Package ‘FLAME’

January 20, 2025

Type Package
Title Interpretable Matching for Causal Inference

Version 2.1.1
URL https://almost-matching-exactly.github.iohttps://vittorioorlandi.github.io/

BugReports https://github.com/vittorioorlandi/FLAME/issues

Description Efficient implementations of the algorithms in the
Almost-Matching-Exactly framework for interpretable matching in causal
inference. These algorithms match units via a learned, weighted Hamming
distance that determines which covariates are more important to match on.

For more information and examples, see the Almost-Matching-Exactly website.

License MIT + file LICENSE

Encoding UTF-8

Imports glmnet, gmp

RoxygenNote 7.1.1

Suggests nnet, knitr, mice, rmarkdown, testthat, xgboost
VignetteBuilder knitr

NeedsCompilation no

Author Vittorio Orlandi [aut, cre],
Sudeepa Roy [aut],
Cynthia Rudin [aut],
Alexander Volfovsky [aut]

Maintainer Vittorio Orlandi <almost.matching.exactly@gmail.com>
Repository CRAN
Date/Publication 2021-12-07 22:50:02 UTC

Contents

https://almost-matching-exactly.github.io
https://vittorioorlandi.github.io/
https://github.com/vittorioorlandi/FLAME/issues

2 AME
gen_data L e e
MG . . e e
plotame
SUMMATY.AME .« « . o v v v e
Index
AME Almost Matching Exactly (AME) Algorithms for Discrete, Observa-
tional Data
Description
Almost Matching Exactly (AME) Algorithms for Discrete, Observational Data
Usage
FLAME
data,
holdout = 0.1,
C=20.1,
treated_column_name = "treated”,
outcome_column_name = "outcome”,

weights = NULL,

PE_method = "ridge”,
user_PE_fit = NULL,
user_PE_fit_params = NULL,
user_PE_predict = NULL,
user_PE_predict_params = NULL,
replace = FALSE,
estimate_CATEs = FALSE,
verbose = 2,

return_pe = FALSE,

return_bf = FALSE,
early_stop_iterations = Inf,
early_stop_epsilon = 0.25,
early_stop_control
early_stop_treated
early_stop_pe = Inf,

early_stop_bf = 0,

missing_data = c("none”, "drop"”, "keep”, "impute"),
missing_holdout = c("none”, "drop", "impute"),
missing_data_imputations = 1,
missing_holdout_imputations = 5,
impute_with_treatment = TRUE,

impute_with_outcome = FALSE

1l
[N

AME 3
DAME (
data,
holdout = 0.1,
treated_column_name = "treated”,
outcome_column_name = "outcome”,

weights = NULL,
PE_method = "ridge",

n_flame_iters
user_PE_fit =

:@,
NULL,

user_PE_fit_params = NULL,
user_PE_predict = NULL,
user_PE_predict_params = NULL,
replace = FALSE,
estimate_CATEs = FALSE,

verbose = 2,

return_pe = FALSE,
return_bf = FALSE,
early_stop_iterations = Inf,

early_stop_epsilon = @
early_stop_control = 0,
early_stop_treated = @

early_stop_pe

.25,

’

= Inf,

early_stop_bf = 0,
missing_data = c("none”, "drop"”, "keep", "impute"),
missing_holdout = c("none”, "drop", "impute"),

missing_data_imputations = 1,
missing_holdout_imputations = 5,
impute_with_treatment = TRUE,

impute_with_outcome = FALSE

S3 method for class 'ame

print(x, digits

Arguments

data

= getOption("digits”), linewidth = 80, ...)

Data to be matched. Either a data frame or a path to a .csv file to be read into a
data frame. Treatment must be described by a logical or binary numeric column
with name treated_column_name. If supplied, outcome must be described by a
column with name outcome_column_name. The outcome will be treated as con-
tinuous if numeric with more than two values, as binary if a two-level factor or
numeric with values 0 and 1 exclusively, and as multi-class if a factor with more
than two levels. If the outcome column is omitted, matching will be performed
but treatment effect estimation will not be possible. All columns not containing
outcome or treatment will be treated as covariates for matching. Covariates are
assumed to be categorical and will be coerced to factors, though they may be
passed as either factors or numeric; if the former, unused levels will automati-
cally be dropped. If you wish to use continuous covariates for matching, they
should be binned prior to matching.

holdout

AME

Holdout data to be used to compute predictive error, if weights is not supplied.
If a numeric scalar between 0 and 1, that proportion of data will be made into
a holdout set and only the remaining proportion of data will be matched. Oth-
erwise, a data frame or a path to a .csv file. The holdout data must contain
an outcome column with name outcome_column_name; other restrictions on
column types are as for data. Covariate columns must have the same column
names and order as data. This data will not be matched. Defaults to 0.1.

A finite, positive scalar denoting the tradeoff between BF and PE in the FLAME
algorithm. Higher C prioritizes more matches and lower C prioritizes not drop-
ping important covariates. Defaults to 0.1.

treated_column_name

Name of the treatment column in data and holdout. Defaults to ’treated’.

outcome_column_name

weights

PE_method

user_PE_fit

Name of the outcome column in holdout and also in data, if supplied in the
latter. Defaults to "outcome’.

A positive numeric vector representing covariate importances. Supplying this
argument prevents PE from being computed as it determines dropping order by
forcing covariate subsets with lower weights to be dropped first. The weight
of a covariate subset is defined to be the sum of the weights of the constituent
covariates. Ties are broken at random.

Denotes how predictive error (PE) is to be computed. FEither a string — one
of "ridge" (default) or "xgb" — or a function. If "ridge", ridge regression is
used to fit a an outcome regression model via glmnet::cv.glmnet with de-
fault parameters. If "xgb", gradient boosting with a wide range of parameter
values to cross-validate is used via xgboost: :xgb.cv and the best parameters
with respect to RMSE (for continuous outcomes) or misclassification rate (for
binary/multi-class outcomes) are chosen. In both cases, the default predict
method is used to generate in-sample predictions. If a function, denotes a user-
supplied function that should be used for computing PE. This function must be
passed a data frame of covariates as its first argument and a vector of outcome
values as its second argument. It must return a vector of in-sample predictions,
which, if the outcome is binary or multi-class, must be maximum probability
class labels. See below for examples.

Deprecated; use argument ‘PE_method‘ instead. An optional function supplied
by the user that can be used instead of those allowed for by PE_method to fit a
model for the outcome from the covariates. This function will be passed a data
frame of covariates as its first argument and a vector of outcome values as its
second argument. See below for examples. Defaults to NULL.

user_PE_fit_params

user_PE_predict

Deprecated; use argument ‘PE_method* instead. A named list of optional pa-
rameters to be used by user_PE_fit. Defaults to NULL.

Deprecated; use argument ‘PE_method* instead. An optional function sup-
plied by the user that can be used to generate predictions from the output of
user_PE_fit. As its first argument, must take an object of the type returned by
user_PE_fit and as its second, a matrix of values for which to generate pre-
dictions. When the outcome is binary or multi-class, must return the maximum
probability class label. If not supplied, defaults to predict.

AME 5

user_PE_predict_params
Deprecated; use argument ‘PE_method* instead. A named list of optional pa-
rameters to be used by user_PE_predict. Defaults to NULL.

replace A logical scalar. If TRUE, allows the same unit to be matched multiple times,
on different sets of covariates. In this case, the balancing factor for FLAME is
computing by dividing by the total number of treatment (control) units, instead
of the number of unmatched treatment (control) units. Defaults to FALSE.

estimate_CATEs A logical scalar. If TRUE, CATEs for each unit are estimated throughout the
matching procedure, which will be much faster than computing them after a call
to FLAME or DAME for very large inputs. Defaults to FALSE.

verbose Controls how FLAME displays progress while running. If 0, no output. If 1,
only outputs the stopping condition. If 2, outputs the iteration and number of
unmatched units every 5 iterations, and the stopping condition. If 3, outputs
the iteration and number of unmatched units every iteration, and the stopping
condition. Defaults to 2.

return_pe A logical scalar. If TRUE, the predictive error (PE) at each iteration will be
returned. Defaults to FALSE.

return_bf A logical scalar. If TRUE, the balancing factor (BF) at each iteration will be
returned. Defaults to FALSE.

early_stop_iterations
A positive integer, denoting an upper bound on the number of matching rounds
to be performed. If 1, one round of exact matching is performed before stopping.
Defaults to Inf.

early_stop_epsilon
A nonnegative numeric. If fixed covariate weights are passed via weights,
then the algorithm will stop before matching on a covariate set whose error
is above early_stop_epsilon, where in this case the error is defined as: 1 —
weight(covariatesetmatchedon) Jweight(allcovariates). Otherwise, if weights
is NULL, if FLAME or DAME attempts to drop a covariate set that would raise
the PE above (1 + early_stop_epsilon) times the baseline PE (the PE before
any covariates have been dropped), the algorithm will stop. Defaults to 0.25.

early_stop_control, early_stop_treated
If the proportion of control, treated units, respectively, that are unmatched falls
below this value, the matching algorithm will stop. Default to 0.

early_stop_pe Deprecated. A positive numeric. If FLAME attempts to drop a covariate that
would lead to a PE above this value, FLAME stops. Defaults to Inf.

early_stop_bf Deprecated. A numeric value between 0 and 2. If FLAME attempts to drop a
covariate that would lead to a BF below this value, FLAME stops. Defaults to
0.

missing_data Specifies how to handle missingness in data. If 'none’ (default), assumes no
missing data. If ’drop’, effectively drops units with missingness from the data
and does not match them (they will still appear in the matched dataset that is
returned, however). If "keep’, keeps the missing values in the data; in this case,
a unit can only match on sets containing covariates it is not missing. If "impute’,
imputes the missing data via mice: :mice.

6 AME

missing_holdout
Specifies how to handle missingness in holdout. If 'none’ (default), assumes
no missing data; if drop’, drops units with missingness and does not use them
to compute PE; and if "impute’, imputes the missing data via mice: :mice. In
this last case, the PE at an iteration will be given by the average PE across all
imputations.

missing_data_imputations
Defunct. If missing_data = ’impute’, one round of imputation will be per-
formed on data via mice::mice. To view results for multiple imputations,
please wrap calls to FLAME or DAME in a loop. This argument will be removed in
a future release.

missing_holdout_imputations
If missing_holdout =’impute’, performs this many imputations of the missing
data in holdout viamice: :mice. Defaults to 5.

impute_with_treatment, impute_with_outcome
If TRUE, use treatment, outcome, respectively, to impute covariates when either
missing_data or missing_holdout is equal to 'impute'. Default to TRUE,
FALSE, respectively.

n_flame_iters Specifies that this many iterations of FLAME should be run before switching
to DAME. This can be used to speed up the matching procedure as FLAME
rapidly eliminates irrelevant covariates, after which DAME will make higher
quality matches on the remaining variables.

X An object of class ame, returned by a call to FLAME or DAME.
digits Number of significant digits for printing the average treatment effect.
linewidth Maximum number of characters on line; output will be wrapped accordingly.

Additional arguments to be passed to other methods.

Value

An object of type ame, which by default is a list of 4 entries:

data The original data frame with several modifications:

1. An extralogical column, data$matched, that indicates whether or not a unit was matched.

2. An extra numeric column, data$weight, that denotes on how many different sets of
covariates a unit was matched. This will only be greater than 1 when replace = TRUE.

3. The columns denoting treatment and outcome will be moved after all covariate columns.
4. If replace is FALSE, a column containing a matched group identifier for each unit.
5. If, estimate_CATEs = TRUE, a column containing the CATE estimate for each unit.

MGs A list whose i’th entry contains the indices of units in the main matched group of the i’th
unit.

cov_sets A list whose 7’th entry contains the covariates set not matched on in the ¢’th iteration.

info A list containing miscellaneous information about the data and matching specifications. Pri-
marily for use by *. ame methods.

AME 7

Introduction

FLAME and DAME are matching algorithms for observational causal inference on data with dis-
crete (categorical) covariates. They match units that share identical values of certain covariates, as
follows. The algorithms first make any possible exact matches; that is, they match units that share
identical values of all covariates (this is possible because covariates are discrete). They then iter-
atively drop a set of covariates and make any possible matches on the remaining covariates, until
stopping. For each unit, DAME solves an optimization problem that finds the highest quality set
of covariates the unit can be matched to others on, where quality is determined by how well that
set of covariates predicts the outcome. FLAME approximates the solution to the problem solved
by DAME,; at each step, it drops the covariate leading to the smallest drop in match quality M @,
defined as M@ = CBF — PE. Here, PE denotes the predictive error, which measures how im-
portant the dropped covariate is for predicting the outcome. The balancing factor B F' measures the
number of matches formed by dropping that covariate. In this way, FLAME encourages matching
on covariates more important to the outcome and also making many matches. The hyperparameter
C controls the balance between these two objectives. In both cases, a machine learning algorithm
trained on a holdout dataset is responsible for learning the quality / importance of covariates. For
more details on the algorithms, please see the vignette, the FLAME paper here and/or the DAME
paper here.

Stopping Rules

By default, both FLAME and DAME stop when 1. all covariates have been dropped or 2. all treatment
or control units have been matched. This behavior can be modified by the arguments whose pre-
fix is "early_stop". With the exception of early_stop_iterations, all the rules come into play
before the offending covariate set is dropped. For example, if early_stop_control = 9.2 and at
the current iteration, dropping the covariate leading to highest match quality is associated with a
unmatched control proportion of 0.1, FLAME will stop without dropping this covariate.

Missing Data

FLAME and DAME offer functionality for handling missing data in the covariates, for both the data
and holdout sets. This functionality can be specified via the arguments whose prefix is "missing"
or "impute". It allows for ignoring missing data, imputing it, or (for data) not matching on missing
values. If data is imputed, imputation will be done once and the matching algorithm will be run on
the imputed dataset. If holdout is imputed, the predictive error at an iteration will be the average
of predictive errors across all imputed holdout datasets. Units with missingness in the treatment or
outcome will be dropped.

Examples

Not run:
data <- gen_data()
holdout <- gen_data()
FLAME with replacement, stopping after dropping a single covariate
FLAME_out <- FLAME(data = data, holdout = holdout,
replace = TRUE, early_stop_iterations = 2)

Use a linear model to compute predictive error. Call DAME without
replacement, returning predictive error at each iteration.

https://arxiv.org/pdf/1707.06315.pdf
https://arxiv.org/pdf/1806.06802.pdf

8 ATE

my_PE <- function(X, Y) {
return(Im(Y ~ ., as.data.frame(chind(X, Y = Y)))$fitted.values)
3
DAME_out <- DAME(data = data, holdout = holdout,
PE_method = my_PE, return_PE = TRUE)

End(Not run)

ATE Average Treatment Effect estimates

Description

These functions are deprecated and will be made defunct at a later release. See summary.ame for
average treatment effects estimates and their variance.

Usage

ATE (ame_out)
ATT(ame_out)

ATC(ame_out)

Arguments

ame_out An object of class ame.

Details

ATE, ATT, and ATC estimate the average treatment effect (ATE), average treatment effect on the
treated (ATT), and average treatment effect on the controls (ATC), respectively, of a matched
dataset.

The ATE is estimated as the average CATE estimate across all matched units in the data, while the
ATT and ATC average only across matched treated or matched control units, respectively.

See Also

CATE

CATE 9

CATE Conditional Average Treatment Effects

Description

CATE returns an estimate of the conditional average treatment effect for the subgroup defined by
units.

Usage

CATE(units, ame_out)

Arguments
units A vector of units whose CATE estimates are desired.
ame_out An object of class ame.

Details

This function returns CATE estimates and the estimated variances of such estimates for units of
interest. The CATE of a given unit is estimated by the difference between the average treated
and the average control outcome in that unit’s main matched group. As shown by Morucci 2021,
under standard regularity conditions, such an estimator is asymptotically normal and unbiased for
the true CATE, with a variance that can be estimated by the sum of the variance of treated and
control outcomes in the matched group, each normalized by the number of treated and control units
in the matched group, respectively. Note that CATEs cannot be estimated for unmatched units
and estimator variances cannot be computed for units whose main matched group only contains
a single treated or control unit. Note also that these CATE estimates differ from those that are
used to compute average treatment effects in print.ame and summary.ame and from those that
will be returned in ame_out$data$CATE if estimate_CATEs = TRUE. For a treated (control) unit 7,
the latter estimate the treated (control) outcome conditioned on X = z; simply as Y;, and do not
average across other treated (control) units in the matched group as is done here. This averaging is
necessary in order to compute variance estimates. The different estimates can always be manually
compared, though they are the same in expectation (assuming mean 0 noise) and we expect them to
be similar in practice, in the absence of large noise.

Lastly, note that the units argument refers to units with respect to rownames(ame_out$data).
Typically, this will also correspond to the indexing of the data (i.e. passing units =3 will return
the matched group of the 3rd unit in the matching data). However, if a separate holdout set was
not passed to the matching algorithm or if the original matching data had rownames other than
1:nrow(data), then this is not the case.

Value

A matrix whose columns correspond to CATE estimates and their variances and whose rows corre-
spond to queried units. NA’s therein correspond to inestimable quantities.

10 gen_data

See Also

FLAME, DAME

Examples

Not run:

data <- gen_data()

holdout <- gen_data()

FLAME_out <- FLAME(data = data, holdout = holdout)
CATE(1:5, FLAME_out)

End(Not run)

gen_data Generate Toy Data for Matching

Description

gen_data generates toy data that can be used to explore FLAME and DAME functionality.

Usage
gen_data(n = 250, p = 5, write = FALSE, path = getwd(), filename = "AME.csv")

Arguments
n Number of units desired in the data set. Defaults to 250.
p Number of covariates in the data set. Must be greater than 2. Defaults to 5.
write A logical scalar. If TRUE, the resulting data is stored as a .csv file as specified by
arguments path and filename. Defaults to FALSE.
path The path to the location where the data should be written if write = TRUE. De-
faults to getwd().
filename The name of the file to which the data should be written if write = TRUE. De-
faults to AME.csv.
Details

gen_data simulates data in the format accepted by FLAME and 1ink{DAME}. Covariates X, and
treatment 7" are both independently generated according to a Bernoulli(0.5) distribution. The out-
come Y is generated according to Y = 15X — 10X5 + 5X35 + 5T + ¢, where € ~ N(0, I,,). Thus,
the value of p must be at least 3 and any additional covariates beyond X7, X5, X3 are irrelevant.

Value

A data frame that may be passed to FLAME or DAME. Covariates are numeric, treatment is binary
numeric and outcome is numeric.

MG 11

MG Matched Groups

Description

MG returns the matched groups of the supplied units.

Usage

MG(units, ame_out, multiple = FALSE, id_only = FALSE, index_only)

Arguments
units A vector of units whose matched groups are desired.
ame_out An object of class ame.
multiple A logical scalar. If FALSE (default), then MG will only return the main matched
group for each unit. See below for details. Cannot be set to TRUE if ame_out
was generated without replacement.
id_only A logical scalar. If TRUE, then only the IDs of the units in each matched group
are returned, and not their treatment, outcome, or covariate information.
index_only Defunct. Use ‘id_only‘ instead.
Details

The units argument refers to units with respect to rownames (ame_out$data). Typically, this will
also correspond to the indexing of the data (i.e. passing units = 3 will return the matched group of
the 3rd unit in the matching data). However, if a separate holdout set was not passed to the matching
algorithm or if the original matching data had rownames other than 1:nrow(data), then this is not
the case.

The multiple argument toggles whether only a unit’s main matched group (MMG) or all matched
groups a unit is part of should be returned. A unit’s MMG contains its highest quality matches (that
is, the units with which it first matched in the sequence of considered covariate sets). If the original
call that generated ame_out specified replace = FALSE then units only are part of one matched
group (which is also their MMG) and multiple must be set to FALSE.

Value

A list of length length(units), each entry of which corresponds to a different unit in units. For
matched units, if multiple = FALSE, each entry is 1. a data frame containing the treatment and
outcome information of members of the matched group, along with covariates they were matched
on if id_only = FALSE or 2. a vector of the IDs of matched units if id_only = TRUE . If multiple
= TRUE, each entry of the returned list is a list containing the previously described information, but
with each entry corresponding to a different matched group. In either case, entries corresponding
to unmatched units are NULL.

12 plot.ame

Examples

Not run:

data <- gen_data()

holdout <- gen_data()

FLAME_out <- FLAME(data = data, holdout = holdout, replace = TRUE)

Only the main matched group of unit 1
MG(1, FLAME_out, multiple = F)

All matched groups of unit 1
MG(1, FLAME_out, multiple = T)

End(Not run)

plot.ame Plot a summary of FLAME or DAME

Description

Plot information about numbers of covariates matched on, CATE estimates, and covariate set drop-
ping order after a call to FLAME or DAME.

Usage
S3 method for class 'ame'
plot(x, which_plots = c(1, 2, 3, 4), ...)
Arguments
X An object of class ame, returned by a call to FLAME or 1ink{DAME}.

which_plots A vector describing which plots should be displayed. See details.

Additional arguments to passed on to other methods.

Details

plot.ame displays four plots by default. The first contains information on the number of covariates
that matched groups were formed on, and thereby gives some indication of the quality of matched
groups across the matched data. The second plots matched group sizes against CATEs, which can
be useful for determining whether higher quality matched groups yield different treatment effect
estimates than lower quality ones. The third plots a density estimate of the estimated CATE distri-
bution. The fourth displays a heatmap showing which covariates were dropped (shown in black)
throughout the matching procedure.

summary.ame 13

summary . ame Summarize the output of FLAME or DAME

Description

These methods create and print objects of class summary . ame containing information on the num-
bers of units matched by the AME algorithm, matched groups formed, and, if applicable, average
treatment effects.

Usage

S3 method for class 'ame'
summary (object, ...)

S3 method for class 'summary.ame'

print(x, digits =3, ...)
Arguments
object An object of class ame, returned by a call to FLAME or DAME
Additional arguments to be passed on to other methods.
X An object of class summary . ame, returned by a call to summary . ame
digits Number of significant digits for printing the average treatment effect estimates

and their variances.

Details

The average treatment effect (ATE) is estimated as the average CATE estimate across all matched
units in the data, while the average treatment effect on the treated (ATT) and average treatment effect
on controls (ATC) average only across matched treated or matched control units, respectively. Vari-
ances of these estimates are computed as in Abadie, Drukker, Herr, and Imbens (The Stata Journal,
2004) assuming constant treatment effect and homoscedasticity. Note that the implemented estima-
tor is not =asymptotically normal and so in particular, asymptotically valid confidence intervals or
hypothesis tests cannot be conducted on its basis. In the future, the estimation procedure will be
changed to employ the nonparametric regression bias adjustment estimator of Abadie and Imbens
2011 which is asymptotically normal.

Value
A list of type summary . ame with the following entries:

MG A list with the number and median size of matched groups formed. Additionally, two of the
highest quality matched groups formed. Quality is determined first by number of covariates
matched on and second by matched group size.

n_matches A matrix detailing the number of treated and control units matched.

TEs If the matching data had a continuous outcome, estimates of the ATE, ATT, and ATC and the
corresponding variance of the estimates.

Index

AME, 2
ATC (ATE), 8
ATE, 8
ATT (ATE), 8

CATE, 8,9

DAME, 6, 10, 13
DAME (AME), 2

FLAME, 6, 10, 12, 13
FLAME (AME), 2

gen_data, 10
MG, 11

plot.ame, 12
print.ame (AME), 2
print.summary.ame (summary.ame), 13

summary.ame, 13, 13

14

	AME
	ATE
	CATE
	gen_data
	MG
	plot.ame
	summary.ame
	Index

