Package ‘FSSF’

January 20, 2025

Type Package

Title Generate Fully-Sequential Space-Filling Designs Inside a Unit
Hypercube

Version 0.1.1

Date 2020-02-03

Author Boyang Shang and Daniel W. Apley

Maintainer Boyang Shang <boyangshang2015@u.northwestern.edu>

Copyright ANN library is copyright University of Maryland and Sunil
Arya and David Mount. See file COPYRIGHTS for details.

Description Provides three methods proposed by Shang and Ap-
ley (2019) <doi:10.1080/00224065.2019.1705207> to generate fully-sequential space-filling de-
signs inside a unit hypercube. A 'fully-sequential space-filling design' means a se-
quence of nested designs (as the design size varies from one point up to some maximum num-
ber of points) with the design points added one at a time and such that the de-
sign at each size has good space-filling properties. Two methods target the minimum pair-
wise distance criterion and generate maximin designs, among which one method is more effi-
cient when design size is large. One method targets the maximum hole size crite-
rion and uses a heuristic to generate what is closer to a minimax design.

License GPL-2

Depends R (>=3.3)

Imports Rcpp (>=0.12.10)

LinkingTo Rcpp, ReppArmadillo

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-02-05 12:10:07 UTC

Contents
FSSF-package e 2
fsSf b . e 3
1SSt £ . 4
fSSE T . . e 5

https://doi.org/10.1080/00224065.2019.1705207

2 FSSF-package

Index 8
FSSF-package Large-Scale Fully-Sequential Space-filling Algorithms for Computer
Experiments
Description

Provides large-scale computer experimental design tools to generate fully-sequential (a nested se-
quence of designs with points added one at a time) space-filling designs inside a unit hypercube
(Shang and Apley, 2019).

Details

Fully-sequential (i.e., with design points added one at a time) space-filling designs are useful for
global surrogate modeling of expensive computer experiments when the number of design points
required to achieve a suitable accuracy is unknown in advance. We provide three fully-sequential
space-filling (FSSF) design algorithms that are conceptually simple and computationally efficient
and that achieve much better space-filling properties than alternative methods such as Sobol se-
quences and more complex batch-sequential methods based on sliced or nested optimal Latin hy-
percube designs (LHDs).

Brief descriptions of the main functions are provided below:

fssf_f () generates maximin designs using a similar idea with Kennard and Stone (1969). The "t"
stands for "forward", since the algorithm begins with the smallest design and adds points one at a
time.

fssf-b() generates large-size maximin designs efficiently. The "b" stands for "backward", since
the algorithm begins with the largest design and removes points one at a time.

fssf-fr() uses a heuristic to generate what is closer to a minimax design. The "fr" stands for "for-
ward reflected"”, since the algorithm uses a modification of the criterion used in the fssf-f algorithm.

Author(s)

Boyang Shang <boyangshang2015@u. northwestern.edu>
Daniel W. Apley <apley@northwestern.edu>

References

Shang, B. and Apley, D.W. (2019), "Large-Scale Fully-Sequential Space-filling Algorithms for
Computer Experiments", Journal of Quality Technology (in press). doi:10.1080/00224065.2019.1705207.

Kennard, R.W. and Stone, L.A. (1969). "Computer aided design of experiments". Technometrics
11.1, pp. 137-148.

Examples

#
See the examples in the help pages for the main functions mentioned above.
#

fssf b 3

fssf_b Generate fully-sequential maximin designs inside a unit hypercube.

Description

Produces a random fully-sequential design (a nested sequence of designs with points added one
at a time) inside a unit hypercube such that the design points are as far away from each other as
possible (Shang and Apley, 2019). The "b" stands for "backward", since the algorithm begins with
the largest design and removes points one at a time. fssf_b is much faster than fssf_f when the
design size is large.

Usage

fssf_b(d, nMax, N=-1, eps=0.5)

Arguments
d The dimension of the design space.
nMax The largest design size required by the user.
N Size of the candidate set used to generate the design points. -1 corresponds to
the default setting, and the candidate set size will be calculated as 1000 x d +
2 x nMax. Using large N will make the design more space-filling, but will slow
down the program.
eps The error bound for approximate nearest neighbor searching. Default value is
0.5 and eps must be greater or equal to 0. Using large eps will make the program
run faster, but will cause worse space-filling performances.
Details

The fssf_b function calls portions of the Approximate Nearest Neighbor Library, version 1.1.2,
written by David M. Mount and Sunil Arya to do the neareast neighbor search. Some changes have
been made to the original ANN library to suit the needs of the fssf_b function. More information
about the ANN library can be found in the ANN Programming Manual at http://www.cs.umd.
edu/~mount/ANN

Value

A nMazx x d matrix with the i*" row corresponding to the i design point.

Author(s)

Boyang Shang <boyangshang2015@u.northwestern.edu>
Daniel W. Apley <apley@northwestern.edu>

http://www.cs.umd.edu/~mount/ANN
http://www.cs.umd.edu/~mount/ANN

4 fssf

References

Shang, B. and Apley, D.W. (2019), "Large-Scale Fully-Sequential Space-filling Algorithms for
Computer Experiments", Journal of Quality Technology (in press). doi:10.1080/00224065.2019.1705207.

Kennard, R.W. and Stone, L.A. (1969). "Computer aided design of experiments". Technometrics
11.1, pp. 137-148.

Examples

##Generate a design using the fssf_b function.
Design <- fssf_b(d=2, nMax = 320)
plot(Design[,1], Design[,2])

fssf_f Generate fully-sequential maximin designs inside a unit hypercube.

Description

Produces a random fully-sequential design (a nested sequence of designs with points added one at a
time) inside a unit hypercube such that the design points are as far away from each other as possible
(Shang and Apley, 2019). The "f" stands for "forward", since the algorithm begins with the smallest
design and adds points one at a time.

Usage

fssf_f(d, nMax, N=-1, ScaleVector = NULL, Dinit = NULL)

Arguments
d The dimension of the design space.
nMax The largest design size required by the user.
N Size of the candidate set used to generate the design points. -1 corresponds to

the default setting, and the candidate set size will be calculated as 1000 x d +
2 x nMax. Using large N will make the design more space-filling, but will slow
down the program.

ScaleVector Array of the lengthscale parameters of different inputs. Default is NULL, which
corresponds to the ScaleVector being a unit vector of length d. When ScaleVector
is not NULL, for instance, ScaleVector is (61, - - ,6,), the distance between

. 2
point (z1,- -+ ,z4) and point (y1, - - - , yq) will be computed as 2?21 (yfa_il’)

Dinit Numerical Matrix with n;,,;; rows and d columns, where n;,,;; is a user-specified
parameter. This is an optional initial design with size n;,;; provided by the user.
Default is NULL, which corresponds to no initial design. If Dinit is not NULL,
then the algorithm will select nMax additional design points taking into account
of this initial design.

fssf _fr 5

Details
The fssf_f uses a similar idea as proposed by Kennard and Stone(1969); modifications have been
made to improve the space-filling performance as well as efficiency.

Value

A nMazx x d matrix with the i*" row corresponding to the i*" design point.

Author(s)
Boyang Shang <boyangshang2015@u.northwestern.edu>
Daniel W. Apley <apley@northwestern.edu>

References

Shang, B. and Apley, D.W. (2019), "Large-Scale Fully-Sequential Space-filling Algorithms for

Computer Experiments”, Journal of Quality Technology (in press). doi:10.1080/00224065.2019.1705207.

Kennard, R.W. and Stone, L.A. (1969). "Computer aided design of experiments". Technometrics
11.1, pp. 137-148.

Examples

##Generate a design using the fssf_f function with no scaling vector and no initial design.
Design <- fssf_f(d=2, nMax = 320)
plot(Design[,1], Design[,2])

##Generate a design using the fssf_f function with scaling vector and no initial design.
d=2

n =100

ScaleVector = c(1.0, 20.0)*0.5

Design = fssf_f(d = d, nMax = n, ScaleVector = ScaleVector)

plot(Design[,1], Design[,2])

##Generate a design using the fssf_f function with a scaling vector and with an initial design
d=2

n =100

Dinit = fssf_f(d=2, nMax = 40)

ScaleVector = c(1.0, 20.0)*0.5

Design = fssf_f(d = d, nMax = n, ScaleVector = ScaleVector, Dinit = Dinit)
plot(Design[,1], Design[,2])

points(Dinit[,1], Dinit[,2], col="red")

fssf_fr Generate fully-sequential minimax designs inside a unit hypercube us-
ing a heuristic.

6 fssf_fr

Description

Produces a random fully-sequential design (a nested sequence of designs with points added one
at a time) inside a unit hypercube such that the largest distance between any point inside the unit
hypercube to its closest design point is as small as possible (Shang and Apley, 2019). The "fr"
stands for "forward reflected”, since the algorithm uses a modification of the criterion used in the
fssf-f algorithm.

Usage

fssf_fr(d, nMax, N=-1, Preference = "minimax”, ScaleVector = NULL, Dinit = NULL)

Arguments

d The dimension of the design space.

nMax The largest design size required by the user.

N Size of the candidate set used to generate the design points. -1 corresponds to
the default setting, and the candidate set size will be calculated as 1000 x d +
2 x nMax. Using large N will make the design more space-filling, but will slow
down the program.

Preference Choosing Preference as "minimax" will produce a design that leaves small

holes in the design space, especially for the early design points, with the cost
that design points may be closer to each other than the other option. Choosing
Preference as "maximin" will produce a design that leaves a little larger holes
than the other option, but the design points will be further away from each other.

ScaleVector Array of the lengthscale parameters of different inputs. Default is NULL, which
corresponds to the ScaleVector being a unit vector of length d. When ScaleVector

is not NULL, for instance, ScaleVector is (61, - ,6,), the distance between
2
point (z1,- -+ ,z4) and point (y1, - - - , yq) will be computed as 2?21 (%0_7%)
J

Dinit Numerical Matrix with n;,,;+ rows and d columns, where n;,,;; is a user-specified
parameter. This is an optional initial design with size n;,;; provided by the user.
Default is NULL, which corresponds to no initial design. If Dinit is not NULL,
then the algorithm will select nMax additional design points taking into account
of this initial design.

Value

A nMazx x d matrix with the i*" row corresponding to the i design point.

Author(s)

Boyang Shang <boyangshang2015@u.northwestern.edu>
Daniel W. Apley <apley@northwestern.edu>

fssf _fr 7

References

Shang, B. and Apley, D.W. (2019), "Large-Scale Fully-Sequential Space-filling Algorithms for
Computer Experiments", Journal of Quality Technology (in press). doi:10.1080/00224065.2019.1705207.

Kennard, R.W. and Stone, L.A. (1969). "Computer aided design of experiments". Technometrics
11.1, pp. 137-148.

Examples

##Generate a design using the fssf_fr function.
Design <- fssf_fr(d=2, nMax = 320)
plot(Design[,1], Design[,2])

##Generate a design using the fssf_fr function with scaling vector and no initial design.
d=2

n = 100

ScaleVector = c(1.0, 20.0)*0.5

Design = fssf_fr(d = d, nMax = n, ScaleVector = ScaleVector)

plot(Design[,1], Design[,2])

##Generate a design using the fssf_fr function with a scaling vector and with an initial design
d=2

n =100

Dinit = fssf_fr(d=2, nMax = 40)

ScaleVector = c(1.0, 20.0)*0.5

Design = fssf_fr(d = d, nMax = n, ScaleVector = ScaleVector, Dinit = Dinit)
plot(Design[,1], Design[,2])

points(Dinit[,1], Dinit[,2], col="red")

Index

FSSF (FSSF-package), 2
FSSF-package, 2
fssf_b, 3

fssf_f,4

fssf_fr,5

	FSSF-package
	fssf_b
	fssf_f
	fssf_fr
	Index

