt, nS=c(3), nPmin=1, nPmax=14)
if only formulations with seven maximum number of terms are expected:
findAllSets(allFilt, nS=c(3), nPmin=1, nPmax=7)

gloMoId Global Model Identification

Description

Algorithm for global modelling in polynomial and canonical formulation of Ordinary Differential
Equations. Univariate Global modeling aims to obtain multidimensional models from single time
series (Gouesbet & Letellier 1994, Mangiarotti et al. 2012). An example of such application can
be found in Mangiarotti et al. (2014) For a multivariate application, see GPoMo (Mangiarotti 2015,
Mangiarotti et al. 2016).

Example:

For a model dimension nVar=3, the global model will read:
dX1/dt = X2

dX2/dt = X3

dX3/dt = P(X1,X2,X3).

gloMold

Usage

gloMoId(
series,
tin = NULL,
dt = NULL,
nVar = NULL,
dMax = 1,
dMin = 0,

27

weight = NULL,

show = 1,

filterReg = NULL,

winL = 9

Arguments

series

tin

dt
nVar
dMax
dMin
weight

show

filterReg

winL

Value

The original data set: either a single vector corresponding to the original vari-
able; Or a matrix containing the original variable in the first column and its
successive derivatives in the next columns. In the latter case, for the construc-
tion of n-dimensional model, series should have nV ar + 1 columns since one
more derivative will be necessary to identify the model parameters. Variable
nVar will be set equal to n. In the former case, that is when only a single vector
is provided, the derivatives will be automatically recomputed. Therefore, the
dimension nVar expected for the model has to be provided.

Input date vector which length should correspond to the input time series.
Sampling time of the input time series.

Number of variables considered in the polynomial formulation.

Maximum degree of the polynomial formulation.

The minimum negative degree of the polynomial formulation (0 by default).

A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.

Provide (2) or not (0-1) visual output during the running process.

A vector that specifies the template for the equation structure (for one single
equation). The convention defined by poLabs is used. Value is 1 if the regressor
is available, O if it is not.

Total number of points used for computing the derivatives of the input time
series. This parameter will be used as an input in function drvSucc to compute
the derivatives.

A list of five elements :

$init The original time series and the successive derivatives used for the modeling.

28

gloMold

$filterReg The structure of the output model. Value is 1 if the regressor is available, 0 if it is not.
The terms order is given by function poLabs.

$K Values of the identified coefficients corresponding to the regressors defined in filterReg.
$resTot The variance of the residual signal of the model.
$resSsMod The variance of the residual signal of the closer submodels.

$finalWeight Weighting series after boundary values were removed.

Author(s)

Sylvain Mangiarotti, Laurent Drapeau, Mireille Huc

References

[1] Gouesbet G., Letellier C., Global vector-field reconstruction by using a multivariate polynomial
L2 approximation on nets, Physical Review E, 49 (6), 4955-4972, 1994.

[2] Mangiarotti S., Coudret R., Drapeau L., & Jarlan L., Polynomial search and global modeling :
Two algorithms for modeling chaos, Physical Review E, 86, 046205, 2012.

[3] Mangiarotti S., Drapeau L. & Letellier C., Two chaotic models for cereal crops observed from
satellite in northern Morocco. Chaos, 24(2), 023130, 2014.

[4] Mangiarotti S., Low dimensional chaotic models for the plague epidemic in Bombay (1896-
1911), Chaos, Solitons & Fractals, 81(A), 184-196, 2015.

[5] Mangiarotti S., Peyre M. & Huc M., A chaotic model for the epidemic of Ebola Virus Disease
in West Africa (2013-2016). Chaos, 26, 113112, 2016.

See Also

gPoMo, autoGPoMoSearch, autoGPoMoTest, poLabs

Examples

HHHHHHHEHEEE

Example 1
W

load data
data("Ross76")

tin <- Ross76[,1]
data <- Ross76[,2:3]

Polynomial identification
reg <- gloMoId(data[@:500,2], dt=1/100, nVar=2, dMax=2, show=0)

W
Example 2

gPoMo 29

SHEFHEHHHHHEE
load data
data(NDVI)

Definition of the Model structure
terms <- ¢(1, @0, 0, 0, 1, 1,1, 1,0, 1,1, 1,0, 1,1, 1,1, 1,1, 1)
poLabs(3,3)[terms==1]
reg <- gloMoId(NDVI [,1:1], dt=1/125, nVar=3, dMax=3,
show=0, filterReg=terms==1)

SR

Example 3

HHHHHHHAHEEE

load data

data("Ross76")

time vector

tin <- Ross76[1:500,1]

single time series

series <- Ross76[1:500,3]

some noise is added

series[1:100] <- series[1:100] + 0.01 * runif(1:100, min = -1, max = 1)
series[301:320] <- series[301:320] + ©0.05 * runif(1:20, min = -1, max = 1)
weighting function

W <- tin x @ + 1

WL1:100] <- @ # the first hundred values will not be considered
W[301:320] <- @ # twenty other values will not be considered either
reg <- gloMoIld(series, dt=1/100, weight = W, nVar=3, dMax=2, show=1)
visuEq(reg$K, 3, 2, approx = 4)

first weight which value not equal to zero:

i1 = which(reg$finalWeight == 1)[1]

vO <- reg$init[il1,1:3]

reconstr <- numicano(nVar=3, dMax=2, Istep=5000, onestep=1/250, PolyTerms=reg$K,
v0=v@, method="ode45")
plot(reconstr$reconstr[,2], reconstr$reconstr[,3], type='1l"', lwd = 3,
main='phase portrait', xlab="'time t', ylab = 'x(t)', col='orange')
original data:
lines(reg$init[,1], reg$init[,2], type='1l",
main='phase portrait', xlab='x", ylab = 'dx/dt', col='black')
initial condition
lines(ve[1], vo[2], type = 'p', col = 'red")

gPoMo Generalized Polynomial Modeling

30 gPoMo

Description

Algorithm for a Generalized Polynomial formulation of multivariate Global Modeling. Global mod-
eling aims to obtain multidimensional models from single time series [1-2]. In the generalized
(polynomial) formulation provided in this function, it can also be applied to multivariate time series
[3-4].

Example:
Note that nS provides the number of dimensions used from each variable

case I

For nS=c(2, 3) means that 2 dimensions are reconstructed from variable 1: the original variable X1
and its first derivative X2), and 3 dimensions are reconstructed from variable 2: the original variable
X3 and its first and second derivatives X4 and X5. The generalized model will thus be such as:

dX1/dt = X2
dX?2/dt = P1(X1,X2, X3, X4, X5)
dX3/dt = X4
dX4/dt = X5

dX5/dt = P2(X1,X2, X3, X4, X5).

case II

For nS=c(1,1,1,1) means that only the original variables X1, X2, X3 and X4 will be used. The
generalized model will thus be such as:

dX1/dt = P1(X1, X2,X3, X4)

dX2/dt = P2(X1,X2,X3,X4)
dX3/dt = P3(X1,X2,X3,X4)
dX4/dt = P4(X1,X2,X3, X4).
Usage

gPoMo (

data,

tin = NULL,

dtFixe = NULL,

dMax = 2,

dMin = 0,

nS = c(3),

winL = 9,

weight = NULL,

show = 1,

verbose = 1,
underSamp = NULL,
EqS = NULL,

AndManda = NULL,
OrMandaPerEq = NULL,

IstepMin = 2,
IstepMax = 2000,
nPmin = 1

nPmax = 14,

gPoMo 31

tooFarThr = 4,
FxPtThr = 1e-08,
LimCyclThr = 1e-06,
nPminPerkEq = 1,
nPmaxPerEq = NULL,
method = "rk4"

)
Arguments

data Input Time series: Each column is one time series that corresponds to one vari-
able.

tin Input date vector which length should correspond to the input time series.

dtFixe Time step used for the analysis. It should correspond to the sampling time of the
input data. Note that for very large and very small time steps, alternative units
may be used in order to stabilize the numerical computation.

dMax Maximum degree of the polynomial formulation.

dMin The minimum negative degree of the polynomial formulation (0 by default).

nS A vector providing the number of dimensions used for each input variables
(see Examples 1 and 2). The dimension of the resulting model will be nVar
=sum(nS).

winL Total number of points used for computing the derivatives of the input time
series. This parameter will be used as an input in function drvSucc to compute
the derivatives.

weight A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.

show Provide (2) or not (0-1) visual output during the running process.

verbose Gives information (if set to 1) about the algorithm progress and keeps silent if
set to 0.

underSamp Number of points used for undersampling the data. For undersamp = 1 the com-
plete time series is used. For undersamp = 2, only one data out of two is kept,
etc.

EqS Model template including all allowed regressors. Each column corresponds to
one equation. Each line corresponds to one polynomial term as defined by func-
tion polabs.

AndManda AND-mandatory terms in the equations (all the provided terms should be in the

equations).

OrMandaPerEq OR-mandatory terms per equations (at least one of the provided terms should be
in each equation).

IstepMin The minimum number of integration step to start of the analysis (by default
IstepMin = 10).

IstepMax The maximum number of integration steps for stopping the analysis (by default
IstepMax = 10000).

32 gPoMo
nPmin Corresponds to the minimum number of parameters (and thus of polynomial
term) allowed.
nPmax Corresponds to the maximum number of parameters (and thus of polynomial)
allowed.
tooFarThr Divergence threshold, maximum value of the model trajectory compared to the
data standard deviation. By default a trjactory is too far if the distance to the
center is larger than four times the variance of the input data.
FxPtThr Threshold used to detect fixed points.
LimCyclThr Threshold used to detect the limit cycle.
nPminPerEq Corresponds to the minimum number of parameters (and thus of polynomial
term) allowed per equation.
nPmaxPerEq Corresponds to the maximum number of parameters (and thus of polynomial)
allowed per equation.
method The integration technique used for the numerical integration. By default, the
fourth-order Runge-Kutta method (method = 'rk4') is used. Other methods
such as ode45’ or ’lsoda’ may also be chosen. See package deSolve for de-
tails.
Value

A list containing:

$tin The time vector of the input time series

$inputdata The input time series

$tfiltdata The time vector of the filtered time series (boudary removed)
$filtdata A matrix of the filtered time series with its derivatives

$okMod A vector classifying the models: diverging models (0), periodic models of period-1 (-1),
unclassified models (1).

$coeff A matrix with the coefficients of one selected model

$models A list of all the models to be tested $mToTest1, $mToTest2, etc. and all selected models
$model1, $model?2, etc.

$tout The time vector of the output time series (vector length corresponding to the longest numer-
ical integration duration)

$stockoutreg A list of matrices with the integrated trajectories (variable X1 in column 1, X2 in 2,
etc.) of all the models $model1, $model2, etc.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean, Mireille Huc

References

[1] Gouesbet G. & Letellier C., 1994. Global vector-field reconstruction by using a multivariate
polynomial L2 approximation on nets, Physical Review E, 49 (6), 4955-4972.
[2] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., Polynomial search and Global modelling:

gPoMo 33

two algorithms for modeling chaos. Physical Review E, 86(4), 046205.

[3] Mangiarotti S., Le Jean F., Huc M. & Letellier C., Global Modeling of aggregated and associ-
ated chaotic dynamics. Chaos, Solitons and Fractals, 83, 82-96.

[4] S. Mangiarotti, M. Peyre & M. Huc, 2016. A chaotic model for the epidemic of Ebola virus
disease in West Africa (2013-2016). Chaos, 26, 113112.

See Also

gloMoId, autoGPoMoSearch, autoGPoMoTest

autoGPoMoSearch, autoGPoMoTest, visuOutGP, poLabs, predictab, drvSucc

Examples

#Example 1

data("Ross76")

tin <- Ross76[,1]

data <- Ross76[,3]

dev.new()

outl <- gPoMo(data, tin = tin, dMax = 2, nS=c(3), show = 1,
IstepMax = 1000, nPmin = 9, nPmax = 11)

visuEq(out1$models$modell, approx = 4)

#Example 2
data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,3]
if some data are not valid (vector 'weight' with zeros)
W <-tin *x @ + 1
WL1:100] <- @
W[700:1500] <- @
W[2000:2800] <- @
W[3000:3500] <- 0
dev.new()
out2 <- gPoMo(data, tin = tin, weight = W,
dMax = 2, nS=c(3), show = 1,
IstepMax = 6000, nPmin = 9, nPmax = 11)
visuEq(out2$models$model3, approx = 4)

#Example 3
data(”"Ross76")
tin <- Ross76[,1]
data <- Ross76[,2:4]
dev.new()
out3 <- gPoMo(data, tin=tin, dMax = 2, nS=c(1,1,1), show = 1,
IstepMin = 10, IstepMax = 3000, nPmin = 7, nPmax = 8)
the simplest model able to reproduce the observed dynamics is model #5

34 GSproc

visuEg(out3$models$model5, approx = 3, substit = 1) # the original Rossler system is thus retrieved

#Example 4
data(”"Ross76")

tin <- Ross76[,1]
data <- Ross76[,2:3]
model template:

EqS <- matrix(1, ncol = 3, nrow = 10)
EqS[,1] <- c(0,0,0,1,0,0,0,0,0,0)
EqS[,2] <- ¢(1,1,0,1,0,1,1,1,1,1)
EqS[,3] <- ¢(0,1,0,0,0,0,1,1,0,0)
visuEq(EqS, substit = c('X','Y','Z"'))

dev.new()
out4 <- gPoMo(data, tin=tin, dMax = 2, nS=c(2,1), show =1,
EgS = EqS, IstepMin = 10, IstepMax = 2000,
nPmin = 9, nPmax = 11)
visuEq(out4$models$model2, approx = 2, substit = c("Y","Y2","Z"))

#Example 5
load data
data(”"TSallMod_nVar3_dMax2")
#multiple (six) time series
tin <- TSallMod_nVar3_dMax2$SprK$reconstr[1:400,1]
TSR076 <- TSallMod_nVar3_dMax2$R76$reconstr[,2:4]
TSSprK <- TSallMod_nVar3_dMax2$SprK$reconstr[,2:4]
data <- cbind(TSRo76,TSSprK)[1:400,]
dev.new()
generalized Polynomial modelling
out5 <- gPoMo(data, tin = tin, dMax = 2, nS = ¢(1,1,1,1,1,1),
show = @, method = 'rk4',
IstepMin = 2, IstepMax = 3,
nPmin = 13, nPmax = 13)

the original Rossler (variables x, y and z) and Sprott (variables u, v and w)
systems are retrieved:
visuEq(out5$models$model3d47, approx = 4,
substit = c('x', 'y', 'z', 'u', 'v', 'w'))
to check the robustness of the model, the integration duration
should be chosen longer (at least IstepMax = 4000)

GSproc Gram-Schmidt procedure

Description

Computes regressors coefficients using the Gram-Schmidt procedure.

NDVI

Usage

35

GSproc(polyK, ivec, weight = NULL)

Arguments

polyK

ivec
weight

Value

One list including $Y and $phy with: $Y a matrix for which the ith column will be
used to add one orthogonal vector to the (i-1)th vectors of the current orthogonal
base; and $phy such as the current orthogonal base is given by the (i-1)th first
columns of matrix polyK$phy.

Defines i, the current vector of polyK$Y and the current orthogonal base of
pParam$phy.

The weighing vector.

uNew The model parameterization, that is: The residual orthogonal vector that can be included into
the current orthogonal base. If the current base is empty, uNew is equal to the input vector of $Y; if
the base is complete, uNew equals 0.

Author(s)

Sylvain Mangiarotti

NDVI

A time series of vegetation index measured from satellite

Description

A time series of 28 years of Normalized Difference Vegetation Index measured from space by the
Advanced Very High Resolution Radiometer (AVHRR) sensor from 1982 to 2008 (see reference

[1] for details).

Usage
NDVI

Format

An object of class data. frame with 1000 rows and 4 columns.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

References

[1] Mangiarotti S., Drapeau L. & Letellier C., 2014. Two chaotic models for cereal crops observed
from satellite in northern Morocco.

36 numicano

numicano Numerical Integration of models in ODE of polynomial form

Description

Function for the numerical integration of Ordinary Differential Equations of polynomial form.

Usage
numicano(
nVar,
dMax,
dMin = o,
Istep = 1000,
onestep = 1/125,
KL = NULL,
PolyTerms = NULL,
v@ = NULL,
method = "rk4"
)
Arguments
nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
dMin The minimum negative degree of the polynomial formulation (0 by default).
Istep The number of integration time steps
onestep Time step length
KL Matrix formulation of the model to integrate numerically
PolyTerms Vectorial formulation of the model (only for models of canonical form)
vO The initial conditions (a vector which length should correspond to the model
dimension nVar)
method The integration method (See package deSolve), by default method = 'rk4"'.
Value

A list of two variables:

$KL The model in its matrix formulation

$reconstr The integrated trajectory (first column is the time, next columns are the model variables)

Author(s)

Sylvain Mangiarotti

numicano

See Also

derivODE2, numinoisy

Examples

WA

Example 1

W

For a model of general form (here the rossler model)
model dimension:

nVar = 3
maximal polynomial degree
dMax = 2

Number of parameter number (by default)
pMax <- d2pMax(nVar, dMax)

convention used for the model formulation
poLabs(nVar, dMax)

Definition of the Model Function

a = 0.520

b =2

c =4

Eql <- c(o,-1, 0,-1, 0, @, 0, 0, 0, Q)
Eq2 <- c(0, 0, @0, a, 0, @, 1, 0, 0, Q)
Eq3 <- c(b,-c, 0, @, 0, 0, 0, 1, @, @)

K <- cbind(Eql, Eq2, Eg3)

Edition of the equations

visuEq(K, nVar, dMax)

initial conditions

vo <- c(-0.6, 0.6, 0.4)

model integration

reconstr <- numicano(nVar, dMax, Istep=1000, onestep=1/50, KL=K,
vO=v@, method="ode45")

Plot of the simulated time series obtained

dev.new()

plot(reconstr$reconstr[,2], reconstr$reconstr[,3], type='1l",

main='phase portrait', xlab='x(t)', ylab = 'y(t)")

W

Example 2

W

For a model of canonical form
model dimension:

nVar = 4
maximal polynomial degree
dMax = 3

Number of parameter number (by default)
pMax <- d2pMax(nVar, dMax)
Definition of the Model Function
PolyTerms <- c(281000, 0, 0, @, -2275, 0, 0, 0, @0, @, 0, 0, 0, @, 0, 0,
861, 0, 0, 0, -878300, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0)
terms used in the model

38

numicano

poLabs(nVar, dMax, findIt=(PolyTerms!=0))

initial conditions

v0 <- c(0.54, 3.76, -90, -5200)

model integration

reconstr <- numicano(nVar, dMax, Istep=500, onestep=1/250, PolyTerms=PolyTerms,

v0=v0@, method="ode45")

Plot of the simulated time series obtained

plot(reconstr$reconstr[,2], reconstr$reconstr[,3], type='1l",
main='phase portrait', xlab='x"', ylab = 'dx/dt')

Edition of the equations

visuEq(reconstr$kKL, nVar, dMax)

HHHHHHHE

Example 3

SR

For a model of general form (here the rossler model)
model dimension:

nVar = 3
maximal polynomial degree
dMax = 2
dMin = -1

Number of parameter number (by default)
pMax <- regOrd(nVar, dMax, dMin)[2]

convention used for the model formulation
poLabs(nVar, dMax, dMin)

Definition of the Model Function

a = 0.520
b =2
c=4

Eql <- c(o,-1, 0,-1, 0, @, 0, @, 0, 0, 1, @, @, 0, 0, @)

Eq2 <- c(0, 0, @0, a, 0, 0, 1, 0, 0, 0, 0, 0, @, 0, 0, Q)

Eq3 <- c(b,-c, 0, 0, 0, 0, 0, 1, 0, 0, @0, 0, @, 0, 0, @)

K <- cbind(Eql, Eg2, Eqg3)

Edition of the equations

#visuEq(K, nVar, dMax)

initial conditions

v0 <- c(-0.6, 0.6, 0.4)

model integration

reconstr <- numicano(nVar, dMax, dMin, Istep=1000, onestep=1/50, KL=K,

v0=v0@, method="ode45")

Plot of the simulated time series obtained

dev.new()

plot(reconstr$reconstr[,2], reconstr$reconstr[,3], type='1l",
main='phase portrait', xlab='x(t)', ylab = "y(t)")

numiMultiX

39

numiMultiX

Numerical Integration polynomial ODEs with Multiple eXternal forc-
ing

Description

Function for the numerical integration of Ordinary Differential Equations of polynomial form in-
cluding single or Multiple external forcing

Usage

numiMultiX(
nVar,
dMax,
Istep = 1000,

onestep = 1/125,

KDf,
extF = extF,
v = NULL,

method = "rk4"

Arguments

nVar
dMax
Istep
onestep
KDf

extF

vO

method

Value

Number of variables considered in the polynomial formulation.
Maximum degree of the polynomial formulation.

The number of integration time steps. By default, Istep = 1000
The time step to be used for numerical integration

The nonautonomous model in its matrix formulation, NA (i.e. not available)
values should be provided for forcing variables provided as an external signal

A matrix providing the time vector in the first column, and time series of each
forcing in the next ones

The initial conditions. Its length should be in agreement with the dynamical
system dimension. Therefore, 0 or NA can be provided for external forcing

integration method. By default 'rk4’ is used

A list of two variables:

$KDf The nonautonomous model in its matrix formulation

$reconstr The integrated trajectory (first column is the time, next columns are the model variables)

40 numiMultiX

Author(s)

Sylvain Mangiarotti

See Also

derivODE2, numicano, numinoisy

Examples

HHHEHHHEEEE A

Example 1

WA

build a non autonomous model

nVar = 4

dMax = 3

gamma = 0.05

KDf=matrix (@, nrow = d2pMax(nVar = nVar, dMax = dMax), ncol = nVar)
KDf[11,1] =1

KDf[2,2] 1

KDf[5,2] 1

KDf[11,2] = -gamma

KDf[35,2] -1

KDf[2,3] NA

KDf[2,4] NA

visuEq(K = KDf, substit = c('x', 'y', 'u', 'v"))

build an external forcing
number of integration time step
Istep <- 500

time step
smpl <- 1/ 20

output time vector
tvec <- (0:(Istep-1)) * smpl

angular frequency (for periodic forcing)
omega = 0.2

half step time vector (for Runge-Kutta integration)

tvecX <- (0:(Istepx2-2)) * smpl / 2

generate the forcing (here variables u and v)

extF = cbind(tvecX, -0.1 * cos(tvecX * omega), 0.05 * cos(tvecX * 16/3*omega))

decimate the data
extFrs <- extF[seq(1,dim(extF)[1],by=50),]
extFrs <- rbind(extFrs,extF[dim(extF)[1],1)

Initial conditions to be used (external variables can be set to 0)
etatInit <- c(-0.616109362 , -0.126882584 , NA, NA)

model integration

out <- numiMultiX(nVar, dMax, Istep=Istep, onestep=smpl, KDf=KDf,

numinoisy 41

extF,
vO=etatInit, method="rk4")
outrs <- numiMultiX(nVar, dMax, Istep=Istep, onestep=smpl, KDf=KDf,
extFrs,
vO=etatInit, method="rk4")
dev.new
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s")
plot(out$reconstr[,2],out$reconstr[,3],
xlab = "x(t)', ylab = 'y(t)', type = '1', col = 'red')
lines(outrs$reconstr([,2],outrs$reconstr([, 3],
xlab = '"x(t)', ylab = 'y(t)', type = '1', col = 'green')
plot(out$reconstr[,2],out$reconstr[,4],
xlab = "x(t)', ylab = 'u(t)', type = '1l', col = 'red')
plot(out$reconstr[,4],out$reconstr[,5],
xlab = "u(t)', ylab = 'v(t)', type = '1', col = 'red')

numinoisy Generates time series of deterministic-behavior with stochatic pertur-
bations (measurement and/or dynamical noise)

Description

Generates time series from Ordinary Differential Equations perturbed by dynamical and/or mea-
surement noises

Usage

numinoisy(
X0,
tr
K,
varData = NULL,
txVarBruitA = NULL,
txVarBruitM = NULL,
varBruitA = NULL,
varBruitM = NULL,
taux = NULL,
freq = NULL,
variables = NULL,
method = NULL

42 numinoisy

Arguments
X0 The initial conditions. Should be a vector which size must be equal to the model
dimension dim(K)[2] (the number of variables of the model defined by matrix
K).
t A vector providing all the dates for which the output are expected.
K The Ordinary Differential Equations used to model the dynamics. The number
of column should correspond to the number of variables, the number of lines to
the number of parameters following the convention defined by poLabs(nVar, dMax).
varData A vector of size nVar providing the caracteristic variances of each variable of the

dynamical systems in ODE defined by matrix K. If not provided, this variance is
automatically estimated.

txVarBruitA A vector defining the ratio of ADDITIVE noise for each variable of the dynam-
ical system in ODE. The additive noise is added at the end of the numerical
integration process. The ratio is defined relatively to the signal variance of each
variable.

txVarBruitM A vector defining the ratio of DYNAMICAL noise for each variable of the dy-
namical system in ODE. This noise is a perturbation added at each numerical
integration step. The ratio is defined relatively to the signal variance of each
variable.

varBruitA A vector defining the variance of ADDITIVE noise for each variable of the dy-
namical system in ODE. The additive noise is added at the end of the numerical
integration process.

varBruitM A vector defining the variance of DYNAMICAL noise for each variable of the
dynamical system in ODE. This noise is a perturbation added at each numerical
integration step.

taux Generates random gaps in time series. Parameter taux defines the ratio of data
to be kept (e.g. for taux = 0.75, 75 percents of the data are kept).

freq Subsamples the time series. Parameter freq defines the periodicity of data kept
(e.g. for freq = 3, 1 data out of 3 is kept).

variables Defines which variables must be generated.

method Defines the numerical integration method to be used. The fourth-order Runge-

Kutta method is used by default (method = 'rk4'). Other method may be used
(such as 'ode45' or 'lsoda'), see function ode from package deSolve for
details.

Value

A list of two variables:

$donnees The integrated trajectory (first column is the time, next columns are the model variables)

$bruitM The level of dynamical noise

numinoisy

$bruitA The level of additive noise

$vectBruitM The vector of the dynamical noise used to produce the time series

$vectBruitA The vector of the additive noise used to produce the time series

$ecart_type The level standard deviation

Author(s)

Sylvain Mangiarotti, Malika Chassan

Examples

S

Example 1
S

Rossler Model formulation
The model dimension

nVar = 3

maximal polynomial degree

dMax = 2

a = 0.520

b =2

c =4

Eql <- c(o,-1, 0,-1, 0, 0, 0, @, 0, Q)
Eq2 <- c(0, 0, 0, a, 0, 0, 1, @, 0, Q)
Eq3 <- c(b,-c, 0, 0, 0, @, 9, 1, 0, Q)
K <- cbind(Eql, Eq2, Eg3)

Edit the equations

visuEq(K, nVar, dMax)

initial conditions

vo <- c(-0.6, 0.6, 0.4)

output time required

timeOut = (0:800)/50

variance of additive noise
varBruitA = c(0,0,0)"2

variance of multiplitive noise
varBruitM = c(2E-2, @, 2E-2)*2
numerical integration with noise

43

intgr <- numinoisy(v@, timeOut, K, varBruitA = varBruitA, varBruitM = varBruitM, freq = 1)

Plot of the simulated time series obtained

dev.new()

plot(intgr$donnees[,2], intgr$donnees[,3], type='l",
main='phase portrait', xlab='x(t)', ylab = 'y(t)")

dev.new()

oldpar <- par(no.readonly = TRUE)

on.exit(par(oldpar))

par(mfrow = c(3, 1))

plot(intgr$donnees[,1], intgr$donnees[,2], type='l",

44 odeBruitMult2

main='phase portrait', xlab='x(t)', ylab = 'y(t)")
lines(intgr$donnees[,1], intgr$vectBruitM[,2]*10, type='l",

main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')
plot(intgr$donnees[,1], intgr$donnees[,3], type='l",

main='phase portrait', xlab='x(t)', ylab = 'y(t)")
lines(intgr$donnees[,1], intgr$vectBruitM[,3]%10, type='l",

main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')
plot(intgr$donnees[,1], intgr$donnees[,4], type='l",

main='phase portrait', xlab='x(t)', ylab = 'y(t)")
lines(intgr$donnees[,1], intgr$vectBruitM[,4]*10, type='1l",

main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')

odeBruitMult?2 For the numerical integration of ordinary differential equations with
dynamical noise.

Description

A subfunction for the numerical integration of Ordinary Differential Equations provided in a generic
polynomial form. Model formulation follows the convention defined by function poLabs.

Usage

odeBruitMult2(
X0,
t,
K,
varData = NULL,
txVarBruitM = NULL,
varBruitM = NULL,
method = NULL

)
Arguments

X0 Initial conditions

t All the dates for which the result of the numerical integration of the model must
be provided

K A matrix providing the model description: each column corresponds to one
equation which polynomial organisation is following the convention defined by
function polLabs.

varData A vector of size nVar providing the caracteristic variances of each variable of the

dynamical systems in ODE defined by matrix K. If not provided, this variance is
automatically estimated.

P1FxCh 45

txVarBruitM A vector defining the ratio of DYNAMICAL noise for each variable of the dy-
namical system in ODE. This noise is a perturbation added at each numerical
integration step. The ratio is defined relatively to the signal variance of each
variable.

varBruitM A vector defining the variance of DYNAMICAL noise for each variable of the
dynamical system in ODE. This noise is a perturbation added at each numerical
integration step.

method Numerical method used in the integration process. (see ode function in deSolve
package for details).

Author(s)

Sylvain Mangiarotti, Malika Chassan

See Also

numinoisy

P1FxCh A data set for testing periodicity

Description
A matrix of 6 columns corresponding to six time series, two resulting from a Period-1 limit cycle,
two from regime converging to fixed point, and two relating to a chaotic behavior

Usage

P1FxCh

Format

An object of class matrix (inherits from array) with 1000 rows and 6 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

46 p2dMax

P1FxChP2 A data set for testing periodicity

Description
Trajectories for testing periodicity. The following regimes are made available: Period-1 in columns
1:2, Fixed Point in 3:4, chaotic in 5:6, Period-2 in 7:8

Usage
P1FxChP2

Format

An object of class matrix (inherits from array) with 1000 rows and 8 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

p2dMax p2dMax : provides the maximum polynomial degree dMax given the
number of variables nVar and the number of possible polynomial
terms pMax.
Description

Find the maximum polynomial degree dMax given the number of polynomial terms pMax and the
system dimension nVar.

Usage

p2dMax(nVar, pMaxKnown, dMin = @)

Arguments

nvVar Number of variables considered in the polynomial formulation.

pMaxKnown The number of polynomial terms

dMin The minimum negative degree of the polynomial formulation (0 by default).
Value

dMax The maximum polynomial degree

paramld

Author(s)

Sylvain Mangiarotti, Laurent Drapeau

See Also

gloMolId, gPoMo, polLabs

Examples

HEHHHHEHE

Example 1

HHHHHHHEHEEE

Maximum polynomial degree ?

number of variables:

nVar <- 3

size of the polynomial vector:

pMax <- 10

The maximal polynomial degree used for coding the polynomial is:
p2dMax(nVar, pMax)

HHHHHEHEHEE

Example 2

S

for pMax = 462 and nVar = 6, then dMax is:
p2dMax(6,462)

indeed:

length(poLabs(nVar=6, dMax=5))

47

paramld For parameter Identification

Description

Estimate the polynomial coefficients.

Usage

paramId(allForK, drv, weight)

Arguments
allForK The list of input parameters
drv The derivative (on the equation left hand)
weight The weighting series

Value

allForK The initial list completed with the model parameters.

48 poLabs

Author(s)

Sylvain Mangiarotti

polLabs Polynomial labels order

Description
Defines the order of the polynomial labels given the number of variables nVar and the maximum
polynomial degree dMax.

Usage
poLabs(nVar, dMax, dMin = @, findIt = NULL, Xnote = "X")

Arguments
nvVar The number of variables
dMax The maximum degree allowed in the formulation
dMin The minimum negative degree of the polynomial formulation (0 by default).
findIt A vector of selected terms.
Xnote Enables to defines the notation used for the variable, by default Xnote = 'X".
Value

1bls A vector of characters. Each element is the expression of one polynomial term, such as
X2X3X,

Author(s)

Sylvain Mangiarotti

See Also

visuEq

Examples

#Regressor order for three variables \egn{(X1,X2,X3)} (nVar = 3) for a maximum
#polynomial degree equal to 2 (dMax = 2): polabs(3,2)
#and for two variables only : poLabs(2,2)

For a quadratic equation of two variables,

the polynomial \deqn{P(X1,X2) = 0.5 + 0.3 X1 -0.25 X1 X2}
could thus be written as a vector Pvec such as:

Pvec = c(0.5, 0, 0, 0.3, -0.25, @)

considering the convention corresponding to

predictab

poLabs(2,2)
Indeed:

49

poLabs(2, 2, findIt = Pvec!=0)
An alternative notation can be used with parameter Xnote
poLabs(2, 2, findIt = Pvec!=0, Xnote = 'w')

or also

poLabs(2, 2, findIt = Pvec!=0, Xnote = c('x"','y"))

predictab

Estimate the models performance obtained with GPoMo in term of pre-
dictability

Description

The algorithm aims to estimate automatically the forecasting performances of the models obtained

with gPoMo.

Usage

predictab(
ogp,

fullt = NULL,
fulldata = NULL,
hp = NULL,

Nech = 50,
intSimStep = NULL,
show = 1,

selecmod = NULL,
id =1,

selvV = 1,

na.rm = FALSE

Arguments

ogp

fullt
fulldata
hp

Nech
intSimStep
show
selecmod
id

The output list obtained from function gPoMo.

Time vector of the data set for which predictability will be tested
Data set for which predictability will be tested

Time vector of the horizon of prediction

Number of simulations

Internal number of simulation steps

Provide (2) or not (0-1) visual output during the running process.
A vector of the model selected.

The type of model to identify. id = 1 corresponds to unidentified models, that
is, potentialy chaotic.

50 predictab

selv Selected variable for the analysis
na.rm Indicates if the NA should be removed (na.rm = TRUE) or not (na.rm = FALSE).
Value

ErrmodAll A list of matrix $Predmod1, $Predmod2, etc. and $Errmod1, $Errmod2, etc. providing
respectively the forecasting and the forecasting error of models 1, 2, etc. Each column corresponds
to one simulation starting from a specific initial condition. Each line corresponds to one horizon of
prediction. Vectors corresponding to the initial condition time tE and the horizon of prediction hpE
are also provided in $tE and $hpE, respectively. The percentiles of the distributions of error growth
are provided in gt (0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95) and of absolute error growth in qt2 (0.5,
0.75, 0.9, 0.95, 0.98, 0.99).

Author(s)

Sylvain Mangiarotti, Mireille Huc

Examples

load data

data("Ross76")

time vector

tin <- Ross76[seq(1, 3000, by = 8), 1]

single time series

data <- Ross76[seq(1, 3000, by = 8), 3]

dev.new()

plot(tin, data, xlab = 'time', ylab = 'y(t)")

global modelling

results are put in list outputGPoM

outputGPoM <- gPoMo(data[1:300], tin = tin[1:300], dMax = 2, nS=c(3),
show = @, method = 'rk4',
nPmin = 10, nPmax = 12,
IstepMin = 150, IstepMax = 151)

#
visuOutGP (outputGPoM)

S
and test predictability
S
outpred <- predictab(outputGPoM, hp = 15, Nech = 30)

manual visualisation of the outputs (e.g. for model 1):
dev.new()

image(outpred$tE, outpred$hpE, t(outpred$Errmodl),

xlab = 't', ylab = 'hp', main = "Errmod1"')

pTimEv

51

pTimEv

Model stationnary testing

Description

Estimate the parameters variations of a model of canonical form considering a sliding window on

an external dataset.

Usage

pTimEv(
TS,
nVar,
dMax,
TSdate,

whatTerms = NULL,
weight = NULL,
wlength = 1000,
onestep = 100,

removeExtr =

Arguments

TS
nVar
dMax
TSdate

whatTerms

weight

wlength
onestep

removeExtr

Value

A list containing:

1

The time series to be tested

Number of variables considered in the polynomial formulation.
Maximum degree of the polynomial formulation.

The time vector

The terms to be considered in the analysis. Note that these are organised follow-
ing the convention defined by poLabs(nVar,dMax). Since only the structure is
required, if coefficients are provided, these are transformed to 1.

A vector providing the binary weighting function of the input data series (0 or
1). By default, all the values are set to 1.

The window length
Step length between two estimations

Ratio of estimated values to be removed (if chosen equal to 0.1, only 90 disersion
will be kept)

$slidingoutGM An n*(pMax+1) matrix presenting the pMax estimated parameters p1(t), p2(t) etc.
column by column. The residual signal epsilon(t) is provided in the last (i.e. pMax + 1) column.
Each line correspond to one date provided in $TSdate

52 regOrd

$TSdate A time vector relating to the estimates presented in $slidingoutGM
$W A vector providing the output values that can kept (=1) or must be removed (=0)

$whatTerms A vector recalling the terms taken into account in the analysis (their order refers to
poLabs(nVar,dMax) function)

$param A vector with the parameter values used to apply the function: nVar, dMax, wlength, on-
estep, removeExtr

Author(s)

Sylvain Mangiarotti

See Also

autoGPoMoSearch, gPoMo, poLabs

Examples

#Example

data(TS)

plot(TSL,11, TSL[,2]1, type='1")

nVar <- 3

dMax <- 2

pMax <- choose(nVar+dMax,dMax)
whatTerms <- ¢(1,1,0,1,1,1,1,1,1,1)

apply pTimEv
statio <- pTimEv(TS[,2], nVar, dMax, TS[,1], whatTerms = whatTerms,
wlength = 1000, onestep = 20, removeExtr = 0.15)
Plot the results
dev.new()
layout(matrix(1:12, nrow=4, ncol=3, byrow = TRUE))
what <- which(statio$whatTerms!=0)
for (i in what) {
plot(statio$TSdate[statio$W==1], statio$slidingoutGM[statio$w==1,1i],
xlab='TSdate', ylab='coeff', main=polLabs(nVar,dMax)[i])
}
plot(statio$TSdate[statio$W==1], statio$slidingoutGM[statio$W==1,pMax+1],
xlab="'date', ylab='Epsilon', main='Resid', log = 'y')

regord Generate the conventional order for polynomial terms in a the polyno-
mial formulation

Description

Generate the conventional order of the polynomial terms for the polynomial description. It is for-
mulated as a matrix of exponents: Each column of the matrix (a,b,c, ...) corresponds to a product of
the nvar available variables X1, X2, X3, etc., that is, X 1% X2 X 3¢, etc.

regSeries

Usage

regOrd(nVar, dMax, dMin = Q)

Arguments

nvVar The number of variables

dMax The maximum degree allowed in the formulation

dMin The minimum negative degree of the polynomial formulation (0 by default).
Value

53

A matrix of exponents. Each column corresponds to one polynomial term. Each line correspond to
the exponent of one variable. For example, a column of three exponents (0,2,1) corresponds to

the monomial X140 * X242 x X3*1, that is X22X3.

Author(s)

Sylvain Mangiarotti

See Also

polLabs

regSeries Estimates the monomial time series

Description

Creates time series by multiplying given time series among them.

Usage

regSeries(nVar, dMax, series, dMin = @, pReg = NULL)

Arguments
nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
series A matrix containing the original time series from which the monomials are built.
Each column corresponds to one given variable.
dMin The minimum negative degree of the polynomial formulation (0 by default).
pReg A matrix filled, for each column, with powers of time series used to create.
Value

rpFull A matrix of time series. Each column corresponds to one regressor such as X7 X3 X,

54 Rossler-1976 data set

Author(s)

Sylvain Mangiarotti

Examples

data(TSallMod_nVar3_dMax2)

sprottK <- as.matrix(TSallMod_nVar3_dMax2$SprK$reconstr)[,2:4]
dMax <- 2

nVar <- dim(sprottkK)[2]

#Example 1
polySeriesl <- regSeries(nVar, dMax, sprottK)

#Example 2
p <-c(1,3,1)
polySeries2 <- regSeries(nVar, dMax, sprottK, pReg=p)

Rossler-1976 data set Time series of the Rossler-1976 system

Description

The Rossler system is the 3-dimensional chaotic system

de/dt = —y — =z

dy/dt = x4+ ay

dz/dt =b+ z(x — ¢),

discovered by Otto E. Rossler in 1976 [1]. The following parameters and initial conditions were
used to produce the present data set:

a=0.520,b=2,c=4

and (x0, y0, z0) = (-0.04298734, 1.025536, 0.09057987).

The following four columns are provided:

(1) time t, (2) x(t), (3) y(t) and (4) z(t).

For this parameterization, the Rossler system produces a chaotic behavior characterized by a regime
non-coherent in phase (oscillations duration can be very different from one oscillation to another).

Usage

Ross76

Format

An object of class deSolve (inherits from matrix) with 4000 rows and 4 columns.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean, Malika Chassan, Laurent Drapeau, Mireille Huc.

RosYco 55

References

[1] O. Rossler, 1976. An Equation for Continuous Chaos, Physics Letters, 71A, 2-3, 155-157.

RosYco Twelve Rossler-1976 time series (exclusively variable y)

Description
Twelve independant Rossler-1976 time series (variable y). The parameters used to generate the time
series correspond to a phase coherent behavior. Details can be found in [1]

Usage

RosYco

Format

An object of class matrix (inherits from array) with 3000 rows and 12 columns.

Details

Another set of time series of the Rossler-1976 chaotic system

Author(s)

Sylvain Mangiarotti, Flavie Le Jean.

References

[1] Mangiarotti S., Le Jean F., Huc M. & Letellier C., Global Modeling of aggregated and associated
chaotic dynamics. Chaos, Solitons and Fractals, 83, 82-96.

subSysD subSysD : Sub-systems Disentangling

Description

Detect, disentangle and reformulate Sub-systems from an ensemble of equations.

Usage

subSysD(inK, inXnote = NULL)

56 subSysD

Arguments
inK A list of models, each provided as a matrix. A single matrix can also be pro-
vided, it will be transformed into a list containing a single matrix.
inXnote A vector with the names of the input variables. If not provided, default notation
is used: "X1", "X2", etc.
Value

subS A matrix with the extracted subsystem

Author(s)

Sylvain Mangiarotti

See Also

gPoMo, poLabs, combiEq

Examples

Load models

data(”allMod_nVar3_dMax2")

Display equations of system 1

visuEq(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$NH86, substit = 1)
Display equations of system 2

visuEg(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$R76, substit = 1)
put the two systems in a list

allK <- list()

allK[[1]] <- allMod_nVar3_dMax2$NH86

allK[[2]] <- allMod_nVar3_dMax2$R76

Example 1 (two independant subsystems)

take two separate systems and mix them

inXnote = list()

inXnote[[1]] <= c('u', 'v', 'w')

inXnote[[2]] <- c('X", 'Y', 'Z")

visuEq(K = allK[[1]1], substit = inXnote[[1]1)

visuEq(K = allK[[2]], substit = inXnote[[2]])

XnoteOut = c('u', 'X', 'v', 'Y', 'w', 'Z")

Knew3 <- combiEq(allK,dMaxOut = 3, eqOrder = c(1,4,2,5,3,6))
visuEq(K = Knew3, substit = XnoteOut)

Disentangle the subsystems from the mixed equations

dstgl <- subSysD(Knew3, inXnote = XnoteOut)

Optional

library(igraph)

gl<-graph.adjacency(dstgl$FM);

1 <- layout_with_fr(gl)

plot(gl, edge.arrow.siez = .4, edge.curved=.4, vertex.label=XnoteOut, layout = 1)

Example 2 (one subsystem included in the other)
Kduff <- matrix(@, ncol = 4, nrow = 35)

svrlTS 57

Kduff[11,1] <- Kduff[5,2] <- Kduff[2,3] <- 1
Kduff[35,2] <- -1

Kduff[11,2] <- -0.05

Kduff[5,4] <- 2 % acos(-1) / 6.2

Xnote <- c("x", "y", "u", "v")
visuEq(Kduff, substit = Xnote)

dstgl2 <- subSysD(Kduff, inXnote = Xnote)

svrlTS A data set for the global modeling of time series in association

Description
This data set aims to test the global modelling technique when several time series of different sizes
are available. Four time series are provided, all derived from the Rossler-1976 system.

Usage

svrlTS

Format

An object of class 1ist of length 4.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

S. Mangiarotti, F. Le Jean, M. Huc & C. Letellier, 2016. Global modeling of aggregated and
associated chaotic dynamics, Chaos, Solitons & Fractals, 83, 82-96.

testP Periodic solution test

Description

Tests if a trajectory is periodic.

Usage

testP(data, wthresh = 0.1, fxPtThresh = 1e-04, show = 0)

58 TS

Arguments
data Input Time series: Each column is one time series that corresponds to one vari-
able.
wthresh Threshold used to detect the limit cycle.
fxPtThresh Threshold used to detect fixed points.
show Provide (2) or not (0-1) visual output during the running process.
Value

periodic An integer classifying the models: diverging or unclassified trajectory (0), period-1 tra-
jectory (-1), period-2 trajectory (-2) and fixed Point (2).
Author(s)

Sylvain Mangiarotti, Flavie Le Jean

See Also

autoGPoMoTest, gPoMo

Examples

#Example

Load data:
data('P1FxChP2")

Test a period-1 trajectory

testP(P1FxChP2[,1:2], wthresh=0.1, fxPtThresh = 1e-6, show=0)
Test a Fixed Point trajectory
testP(P1FxChP2[,3:4], wthresh=0.1, fxPtThresh = 1e-6, show=0)

Test a chaotic trajectory
testP(P1FxChP2[,5:6], wthresh=0.1, fxPtThresh = 1e-6, show=0)
Test a period-2 trajectory
testP(P1FxChP2[,7:8], wthresh=0.1, fxPtThresh = 1e-6, show=0)

TS Time series resulting from the integration of a non stationary system

Description
A 2*6001 matrix with the time vector in column one and a time series resulting from the integration
of a non stationary Rossler system — parameter a varying in time: a(t) — in colmn two.

Usage
TS

TSallMod_nVar3_dMax2 data set 59

Format

An object of class matrix (inherits from array) with 6001 rows and 2 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

TSallMod_nVar3_dMax2 data set
Time series of three-dimensional chaotic sytems (for vignette
VII_Retro-Modelling)

Description

A list of matrix providing the time series in a list named TSallMod_nVar3_dMax2 of eighteen
three-dimensional chaotic systems: Lorenz-1963 ($L.63), Rossler-1976 ($R76), Burke & shaw 1981
($BS81), Lorenz-1984 ($L.84), Nosé & Hooer 1986 ($NH86), Genesio & Tosi 1992 ($GT92), Spott
systems 1994 ($SprF, $SprH, $SprK, $SprO, $SprP, $SprG, $SprM, $SprQ, $SprS), Chlouverakis
& Sprott 2004 ($CS2004), Li 2007 ($Li2007) and the Cord system by Aguirre & Letellier 2012
($Cord2012). Time series are provided in a matrix in which each column corresponds to one vari-
able of the dynamical systems.

Usage

TSallMod_nVar3_dMax2

Format

An object of class 1ist of length 18.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

References for the systems are provided in vignette ‘VII_retro-modelling*.

60

visuEq

visuEq

Displays the models Equations

Description

Displays the model equations for a polynomial model which description is provided as a matrix K,
each column corresponding to one equation. The coefficients of the polynomial terms are given
following the order defined by function poLabs. The matrix can also be provided in a list K, in this
case, the matrix should be located in K$model[[selecmod]] where selecmod should be provided

as input parameter.

Usage
visuEq(
K}
nVar = NULL,
dMax = NULL,
dMin = 0,
substit = 0,

approx = FALSE,
selecmod = NULL

Arguments

K

nVar
dMax
dMin
substit

approx

selecmod

A matrix providing the model description: each column corresponds to one
equation which polynomial organisation is following the convention defined by
function polLabs.

The number of variables
The maximum degree allowed in the formulation
The minimum negative degree of the polynomial formulation (0 by default).

Applies subtitutions to the default values: for substit = @ (default value), vari-
ables are chosen as X1, X2, ... for substit =1, variable X1, X2, ... will be
replaced by X, y, z, ... for substit =2, the codes provides a LaTex-like for-
mulation of the model. The variables name can also be defined explicitely as
follows: for substit=c('x"', '"H', 'T1"), variables X1, X2, X3 ... will be re-
placed by x, H and T1.

The number of extra digits to be used: for approx = FALSE (default value) digits
are edited with double precision; for approx = TRUE, only the minimum number
of digits is edited (in order to have all the terms different from 0) for approx =
1, 2, etc. then respectively 1, 2, etc. digits are added to the minimum number of
digits corresponding to approx = TRUE.

An integer providing the number in the sublist when the model matrix is pro-
vided in a list. Should not be provided (or NULL) if the model matrix is provided
directly.

visuOutGP 61

Value
N A list of Nvar elements presenting a set of equtions, each equation being an element of this list
and written as a character strings

Author(s)

Sylvain Mangiarotti

Examples

#EQUATIONS VISUALISATION
number of variables:

nVar <- 3
maximum polynomial degree:
dMax <- 2

polynomial organization:

poLabs(nVar, dMax)

model construction

KL = matrix(@, ncol = 3, nrow = 10)

KLL1,1] <= KL[2,2] <=1

KL[4,1] <- -1

KL[5,3] <- -0.123456789

Equations visualisation:

(a) by default, variables names X1, X2, X3 are used
visuEq(KL, nVar, dMax)

(b) for susbstit=1, variables names x, y, y are used instead
visuEq(KL, nVar, dMax, approx = TRUE, substit=1)

(c) the name of the variables can also be chosen manualy
visuEq(KL, nVar, dMax, approx = 3, substit=c('U', 'V', 'W'))

A canonical model can be provided as a single vector
polyTerms <- ¢(0.2,0,-1,0.5,0,0,0,0,0,0)
visuEq(polyTerms, 3,2)

visuOutGP visuOutGP : get a quick information of gPoMo output

Description

The algorithm aims to get a quick information about the outputs obtained with gPoMo.

Usage

visuOutGP(

ogp,

selecmod = NULL,

id = 1,

prioMinMax = "data",

62 visuOutGP
opt3D = "TRUE",
maxPages = NULL,
seeEq = 1
)
Arguments
ogp The output list obtained from gPoMo.
selecmod A vector of the selected model. Maximum 24 models can be presented at the
same time.
id The type of model to identify. id =1 corresponds to the unidentified models,
that is, potentialy chaotic models).
prioMinMax Gives the priority for the plots among: "data”, "model”, "dataonly” and
"modelonly”.
opt3D Provides a 3D plot (x,y,z) when opt = 'TRUE' (the rgl library is required).
maxPages The maximum of pages to be displayed (4 by default, but this may be insufficient
when too many models remain)
seeEq Indicates if equations should be displayed (seeEq = 1, by default) or not (seeEq
=0).
Value

A Matrix describing the terms composing each model by row. The first row corresponds to the
model detection (1 unclarified, 2 diverging, 0 is fixed point, -n with n an integer, is period-n cycle’)

Author(s)

Sylvain Mangiarotti

Examples

load data

data("Ross76")

time vector

tin <- Ross76[seq(1, 3000, by = 8), 1]

single time series

data <- Ross76[seq(1, 3000, by = 8), 3]

dev.new()

plot(tin, data, type = 'l', main = 'Observed time series')

global modelling

results are put in list outputGPoM

outputGPoM <- gPoMo(data, tin=tin, dMax = 2, nS=c(3), show = 0,
nPmin = 9, nPmax = 12, method = 'rk4',
IstepMin = 200, IstepMax = 201)

visuOutGP (outputGPoM)

winProd

63

wInProd Weighted inner product

Description

Computes weighted inner products.

Usage
wInProd(A1, A2, weight = NULL)

Arguments
A1 The input matrix 1.
A2 The input matrix 2.
weight The weighting vector.
Value

inP The weighted inner product.

Examples

HHHHHHH
#Example 1 #
HHHHHHHH

Al = c(0,1,2,0,1,3)
A2 =c(1,2,0,0,4,1)
wInProd(A1, A2)

A

#Example 2 #

HHHHHH S

Al = c(90,1,2,0,1,3)

A2 = ¢(1,2,0,0,4,1)

w = c(0,0,0,1,1,1)
wInProd(A1, A2, weight = w)

Index

+ causal inference
GPoM-package, 3
* chaos
GPoM-package, 3
* data learning
GPoM-package, 3
x data
allMod_nVar3_dMax2 data set, 4
allToTest, 5
data_vignetteIll data set, 17
data_vignetteVI data set, 18
data_vignetteVII data set, 18
NDVI, 35
P1FxCh, 45
P1FxChP2, 46
Rossler-1976 data set, 54
RosYco, 55
svrlTs, 57
TS, 58
TSallMod_nVar3_dMax2 data set, 59
* global modeling
GPoM-package, 3
* nonlinear dynamical systems
GPoM-package, 3
* time series analysis
GPoM-package, 3

allMod_nVar3_dMax2 (allMod_nVar3_dMax2
data set), 4
allMod_nVar3_dMax2 data set, 4
allToTest, 5
autoGPoMoSearch, 6, 9, 25, 28, 33, 52
autoGPoMoTest, 7,7, 22, 28, 33, 58

bDrvFilt, 10

cano2M, 10
combiEq, 11, 56
compDeriv, 13,23
concat, 14

64

concatMulTs, 15

d2pMax, 16

data_vignettelll (data_vignetteIll
data set), 17

data_vignettelIll data set, 17

data_vignetteVI (data_vignetteVI data
set), 18

data_vignetteVI data set, 18

data_vignetteVII (data_vignetteVII
data set), 18

data_vignetteVII data set, 18

derivODE2, 19, 37, 40

derivODEwMultiX, 19

detectP11imCycl, 21

drvSucc, 11,22, 33

extractEq, 24
findAllSets, 7, 25

gloMold, 14, 17, 23, 26, 33,47

GPoM-package, 3

gPoMo, 7,9, 11, 12,14, 17, 23, 28,29, 47, 52,
56, 58

GSproc, 34

NDVI, 35
numicano, 19, 36, 40
numiMultiX, 39
numinoisy, 19, 37, 40, 41, 45

odeBruitMult2, 44

P1FxCh, 45

P1FxChP2, 46

p2dMax, 46

paramld, 47

poLabs, 7,9, 11, 12, 14, 17,23, 28, 33,47, 48,
52, 53, 56

predictab, 33, 49

INDEX

pTimEv, 51

regOrd, 52

regSeries, 53

Ross76 (Rossler-1976 data set), 54
Rossler-1976 data set, 54
RosYco, 55

subSysD, 55
svrlTs, 57

testP, 57

TS, 58

TSallMod_nVar3_dMax2
(TSallMod_nVar3_dMax2 data
set), 59

TSallMod_nVar3_dMax2 data set, 59

visuEq, 48, 60
visuOutGP, 33, 61

wInProd, 63

65

	GPoM-package
	allMod_nVar3_dMax2 data set
	allToTest
	autoGPoMoSearch
	autoGPoMoTest
	bDrvFilt
	cano2M
	combiEq
	compDeriv
	concat
	concatMulTS
	d2pMax
	data_vignetteIII data set
	data_vignetteVI data set
	data_vignetteVII data set
	derivODE2
	derivODEwMultiX
	detectP1limCycl
	drvSucc
	extractEq
	findAllSets
	gloMoId
	gPoMo
	GSproc
	NDVI
	numicano
	numiMultiX
	numinoisy
	odeBruitMult2
	P1FxCh
	P1FxChP2
	p2dMax
	paramId
	poLabs
	predictab
	pTimEv
	regOrd
	regSeries
	Rossler-1976 data set
	RosYco
	subSysD
	svrlTS
	testP
	TS
	TSallMod_nVar3_dMax2 data set
	visuEq
	visuOutGP
	wInProd
	Index

