Package 'FBMS'

February 26, 2025

Type Package Title Flexible Bayesian Model Selection and Model Averaging Version 1.1 Date 2025-02-26 **Encoding** UTF-8 Language en-US Description Implements the Mode Jumping Markov Chain Monte Carlo algorithm described in <doi:10.1016/j.csda.2018.05.020> and its Genetically Modified counterpart described in <doi:10.1613/jair.1.13047> as well as the sub-sampling versions described in <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging. License GPL-2 **Depends** R (>= 3.5.0), fastglm, GenSA, parallel, methods, stats, graphics, r2r Imports Rcpp LinkingTo Rcpp Suggests testthat, knitr, rmarkdown, markdown RoxygenNote 7.3.2 VignetteBuilder knitr LazyData true NeedsCompilation yes Author Jon Lachmann [cre, aut], Aliaksandr Hubin [aut] Maintainer Jon Lachmann < jon@lachmann.nu> **Repository** CRAN Date/Publication 2025-02-26 21:00:02 UTC 1

Contents

FBMS-package	. 3
abalone	. 4
preastcancer	. 5
compute_effects	
cos_deg	
liagn_plot	
r_{r}	
exoplanet	
exp_dbl	
fbms	
gauss	
gaussian.loglik	
gaussian.loglik.alpha	
gelu	
gen.params.gmjmcmc	
gen.params.mjmcmc	
gen.probs.gmjmcmc	
gen.probs.mjmcmc	
get.best.model	
get.mpm.model	
gmjmcmc	
gmjmcmc.parallel	
ns	
inear.g.prior.loglik	
ogistic.loglik	
ogistic.loglik.ala	
ogistic.loglik.alpha	
og_prior	. 29
marginal.probs	
merge_results	. 30
njmcmc	. 32
njmcmc.parallel	. 33
model.string	. 34
ngelu	
nhs	. 35
10t	. 35
nrelu	
50	. 36
	. 37
50p0	. 37
p0p05	. 38
00p1	. 38
$p_{0}p_{2}$. 39
b0p3	
p0pm05	
50pm1	. 40
	0

p0pm2	41
p2	41
Pe i i i i i i i i i i i i i i i i i i i	42
plot.gmjmcmc	42
plot.gmjmcmc_merged	43
plot.mjmcmc	44
plot.mjmcmc_parallel	45
pm05	45
pm1	46
pm2	46
predict.bgnlm_model	47
predict.gmjmcmc	48
predict.gmjmcmc_merged	49
predict.gmjmcmc_parallel	50
predict.mjmcmc	51
predict.mjmcmc_parallel	52
print.feature	53
relu	54
rmclapply	54
SangerData2	55
set.transforms	55
sigmoid	56
sin_deg	57
sqroot	57
string.population	58
string.population.models	58
summary.gmjmcmc	59
summary.gmjmcmc_merged	60
summary.mjmcmc	61
summary.mjmcmc_parallel	62
to23	63
to25	64
to35	64
to72	65
troot	65
	66

Index

FBMS-package

Flexible Bayesian Model Selection and Model Averaging

Description

Implements the Mode Jumping Markov Chain Monte Carlo algorithm described in <doi:10.1016/j.csda.2018.05.020> and its Genetically Modified counterpart described in <doi:10.1613/jair.1.13047> as well as the sub-sampling versions described in <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.

abalone

Author(s)

Maintainer: Jon Lachmann < jon@lachmann.nu>

Authors:

- Jon Lachmann <jon@lachmann.nu>
- Aliaksandr Hubin <aliaksah@math.uio.no>

Other contributors:

- Florian Frommlet <florian.frommlet@meduniwien.ac.at> [contributor]
- Geir Storvik <geirs@math.uio.no> [contributor]

References

Lachmann, J., Storvik, G., Frommlet, F., & Hubin, A. (2022). A subsampling approach for Bayesian model selection. International Journal of Approximate Reasoning, 151, 33-63. Elsevier.

Hubin, A., Storvik, G., & Frommlet, F. (2021). Flexible Bayesian Nonlinear Model Configuration. Journal of Artificial Intelligence Research, 72, 901-942.

Hubin, A., Frommlet, F., & Storvik, G. (2021). Reversible Genetically Modified MJMCMC. Under review in EYSM 2021.

Hubin, A., & Storvik, G. (2018). Mode jumping MCMC for Bayesian variable selection in GLMM. Computational Statistics & Data Analysis, 127, 281-297. Elsevier.

abalone

Physical measurements of 4177 abalones, a species of sea snail.

Description

%% ~~ A concise (1-5 lines) description of the dataset. ~~

Format

A data frame with 4177 observations on the following 9 variables.

Diameter Diameter Perpendicular to length, continuous

Height Height with with meat in shell, continuous.

Length Longest shell measurement, continuous

Rings +1.5 gives the age in years, integer

Sex Sex of the abalone, F is female, M male, and I infant, categorical.

Weight_S Grams after being dried, continuous.

Weight_Sh Grams weight of meat, continuous.

Weight_V Grams gut weight (after bleeding), continuous.

Weight_W Grams whole abalone, continuous.

4

breastcancer

Details

See the web page https://archive.ics.uci.edu/ml/datasets/Abalone for more information about the data set.

Source

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository https://archive.ics.uci. edu/ml/. Irvine, CA: University of California, School of Information and Computer Science.

Examples

```
data(abalone)
## maybe str(abalone) ; plot(abalone) ...
```

breastcancer

Breast Cancer Wisconsin (Diagnostic) Data Set

Description

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Usage

```
data(breastcancer)
```

Format

A data frame with 569 rows and 32 variables

Details

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) (K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992), a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: (K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34).

The variables are as follows:

- ID number
- Diagnosis (1 = malignant, 0 = benign)
- · Ten real-valued features are computed for each cell nucleus

Source

Dataset downloaded from the UCI Machine Learning Repository. http://archive.ics.uci. edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Creators:

- 1. Dr. William H. Wolberg, General Surgery Dept. University of Wisconsin, Clinical Sciences Center Madison, WI 53792 wolberg 'at' eagle.surgery.wisc.edu
- W. Nick Street, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 street 'at' cs.wisc.edu 608-262-6619
- 3. Olvi L. Mangasarian, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 olvi 'at' cs.wisc.edu

Donor: Nick Street

References

W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

Lichman, M. (2013). UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science.

compute_effects Compute effects for specified in labels covariates using a fitted model.

Description

This function computes model averaged effects for specified covariates using a fitted model object. The effects are expected change in the BMA linear predictor having an increase of the corresponding covariate by one unit, while other covariates are fixed to 0. Users can provide custom labels and specify quantiles for the computation of effects.

Usage

```
compute_effects(object, labels, quantiles = c(0.025, 0.5, 0.975))
```

Arguments

object	A fitted model object, typically the result of a regression or predictive modeling.
labels	A vector of labels for which effects are to be computed.
quantiles	A numeric vector specifying the quantiles to be calculated. Default is $c(0.025, 0.5, 0.975)$.

Value

A matrix of treatment effects for the specified labels, with rows corresponding to labels and columns to quantiles.

cos_deg

See Also

predict

Examples

```
data <- data.frame(matrix(rnorm(600), 100))
result <- mjmcmc.parallel(runs = 2, cores = 1, data, gaussian.loglik)
compute_effects(result,labels = names(data)[-1])</pre>
```

cos_deg Cosine function for degrees

Description

Cosine function for degrees

Usage

cos_deg(x)

Arguments

x The vector of values in degrees

Value

The cosine of x

Examples

cos_deg(0)

diagn_plot	Plot convergence of best/median/mean/other summary log posteriors
	in time

Description

Plot convergence of best/median/mean/other summary log posteriors in time

Usage

```
diagn_plot(res, FUN = median, conf = 0.95, burnin = 0, window = 5, ylim = NULL)
```

Arguments

res	Object corresponding gmjmcmc output
FUN	The summary statistics to check convergence
conf	which confidence intervals to plot
burnin	how many first populations to skip
window	sliding window for computing the standard deviation
ylim	limits for the plotting range, if unspecified, min and max of confidence intervals will be used

Value

A list of summary statistics for checking convergence with given confidence intervals

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
diagnstats <- diagn_plot(result)</pre>
```

erf

erf function

Description

erf function

Usage

erf(x)

Arguments

x The vector of values

Value

2 * pnorm(x * sqrt(2)) - 1

Examples

erf(2)

exoplanet

Description

Data fields include planet and host star attributes.

Usage

```
data(exoplanet)
```

Format

A data frame with 223 rows and 11 variables

Details

The variables are as follows:

- TypeFlag: Flag indicating the type of data
- PlanetaryMassJpt: Mass of the planetary object in Jupiter masses
- RadiusJpt: Radius of the planetary object in Jupiter radii
- PeriodDays: Orbital period of the planetary object in days
- · SemiMajorAxisAU: Semi-major axis of the planetary object's orbit in astronomical units
- · Eccentricity: Eccentricity of the planetary object's orbit
- · HostStarMassSlrMass: Mass of the host star in solar masses
- HostStarRadiusSlrRad: Radius of the host star in solar radii
- · HostStarMetallicity: Metallicity of the host star
- HostStarTempK: Effective temperature of the host star in Kelvin
- PlanetaryDensJpt: Density of the planetary object up to a constant

Source

Dataset downloaded from the Open Exoplanet Catalogue Repository. https://github.com/OpenExoplanetCatalogue/oec_tables/

Creators:

1. Prof. Hanno Rein, Department for Physical and Environmental Sciences. University of Toronto at Scarborough Toronto, Ontario M1C 1A4 hanno.rein 'at' utoronto.ca

exp_dbl

Description

Double exponential function

Usage

 $exp_dbl(x)$

Arguments

х

The vector of values

Value

 $e^{-abs(x)}$

Examples

exp_dbl(2)

fbms	Fit a BGNLM model using Genetically Modified Mode Jumping
	Markov Chain Monte Carlo (MCMC) sampling. Or Fit a BGLM model
	using Modified Mode Jumping Markov Chain Monte Carlo (MCMC)
	sampling.

Description

This function fits a model using the relevant MCMC sampling. The user can specify the formula, family, data, transforms, and other parameters to customize the model.

Usage

```
fbms(
   formula = NULL,
   family = "gaussian",
   data = NULL,
   impute = FALSE,
   loglik.pi = gaussian.loglik,
   method = "mjmcmc",
   verbose = TRUE,
   ...
)
```

fbms

Arguments

formula	A formula object specifying the model structure. Default is NULL.
family	The distribution family of the response variable. Currently supports "gaussian", "binomial" and "custom". Default is "gaussian".
data	A data frame containing the variables in the model. If NULL, the variables are taken from the environment of the formula. Default is NULL.
impute	TRUE means imputation combined with adding a dummy column with indica- tors of imputed values, FALSE (default) means only full data is used.
loglik.pi	Custom function to compute the logarithm of the posterior mode based on log- arithm of marginal likelihood and logarithm of prior functions (needs specifica- tion only used if family = "custom")
method	Which fitting algorithm should be used, currently implemented options include "gmjmcmc", "gmjmcmc.parallel", "mjmcmc" and "mjmcmc.parallel" with "mjmcmc" being the default and 'mjmcmc' means that only linear models will be estimated
verbose	If TRUE, print detailed progress information during the fitting process. Default is TRUE.
	Additional parameters to be passed to the underlying method.

Value

An object containing the results of the fitted model and MCMC sampling.

See Also

mjmcmc, gmjmcmc.parallel

Examples

```
# Fit a Gaussian multivariate time series model
fbms_result <- fbms(
   X1 ~ .,
   family = "gaussian",
   method = "gmjmcmc.parallel",
   data = data.frame(matrix(rnorm(600), 100)),
   transforms = c("sin","cos"),
   P = 10,
   runs = 1,
   cores = 1
)
summary(fbms_result)
plot(fbms_result)</pre>
```

gauss Gaussian function Description Gaussian function Usage gauss(x) Arguments The vector of values х Value e^(-x^2) Examples gauss(2) Log likelihood function for gaussian regression with a prior gaussian.loglik $p(m)=r*sum(total_width).$

Description

Log likelihood function for gaussian regression with a prior $p(m)=r*sum(total_width)$.

Usage

```
gaussian.loglik(y, x, model, complex, params)
```

Arguments

У	A vector containing the dependent variable
x	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features
params	A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
gaussian.loglik(rnorm(100), matrix(rnorm(100)), TRUE, list(oc = 1), NULL)
```

gaussian.loglik.alpha Log likelihood function for gaussian regression for alpha calculation This function is just the bare likelihood function Note that it only gives a proportional value and is equivalent to least squares

Description

Log likelihood function for gaussian regression for alpha calculation This function is just the bare likelihood function Note that it only gives a proportional value and is equivalent to least squares

Usage

gaussian.loglik.alpha(a, data, mu_func)

Arguments

а	A vector of the alphas to be used
data	The data to be used for calculation
mu_func	The function linking the mean to the covariates, as a string with the alphas as a[i].

Value

A numeric with the log likelihood.

Examples

```
## Not run:
gaussian.loglik.alpha(my_alpha,my_data,my_mu)
```

End(Not run)

gelu

GELU function

Description

GELU function

Usage

gelu(x)

Arguments ×

The vector of values

Value

x*pnorm(x)

Examples

gelu(2)

gen.params.gmjmcmc Generate a parameter list for GMJMCMC (Genetically Modified MJMCMC)

Description

This function generates the full list of parameters required for the Generalized Mode Jumping Markov Chain Monte Carlo (GMJMCMC) algorithm, building upon the parameters from gen.params.mjmcmc. The generated parameter list includes feature generation settings, population control parameters, and optimization controls for the search process.

Usage

gen.params.gmjmcmc(data)

Arguments data

A data frame containing the dataset with covariates and response variable.

Value

A list of parameters for controlling GMJMCMC behavior:

Feature Generation Parameters (feat)

- feat\$D Maximum feature depth, default 5. Limits the number of recursive feature transformations. For fractional polynomials, it is recommended to set D = 1.
- feat\$L Maximum number of features per model, default 15. Increase for complex models.
- feat\$alpha Strategy for generating \$alpha\$ parameters in non-linear projections:

"unit" (Default) Sets all components to 1.

"deep" Optimizes \$alpha\$ across all feature layers.

- "random" Samples \$alpha\$ from the prior for a fully Bayesian approach.
- feat\$pop.max Maximum feature population size per iteration. Defaults to min(100, as.integer(1.5
 * p)), where p is the number of covariates.
- feat\$keep.org Logical flag; if TRUE, original covariates remain in every population (default FALSE).
- feat\$prel.filter Threshold for pre-filtering covariates before the first population generation. Default 0 disables filtering.
- feat\$prel.select Indices of covariates to include initially. Default NULL includes all.
- feat\$keep.min Minimum proportion of features to retain during population updates. Default 0.8.
- feat\$eps Threshold for feature inclusion probability during generation. Default 0.05.
- feat\$check.col Logical; if TRUE (default), checks for collinearity during feature generation.
- feat\$max.proj.size Maximum number of existing features used to construct a new one. Default
 15.

Scaling Option

rescale.large Logical flag for rescaling large data values for numerical stability. Default FALSE.

MJMCMC Parameters

- burn_in The burn-in period for the MJMCMC algorithm, which is set to 100 iterations by default.
- mh A list containing parameters for the regular Metropolis-Hastings (MH) kernel:
 - neigh.size The size of the neighborhood for MH proposals with fixed proposal size, default set to 1.
 - neigh.min The minimum neighborhood size for random proposal size, default set to 1.
 - neigh.max The maximum neighborhood size for random proposal size, default set to 2.
- large A list containing parameters for the large jump kernel:
 - neigh.size The size of the neighborhood for large jump proposals with fixed neighborhood size, default set to the smaller of $0.35 \times p$ and 35, where p is the number of covariates.
 - neigh.min The minimum neighborhood size for large jumps with random size of the neighborhood, default set to the smaller of 0.25 * p and 25.
 - neigh.max The maximum neighborhood size for large jumps with random size of the neighborhood, default set to the smaller of 0.45 * p and 45.
- random A list containing a parameter for the randomization kernel:

prob The small probability of changing the component around the mode, default set to 0.01.

sa A list containing parameters for the simulated annealing kernel:

- probs A numeric vector of length 6 specifying the probabilities for different types of proposals in the simulated annealing algorithm.
- neigh.size The size of the neighborhood for the simulated annealing proposals, default set to 1.
- neigh.min The minimum neighborhood size, default set to 1.
- neigh.max The maximum neighborhood size, default set to 2.
- t.init The initial temperature for simulated annealing, default set to 10.
- t.min The minimum temperature for simulated annealing, default set to 0.0001.
- dt The temperature decrement factor, default set to 3.
- M The number of iterations in the simulated annealing process, default set to 12.
- greedy A list containing parameters for the greedy algorithm:
 - probs A numeric vector of length 6 specifying the probabilities for different types of proposals in the greedy algorithm.
 - neigh.size The size of the neighborhood for greedy algorithm proposals, set to 1.
 - neigh.min The minimum neighborhood size for greedy proposals, set to 1.
 - neigh.max The maximum neighborhood size for greedy proposals, set to 2.
 - steps The number of steps for the greedy algorithm, set to 20.
 - tries The number of tries for the greedy algorithm, set to 3.
- loglik A list to store log-likelihood values, which is by default empty.

See Also

gen.params.mjmcmc,gmjmcmc

Examples

```
data <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100))
params <- gen.params.gmjmcmc(data)
str(params)</pre>
```

gen.params.mjmcmc Generate a parameter list for MJMCMC (Mode Jumping MCMC)

Description

Generate a parameter list for MJMCMC (Mode Jumping MCMC)

Usage

```
gen.params.mjmcmc(data)
```

Arguments

data The dataset that will be used in the algorithm

Value

A list of parameters to use when running the mjmcmc function.

The list contains the following elements:

- burn_in The burn-in period for the MJMCMC algorithm, which is set to 100 iterations by default.
- mh A list containing parameters for the regular Metropolis-Hastings (MH) kernel:
 - neigh.size The size of the neighborhood for MH proposals with fixed proposal size, default set to 1.
 - neigh.min The minimum neighborhood size for random proposal size, default set to 1.
 - neigh.max The maximum neighborhood size for random proposal size, default set to 2.
- large A list containing parameters for the large jump kernel:
 - neigh.size The size of the neighborhood for large jump proposals with fixed neighborhood size, default set to the smaller of $0.35 \times p$ and 35, where p is the number of covariates.
 - neigh.min The minimum neighborhood size for large jumps with random size of the neighborhood, default set to the smaller of $0.25 \times p$ and 25.
 - neigh.max The maximum neighborhood size for large jumps with random size of the neighborhood, default set to the smaller of $0.45 \times p$ and 45.
- random A list containing a parameter for the randomization kernel:

prob The small probability of changing the component around the mode, default set to 0.01.

- sa A list containing parameters for the simulated annealing kernel:
 - probs A numeric vector of length 6 specifying the probabilities for different types of proposals in the simulated annealing algorithm.
 - neigh.size The size of the neighborhood for the simulated annealing proposals, default set to 1.
 - neigh.min The minimum neighborhood size, default set to 1.
 - neigh.max The maximum neighborhood size, default set to 2.
 - t.init The initial temperature for simulated annealing, default set to 10.
 - t.min The minimum temperature for simulated annealing, default set to 0.0001.
 - dt The temperature decrement factor, default set to 3.
 - M The number of iterations in the simulated annealing process, default set to 12.
- greedy A list containing parameters for the greedy algorithm:
 - probs A numeric vector of length 6 specifying the probabilities for different types of proposals in the greedy algorithm.
 - neigh.size The size of the neighborhood for greedy algorithm proposals, set to 1.
 - neigh.min The minimum neighborhood size for greedy proposals, set to 1.
 - neigh.max The maximum neighborhood size for greedy proposals, set to 2.
 - steps The number of steps for the greedy algorithm, set to 20.
 - tries The number of tries for the greedy algorithm, set to 3.
- loglik A list to store log-likelihood values, which is by default empty.

Note that the *\$loglik* item is an empty list, which is passed to the log likelihood function of the model, intended to store parameters that the estimator function should use.

gen.params.mjmcmc(matrix(rnorm(600), 100))

gen.probs.gmjmcmc Generate a probability list for GMJMCMC (Genetically Modified MJMCMC)

Description

Generate a probability list for GMJMCMC (Genetically Modified MJMCMC)

Usage

gen.probs.gmjmcmc(transforms)

Arguments

transforms A list of the transformations used (to get the count).

Value

A named list with eight elements:

- large The probability of a large jump kernel in the MJMCMC algorithm. With this probability, a large jump proposal will be made; otherwise, a local Metropolis-Hastings proposal will be used. One needs to consider good mixing around and between modes when specifying this parameter.
- large.kern A numeric vector of length 4 specifying the probabilities for different types of large jump kernels. The four components correspond to:
 - 1. Random change with random neighborhood size
 - 2. Random change with fixed neighborhood size
 - 3. Swap with random neighborhood size
 - 4. Swap with fixed neighborhood size

These probabilities will be automatically normalized if they do not sum to 1.

- localopt.kern A numeric vector of length 2 specifying the probabilities for different local optimization methods during large jumps. The first value represents the probability of using simulated annealing, while the second corresponds to the greedy optimizer. These probabilities will be normalized if needed.
- random.kern A numeric vector of length 2 specifying the probabilities of first two randomization kernels applied after local optimization. These correspond to the same kernel types as in large.kern but are used for local proposals where type and 2 only are allowed.
- mh A numeric vector specifying the probabilities of different standard Metropolis-Hastings kernels, where the first four as the same as for other kernels, while fifths and sixes components are uniform addition/deletion of a covariate.

18

- filter A numeric value controlling the filtering of features with low posterior probabilities in the current population. Features with posterior probabilities below this threshold will be removed with a probability proportional to 1 P (feature | population).
- gen A numeric vector of length 4 specifying the probabilities of different feature generation operators. These determine how new nonlinear features are introduced. The first entry gives the probability for an interaction, followed by modification, nonlinear projection, and a mutation operator, which reintroduces discarded features. If these probabilities do not sum to 1, they are automatically normalized.
- trans A numeric vector of length equal to the number of elements in transforms, specifying the probabilities of selecting each nonlinear transformation from \mathcal{G} . By default, a uniform distribution is assigned, but this can be modified by providing a specific transforms argument.

gen.probs.gmjmcmc(c("p0", "exp_dbl"))

gen.probs.mjmcmc Generate a probability list for MJMCMC (Mode Jumping MCMC)

Description

Generate a probability list for MJMCMC (Mode Jumping MCMC)

Usage

gen.probs.mjmcmc()

Value

A named list with five elements:

- large A numeric value representing the probability of making a large jump. If a large jump is not made, a local MH (Metropolis-Hastings) proposal is used instead.
- large.kern A numeric vector of length 4 specifying the probabilities for different types of large jump kernels. The four components correspond to:
 - 1. Random change with random neighborhood size
 - 2. Random change with fixed neighborhood size
 - 3. Swap with random neighborhood size
 - 4. Swap with fixed neighborhood size

These probabilities will be automatically normalized if they do not sum to 1.

localopt.kern A numeric vector of length 2 specifying the probabilities for different local optimization methods during large jumps. The first value represents the probability of using simulated annealing, while the second corresponds to the greedy optimizer. These probabilities will be normalized if needed.

- random.kern A numeric vector of length 2 specifying the probabilities of different randomization kernels applied after local optimization of type one or two. These correspond to the first two kernel types as in large.kern but are used for local proposals with different neighborhood sizes.
- mh A numeric vector specifying the probabilities of different standard Metropolis-Hastings kernels, where the first four as the same as for other kernels, while fifths and sixes components are uniform addition/deletion of a covariate.

gen.probs.mjmcmc()

get.best.model Extract the Best Model from MJMCMC or GMJMCMC Results

Description

This function retrieves the best model from the results of MJMCMC, MJMCMC parallel, GMJM-CMC, or GMJMCMC merged runs based on the maximum criterion value (crit). The returned list includes the model probability, selected features, criterion value, intercept parameter, and named coefficients.

Usage

```
get.best.model(result, labels = FALSE)
```

Arguments

result	An object of class "mjmcmc", "mjmcmc_parallel", "gmjmcmc", or "gmjmcmc_merged", containing the results from the corresponding model search algorithms.
labels	Logical; if TRUE, uses labeled feature names when naming the model coefficients. Default is FALSE.

Details

The function identifies the best model by selecting the one with the highest crit value. Selection logic depends on the class of the result object:

"mjmcmc" Selects the top model from a single MJMCMC run.

"mjmcmc_parallel" Identifies the best chain, then selects the best model from that chain.

"gmjmcmc" Selects the best population and model within that population.

"gmjmcmc_merged" Finds the best chain and population before extracting the top model.

get.mpm.model

Value

A list containing the details of the best model:

prob A numeric value representing the model's probability.

- model A logical vector indicating which features are included in the best model.
- crit The criterion value used for model selection (e.g., marginal likelihood or posterior probability).

alpha The intercept parameter of the best model.

coefs A named numeric vector of model coefficients, including the intercept and selected features.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
get.best.model(result)</pre>
```

```
get.mpm.model
```

Retrieve the Median Probability Model (MPM)

Description

This function extracts the Median Probability Model (MPM) from a fitted model object. The MPM includes features with marginal posterior inclusion probabilities greater than 0.5. It constructs the corresponding model matrix and computes the model fit using the specified likelihood.

Usage

```
get.mpm.model(
  result,
  y,
  x,
  labels = F,
  family = "gaussian",
  loglik.pi = gaussian.loglik,
  params = NULL
)
```

Arguments

result	A fitted model object (e.g., from mjmcmc, gmjmcmc, or related classes) containing the summary statistics and marginal probabilities.
у	A numeric vector of response values. For family = "binomial", it should con- tain binary (0/1) responses.
x	A data.frame of predictor variables. Columns must correspond to features considered during model fitting.

labels	If specified, custom labels of covariates can be used. Default is FALSE.
family	Character string specifying the model family. Supported options are:
	• "gaussian" (default) - for continuous outcomes.
	 "binomial" - for binary outcomes.
	• "custom" - for user-defined likelihood functions.
	If an unsupported family is provided, a warning is issued and the Gaussian like- lihood is used by default.
loglik.pi	A function that computes the log-likelihood. Defaults to gaussian.loglik un- less family = "binomial", in which case logistic.loglik is used. for cus- tom family the user must specify the same likelihood that was used in the infer- ence.
params	Parameters of loglik.pi, if not specified NULL will be used by default

Value

A bgnlm_model object containing:

prob The log marginal likelihood of the MPM.

model A logical vector indicating included features.

crit Criterion label set to "MPM".

coefs A named numeric vector of model coefficients, including the intercept.

Examples

```
## Not run:
# Simulate data
set.seed(42)
x <- data.frame(</pre>
  PlanetaryMassJpt = rnorm(100),
 RadiusJpt = rnorm(100),
  PeriodDays = rnorm(100)
)
y <- 1 + 0.5 * x$PlanetaryMassJpt - 0.3 * x$RadiusJpt + rnorm(100)</pre>
# Assume 'result' is a fitted object from gmjmcmc or mjmcmc
result <- mjmcmc(cbind(y,x))</pre>
# Get the MPM
mpm_model <- get.mpm.model(result, y, x, family = "gaussian")</pre>
# Access coefficients
mpm_model$coefs
## End(Not run)
```

gmjmcmc

Description

Main algorithm for GMJMCMC (Genetically Modified MJMCMC)

Usage

```
gmjmcmc(
  data,
  loglik.pi = gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  transforms,
  P = 10,
  N.init = 100,
  N.final = 100,
  probs = NULL,
  params = NULL,
  sub = FALSE,
  verbose = TRUE
)
```

Arguments

data	A matrix containing the data to use in the algorithm, first column should be the dependent variable, and the rest of the columns should be the independent variables.
loglik.pi	The (log) density to explore
loglik.alpha	The likelihood function to use for alpha calculation
transforms	A Character vector including the names of the non-linear functions to be used by the modification and the projection operator.
Ρ	The number of generations for GMJMCMC (Genetically Modified MJMCMC). The default value is $P = 10$. A larger value like $P = 50$ might be more realistic for more complicated examples where one expects a lot of non-linear structures.
N.init	The number of iterations per population (total iterations = (T-1)*N.init+N.final)
N.final	The number of iterations for the final population (total iterations = $(T-1)*N.init+N.final$)
probs	A list of the various probability vectors to use
params	A list of the various parameters for all the parts of the algorithm
sub	An indicator that if the likelihood is inexact and should be improved each model visit (EXPERIMENTAL!)
verbose	A logical denoting if messages should be printed

Value

A list containing the following elements:

models	All models per population.	
lo.models	All local optimization models per population.	
populations	All features per population.	
marg.probs	Marginal feature probabilities per population.	
model.probs	Marginal feature probabilities per population.	
model.probs.idx		
	Marginal feature probabilities per population.	
best.margs	Best marginal model probability per population.	
accept	Acceptance rate per population.	
accept.tot	Overall acceptance rate.	
best	Best marginal model probability throughout the run, represented as the maximum value in unlist(best.margs).	

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result)
plot(result)</pre>
```

gmjmcmc.parallel	Run multiple gmjmcmc (Genetically Modified MJMCMC) runs in par-
	allel returning a list of all results.

Description

Run multiple gmjmcmc (Genetically Modified MJMCMC) runs in parallel returning a list of all results.

Usage

```
gmjmcmc.parallel(
  runs = 2,
  cores = getOption("mc.cores", 2L),
  merge.options = list(populations = "best", complex.measure = 2, tol = 1e-07),
  data,
  loglik.pi = gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  transforms,
  ...
)
```

24

Arguments

runs	The number of runs to run
cores	The number of cores to run on
merge.options	A list of options to pass to the merge_results() function run after the
data	A matrix containing the data to use in the algorithm, first column should be the dependent variable, and the rest of the columns should be the independent variables.
loglik.pi	The (log) density to explore
loglik.alpha	The likelihood function to use for alpha calculation
transforms	A Character vector including the names of the non-linear functions to be used by the modification and the projection operator.
	Further parameters passed to mjmcmc.

Value

Results from multiple gmjmcmc runs

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
summary(result)
plot(result)</pre>
```

hs

heavy side function

Description

heavy side function

Usage

hs(x)

Arguments

х

The vector of values

Value

as.integer(x>0)

Examples

hs(2)

linear.g.prior.loglik Log likelihood function for linear regression using Zellners g-prior

Description

Log likelihood function for linear regression using Zellners g-prior

Usage

```
linear.g.prior.loglik(y, x, model, complex, params = list(g = 4))
```

Arguments

У	A vector containing the dependent variable
x	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features
params	A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

linear.g.prior.loglik(rnorm(100), matrix(rnorm(100)), TRUE, list(oc=1))

26

logistic.loglik	Log likelihood function for logistic regression with a prior
	$p(m)$ =sum(total_width) This function is created as an example of how
	to create an estimator that is used to calculate the marginal likelihood
	of a model.

Description

Log likelihood function for logistic regression with a prior $p(m)=sum(total_width)$ This function is created as an example of how to create an estimator that is used to calculate the marginal likelihood of a model.

Usage

```
logistic.loglik(y, x, model, complex, params = list(r = exp(-0.5)))
```

Arguments

У	A vector containing the dependent variable
х	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features
params	A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
logistic.loglik(as.integer(rnorm(100) > 0), matrix(rnorm(100)), TRUE, list(oc = 1))
```

logistic.loglik.ala	Log likelihood function for logistic regression with an approximate
	Laplace approximations used This function is created as an example
	of how to create an estimator that is used to calculate the marginal
	likelihood of a model.

Description

Log likelihood function for logistic regression with an approximate Laplace approximations used This function is created as an example of how to create an estimator that is used to calculate the marginal likelihood of a model.

Usage

logistic.loglik.ala(y, x, model, complex, params = list(r = exp(-0.5)))

Arguments

У	A vector containing the dependent variable
х	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features
params	A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
logistic.loglik.ala(as.integer(rnorm(100) > 0), matrix(rnorm(100)), TRUE, list(oc = 1))
```

logistic.loglik.alpha Log likelihood function for logistic regression for alpha calculation This function is just the bare likelihood function

Description

Log likelihood function for logistic regression for alpha calculation This function is just the bare likelihood function

Usage

```
logistic.loglik.alpha(a, data, mu_func)
```

Arguments

а	A vector of the alphas to be used
data	The data to be used for calculation
mu_func	The function linking the mean to the covariates, as a string with the alphas as a[i].

Value

A numeric with the log likelihood.

log_prior

Description

Log model prior function

Usage

log_prior(params, complex)

Arguments

params	list of passed parameters of the likelihood in GMJMCMC
complex	list of complexity measures of the features included into the model

Value

A numeric with the log model prior.

Examples

```
log_prior(params = list(r=2), complex = list(oc = 2))
```

marginal.probs	Function for calculating marginal inclusion probabilities of features
	given a list of models

Description

Function for calculating marginal inclusion probabilities of features given a list of models

Usage

```
marginal.probs(models)
```

Arguments

models The list of models to use.

Value

A numeric vector of marginal model probabilities based on relative frequencies of model visits in MCMC.

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
marginal.probs(result$models[[1]])</pre>
```

Merge a list of multiple results from many runs This function will
weight the features based on the best marginal posterior in that popu-
lation and merge the results together, simplifying by merging equiva-
lent features (having high correlation).

Description

Merge a list of multiple results from many runs This function will weight the features based on the best marginal posterior in that population and merge the results together, simplifying by merging equivalent features (having high correlation).

Usage

```
merge_results(
  results,
  populations = NULL,
  complex.measure = NULL,
  tol = NULL,
  data = NULL
)
```

Arguments

results	A list containing multiple results from GMJMCMC (Genetically Modified MJM-CMC).
populations	Which populations should be merged from the results, can be "all", "last" (default) or "best".
complex.measure	
	The complex measure to use when finding the simplest equivalent feature, 1=to- tal width, 2=operation count and 3=depth.
tol	The tolerance to use for the correlation when finding equivalent features, default is 0.0000001
data	Data to use when comparing features, default is NULL meaning that mock data will be generated, if data is supplied it should be of the same form as is required by gmjmcmc, i.e. with both x, y and an intercept.

merge_results

Value

An object of class "gmjmcmc_merged" containing the following elements:

features	The features where equivalent features are represented in their simplest form.
marg.probs	Importance of features.
counts	Counts of how many versions that were present of each feature.
results	Results as they were passed to the function.
pop.best	The population in the results which contained the model with the highest log marginal posterior.
thread.best	The thread in the results which contained the model with the highest log marginal posterior.
crit.best	The highest log marginal posterior for any model in the results.
reported	The highest log marginal likelihood for the reported populations as defined in the populations argument.
rep.pop	The index of the population which contains reported.
best.log.posteriors	
	A matrix where the first column contains the population indices and the second column contains the model with the highest log marginal posterior within that population.
rep.thread	The index of the thread which contains reported.

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
summary(result)
plot(result)
merge_results(result$results)</pre>
```

mjmcmc

Description

Main algorithm for MJMCMC (Genetically Modified MJMCMC)

Usage

```
mjmcmc(
  data,
  loglik.pi = gaussian.loglik,
  N = 100,
  probs = NULL,
  params = NULL,
  sub = FALSE,
  verbose = TRUE
)
```

Arguments

data	A matrix containing the data to use in the algorithm, first column should be the dependent variable, and the rest of the columns should be the independent variables.
loglik.pi	The (log) density to explore
N	The number of iterations to run for
probs	A list of the various probability vectors to use
params	A list of the various parameters for all the parts of the algorithm
sub	An indicator that if the likelihood is inexact and should be improved each model visit (EXPERIMENTAL!)
verbose	A logical denoting if messages should be printed

Value

A list containing the following elements:

models	All visited models.
accept	Average acceptance rate of the chain.
lo.models	All models visited during local optimization.
best.crit	The highest log marginal probability of the visited models.
marg.probs	Marginal probabilities of the features.
model.probs	Marginal probabilities of all of the visited models.
model.probs.id	x
	Indices of unique visited models.
populations	The covariates represented as a list of features.

mjmcmc.parallel

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
summary(result)
plot(result)</pre>
```

mjmcmc.parallel	Run multiple mjmcmc runs in parallel, merging the results before re-
	turning.

Description

Run multiple mjmcmc runs in parallel, merging the results before returning.

Usage

```
mjmcmc.parallel(runs = 2, cores = getOption("mc.cores", 2L), ...)
```

Arguments

runs	The number of runs to run
cores	The number of cores to run on
	Further parameters passed to mjmcmc.

Value

Merged results from multiple mjmcmc runs

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
summary(result)
plot(result)</pre>
```

model.string

Description

Function to generate a function string for a model consisting of features

Usage

```
model.string(model, features, link = "I", round = 2)
```

Arguments

model	A logical vector indicating which features to include
features	The population of features
link	The link function to use, as a string
round	Rounding error for the features in the printed format

Value

A character representation of a model

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result)
plot(result)
model.string(c(TRUE, FALSE, TRUE, FALSE, TRUE), result$populations[[1]])
model.string(result$models[[1]][1][[1]]$model, result$populations[[1]])</pre>
```

ngelu

Negative GELU function

Description

Negative GELU function

Usage

ngelu(x)

Arguments

x The vector of values

nhs

Value

-x*pnorm(-x)

Examples

ngelu(2)

nhs

negative heavy side function

Description

negative heavy side function

Usage

nhs(x)

Arguments ×

The vector of values

Value

as.integer(x<0)

Examples

nhs(2)

not

not x

Description

not x

Usage

not(x)

Arguments

x The vector of binary values

36

Value

1-x

Examples

not(TRUE)

nrelu

negative ReLu function

Description

negative ReLu function

Usage

nrelu(x)

Arguments ×

The vector of values

Value

max(-x,0)

Examples

nrelu(2)

p0

p0 polynomial term

Description

p0 polynomial term

Usage

p0(x)

Arguments

x The vector of values
p05

Value

log(abs(x) + .Machine\$double.eps)

Examples

p0(2)

p05

p05 polynomial term

Description

p05 polynomial term

Usage

p05(x)

Arguments ×

The vector of values

Value

 $(abs(x)+.Machine double.eps)^{(0.5)}$

Examples

p05(2)

p0p0

p0p0 polynomial term

Description

p0p0 polynomial term

Usage

p0p0(x)

Arguments

p0(x)*p0(x)

Examples

p0p0(2)

p0p05

p0p05 polynomial term

Description

p0p05 polynomial term

Usage

p0p05(x)

Arguments ×

The vector of values

Value

 $p0(x)*(abs(x)+.Machine$double.eps)^{(0.5)}$

Examples

p0p05(2)

p0p1

p0p1 polynomial term

Description

p0p1 polynomial term

Usage

p0p1(x)

Arguments

p0p2

Value

p0(x)*x

Examples

p0p1(2)

p0p2

p0p2 polynomial term

Description

p0p2 polynomial term

Usage

p0p2(x)

Arguments ×

The vector of values

Value

p0(x)*x^(2)

Examples

p0p2(2)

p0p3

p0p3 polynomial term

Description

p0p3 polynomial term

Usage

p0p3(x)

Arguments

p0pm1

Value

 $p0(x)*x^{(3)}$

Examples

p0p3(2)

p0pm05

p0pm05 polynomial term

Description

p0pm05 polynomial term

Usage

p0pm05(x)

Arguments ×

The vector of values

Value

pO(x)sign(x)(abs(x)+.Machine\$double.eps)^(-0.5)

Examples

p0pm05(2)

p0pm1

p0pm1 polynomial terms

Description

p0pm1 polynomial terms

Usage

p0pm1(x)

Arguments

x The vector of values

40

p0pm2

Value

 $p0(x)*(x+.Machine$double.eps)^{-1}$

Examples

p0pm1(2)

p0pm2

p0pm2 polynomial term

Description

p0pm2 polynomial term

Usage

p0pm2(x)

Arguments ×

The vector of values

Value

pO(x)sign(x)(abs(x)+.Machine\$double.eps)^(-2)

Examples

p0pm2(2)

p2

p2 polynomial term

Description

p2 polynomial term

Usage

p2(x)

Arguments

x^(2)

Examples

p2(2)

р3	p3 polynomial term
Description	
p3 polynomial t	erm
Usage	
p3(x)	
Arguments	
x	The vector of values
Value	
x^(3)	
Examples	
p3(2)	
plot.gmjmcmc	Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Description

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Usage

```
## S3 method for class 'gmjmcmc'
plot(x, count = "all", pop = "best", tol = 1e-07, data = NULL, ...)
```

42

Arguments

х	The results to use
count	The number of features to plot, defaults to all
рор	The population to plot, defaults to last
tol	The tolerance to use for the correlation when finding equivalent features, default is 0.0000001
data	Data to merge on, important if pre-filtering was used
	Not used.

Value

No return value, just creates a plot

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
plot(result)</pre>
```

plot.gmjmcmc_merged Plot a gmjmcmc_merged run

Description

Plot a gmjmcmc_merged run

Usage

```
## S3 method for class 'gmjmcmc_merged'
plot(x, count = "all", pop = NULL, tol = 1e-07, data = NULL, ...)
```

Arguments

х	The results to use
count	The number of features to plot, defaults to all
рор	The population to plot, defaults to last
tol	The tolerance to use for the correlation when finding equivalent features, default is 0.0000001
data	Data to merge on, important if pre-filtering was used
	Not used.

Value

No return value, just creates a plot

plot.mjmcmc

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
plot(result)</pre>
```

plot.mjmcmc	Function to plot the results, works both for results from gmjmcmc and
	merged results from merge.results

Description

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Usage

S3 method for class 'mjmcmc'
plot(x, count = "all", ...)

Arguments

x	The results to use
count	The number of features to plot, defaults to all
	Not used.

Value

No return value, just creates a plot

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
plot(result)</pre>
```

44

plot.mjmcmc_parallel Plot a mjmcmc_parallel run

Description

Plot a mjmcmc_parallel run

Usage

```
## S3 method for class 'mjmcmc_parallel'
plot(x, count = "all", ...)
```

Arguments

Х	The results to use
count	The number of features to plot, defaults to all
	Not used.

Value

No return value, just creates a plot

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
plot(result)</pre>
```

pm05

pm05 polynomial term

Description

pm05 polynomial term

Usage

pm05(x)

Arguments

x The vector of values

Value

(abs(x)+.Machine\$double.eps)^(-0.5)

Examples

pm05(2)

pm1

pm1 polynomial term

Description

pm1 polynomial term

Usage

pm1(x)

Arguments

x The vector of values

Value

 $sign(x)*(abs(x)+.Machine$double.eps)^{-1}$

Examples

pm1(2)

pm2

pm2 polynomial term

Description

pm2 polynomial term

Usage

pm2(x)

Arguments

x The vector of values

Value

sign(x)*(abs(x)+.Machine\$double.eps)^(-2)

46

Examples

pm2(2)

predict.bgnlm_model Predict responses from a BGNLM model

Description

This function generates predictions from a fitted bgnlm_model object given a new dataset.

Usage

```
## S3 method for class 'bgnlm_model'
predict(
    object,
    x,
    link = function(x) {
        x
    },
    ...
)
```

Arguments

object	A fitted bgnlm_model object obtained from the BGNLM fitting procedure. It should contain the estimated coefficients in model\$coefs.
x	A data.frame containing the new data for which predictions are to be made. The variables in x must match the features used in the model.
link	A link function to apply to the linear predictor. By default, it is the identity function function(x){x}, but it can be any function such as plogis for logistic regression models.
	Additional arguments to pass to prediction function.

Value

A numeric vector of predicted values for the given data x. These predictions are calculated as $\hat{y} = \text{link}(X\beta)$, where X is the design matrix and β are the model coefficients.

Examples

```
## Not run:
# Example with simulated data
set.seed(123)
x_train <- data.frame(PlanetaryMassJpt = rnorm(100), RadiusJpt = rnorm(100))
model <- list(
    coefs = c(Intercept = -0.5, PlanetaryMassJpt = 0.2, RadiusJpt = -0.1),
```

```
class = "bgnlm_model"
)
class(model) <- "bgnlm_model"
# New data for prediction
x_new <- data.frame(PlanetaryMassJpt = c(0.1, -0.3), RadiusJpt = c(0.2, -0.1))
# Predict using the identity link (default)
preds <- predict.bgnlm_model(model, x_new)
## End(Not run)</pre>
```

predict.gmjmcmc *Predict using a gmjmcmc result object.*

Description

Predict using a gmjmcmc result object.

Usage

```
## S3 method for class 'gmjmcmc'
predict(
    object,
    x,
    link = function(x) x,
    quantiles = c(0.025, 0.5, 0.975),
    pop = NULL,
    tol = 1e-07,
    ...
)
```

object	The model to use.
x	The new data to use for the prediction, a matrix where each row is an observa- tion.
link	The link function to use
quantiles	The quantiles to calculate credible intervals for the posterior modes (in model space).
рор	The population to plot, defaults to last
tol	The tolerance to use for the correlation when finding equivalent features, default is 0.0000001
	Not used.

A list containing aggregated predictions and per model predictions.

aggr	Aggregated predictions with mean and quantiles.
preds	A list of lists containing individual predictions per model per population in object.

Examples

```
result <- gmjmcmc(
matrix(rnorm(600), 100),
P = 2,
gaussian.loglik,
loglik.alpha = gaussian.loglik.alpha,
c("p0", "exp_dbl")
)
preds <- predict(result, matrix(rnorm(600), 100))</pre>
```

predict.gmjmcmc_merged

Predict using a merged gmjmcmc result object.

Description

Predict using a merged gmjmcmc result object.

Usage

```
## S3 method for class 'gmjmcmc_merged'
predict(
    object,
    x,
    link = function(x) x,
    quantiles = c(0.025, 0.5, 0.975),
    pop = NULL,
    tol = 1e-07,
    ...
)
```

object	The model to use.
x	The new data to use for the prediction, a matrix where each row is an observa- tion.
link	The link function to use

quantiles	The quantiles to calculate credible intervals for the posterior modes (in model space).
рор	The population to plot, defaults to last
tol	The tolerance to use for the correlation when finding equivalent features, default is 0.0000001
	Not used.

A list containing aggregated predictions and per model predictions.

aggr	Aggregated predictions with mean and quantiles.
preds	A list of lists containing individual predictions per model per population in object.

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
preds <- predict(result, matrix(rnorm(600), 100))</pre>
```

predict.gmjmcmc_parallel

Predict using a gmjmcmc result object from a parallel run.

Description

Predict using a gmjmcmc result object from a parallel run.

Usage

```
## S3 method for class 'gmjmcmc_parallel'
predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

predict.mjmcmc

Arguments

object	The model to use.
x	The new data to use for the prediction, a matrix where each row is an observa- tion.
link	The link function to use
quantiles	The quantiles to calculate credible intervals for the posterior modes (in model space).
	Additional arguments to pass to merge_results.

Value

A list containing aggregated predictions and per model predictions.

aggr	Aggregated predictions with mean and quantiles.
preds	A list of lists containing individual predictions per model per population in object.

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
preds <- predict(result$results, matrix(rnorm(600), 100))</pre>
```

predict.mjmcmc Predict using a mjmcmc result object.

Description

Predict using a mjmcmc result object.

Usage

```
## S3 method for class 'mjmcmc'
predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object	The model to use.
x	The new data to use for the prediction, a matrix where each row is an observa- tion.
link	The link function to use
quantiles	The quantiles to calculate credible intervals for the posterior modes (in model space).
	Not used.

Value

A list containing aggregated predictions.

mean	Mean of aggregated predictions.
quantiles	Quantiles of aggregated predictions.

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
preds <- predict(result, matrix(rnorm(500), 100))</pre>
```

```
predict.mjmcmc_parallel
```

Predict using a mjmcmc result object from a parallel run.

Description

Predict using a mjmcmc result object from a parallel run.

Usage

```
## S3 method for class 'mjmcmc_parallel'
predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

object	The model to use.
x	The new data to use for the prediction, a matrix where each row is an observa- tion.
link	The link function to use
quantiles	The quantiles to calculate credible intervals for the posterior modes (in model space).
	Not used.

print.feature

Value

A list containing aggregated predictions.

mean	Mean of aggregated predictions.
quantiles	Quantiles of aggregated predictions.

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
preds <- predict(result, matrix(rnorm(500), 100))</pre>
```

print.feature Print method for "feature" class

Description

Print method for "feature" class

Usage

```
## S3 method for class 'feature'
print(x, dataset = FALSE, alphas = FALSE, labels = FALSE, round = FALSE, ...)
```

Arguments

x	An object of class "feature"
dataset	Set the regular covariates as columns in a dataset
alphas	Print a "?" instead of actual alphas to prepare the output for alpha estimation
labels	Should the covariates be named, or just referred to as their place in the data.frame.
round	Should numbers be rounded when printing? Default is FALSE, otherwise it can be set to the number of decimal places.
	Not used.

Value

String representation of a feature

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
print(result$populations[[1]][1])</pre>
```

relu	ReLu function
Description	
ReLu function	
Usage	
relu(x)	
Arguments	
Х	The vector of values
Value	
max(x,0)	
Examples	
relu(2)	
rmclapply	rmclapply: Cross-platform mclapply/forking hack for Windows

Description

This function applies a function in parallel to a list or vector (X) using multiple cores. On Linux/macOS, it uses mclapply, while on Windows it uses a hackish version of parallelism. The Windows version is based on parLapply to mimic forking following Nathan VanHoudnos.

Usage

```
rmclapply(runs, args, fun, mc.cores = NULL)
```

Arguments

runs	The runs to run
args	The arguments to pass to fun
fun	The function to run
mc.cores	Number of cores to use for parallel processing. Defaults to detectCores().

Value

A list of results, with one element for each element of X.

SangerData2

Gene expression data lymphoblastoid cell lines of all 210 unrelated HapMap individuals from four populations

Description

A 210 times 3221 matrix with indviduals along the rows and expression data along the columns

Usage

data(SangerData2)

Format

A data frame with 210 rows and 3221 variables

Details

The first column corresponds to column number 24266 (with name GI_6005726-S) in the original data. Column names give the name of the variables, row names the "name" of the individuals. This is a subset of SangerData where the 3220 last rows are select among all original rows following the same pre-processing procedure as in (section 1.6.1). See also the file Read_sanger_data.R

Source

Dataset downloaded from https://ftp.sanger.ac.uk/pub/genevar/

References:

Stranger, BE et al (2007): Relative impact of nucleotide and copy number variation on gene expression phenotypes Science, 2007•science.org

Bogdan et al (2020): Handbook of Multiple Comparisons, https://arxiv.org/pdf/2011.12154

set.transforms	Set the transformations option for GMJMCMC (Genetically Modified
	MJMCMC), this is also done when running the algorithm, but this
	function allows for it to be done manually.

Description

Set the transformations option for GMJMCMC (Genetically Modified MJMCMC), this is also done when running the algorithm, but this function allows for it to be done manually.

Usage

set.transforms(transforms)

sigmoid

Arguments

transforms The vector of non-linear transformations

Value

No return value, just sets the gmjmcmc-transformations option

Examples

```
set.transforms(c("p0","p1"))
```

sigmoid

Sigmoid function

Description

Sigmoid function

Usage

sigmoid(x)

Arguments

x The vector of values

Value

The sigmoid of x

Examples

sigmoid(2)

sin_deg

Description

Sine function for degrees

Usage

sin_deg(x)

Arguments

х

The vector of values in degrees

Value

The sine of x

Examples

sin_deg(0)

sqroot Square root function

Description

Square root function

Usage

sqroot(x)

Arguments

x The vector of values

Value

The square root of the absolute value of x

Examples

sqroot(4)

string.population *Function to get a character representation of a list of features*

Description

Function to get a character representation of a list of features

Usage

```
string.population(x, round = 2)
```

Arguments

х	A list of feature objects
round	Rounding precision for parameters of the features

Value

A matrix of character representations of the features of a model.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
string.population(result$populations[[1]])</pre>
```

```
string.population.models
```

Function to get a character representation of a list of models

Description

Function to get a character representation of a list of models

Usage

```
string.population.models(features, models, round = 2, link = "I")
```

features	A list of feature objects on which the models are build
models	A list of model objects
round	Rounding precision for parameters of the features
link	The link function to use, as a string

summary.gmjmcmc

Value

A matrix of character representations of a list of models.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
string.population.models(result$populations[[2]], result$models[[2]])</pre>
```

summary.gmjmcmc Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'gmjmcmc'
summary(
   object,
   pop = "best",
   tol = 1e-04,
   labels = FALSE,
   effects = NULL,
   data = NULL,
   verbose = TRUE,
   ...
)
```

object	The results to use
рор	The population to print for, defaults to last
tol	The tolerance to use as a threshold when reporting the results.
labels	Should the covariates be named, or just referred to as their place in the data.frame.
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.
data	Data to merge on, important if pre-filtering was used
verbose	If the summary should be printed to the console or just returned, defaults to TRUE
	Not used.

A data frame containing the following columns:

feats.strings	Character representation of the features ordered by marginal probabilities.
marg.probs	Marginal probabilities corresponding to the ordered feature strings.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result, pop = "best")</pre>
```

summary.gmjmcmc_merged

Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'gmjmcmc_merged'
summary(
   object,
   tol = 1e-04,
   labels = FALSE,
   effects = NULL,
   pop = NULL,
   data = NULL,
   verbose = TRUE,
   ...
)
```

object	The results to use	
tol	The tolerance to use as a threshold when reporting the results.	
labels	Should the covariates be named, or just referred to as their place in the data.frame.	
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.	
рор	If null same as in merge.options for running parallel gmjmcmc otherwise results will be re-merged according to pop that can be "all", "last", "best"	
data	Data to merge on, important if pre-filtering was used	
verbose	If the summary should be printed to the console or just returned, defaults to TRUE	
	Not used.	

A data frame containing the following columns:

feats.strings	Character representation of the features ordered by marginal probabilities.
marg.probs	Marginal probabilities corresponding to the ordered feature strings.

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
summary(result)</pre>
```

summary.mjmcmc Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'mjmcmc'
summary(
   object,
   tol = 1e-04,
   labels = FALSE,
   effects = NULL,
   verbose = TRUE,
   ...
)
```

object	The results to use	
tol	The tolerance to use as a threshold when reporting the results.	
labels	Should the covariates be named, or just referred to as their place in the data.frame.	
effects	Quantiles for posterior modes of the effects across models to be reported, i either effects are NULL or if labels are NULL, no effects are reported.	

verbose	If the summary should be printed to the console or just returned, defaults to
	TRUE
	Not used.

A data frame containing the following columns:

feats.strings	Character representation of the covariates ordered by marginal probabilities.
marg.probs	Marginal probabilities corresponding to the ordered feature strings.

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
summary(result)</pre>
```

summary.mjmcmc_parallel

Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'mjmcmc_parallel'
summary(
   object,
   tol = 1e-04,
   labels = FALSE,
   effects = NULL,
   verbose = TRUE,
   ...
)
```

object	The results to use	
tol	The tolerance to use as a threshold when reporting the results.	
labels	Should the covariates be named, or just referred to as their place in the data.frame.	
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.	
verbose	If the summary should be printed to the console or just returned, defaults to TRUE	
	Not used.	

A data frame containing the following columns:

feats.strings	Character representation of the covariates ordered by marginal probabilities.
marg.probs	Marginal probabilities corresponding to the ordered feature strings.

Examples

result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
summary(result)</pre>

to23

To the 2.3 power function

Description

To the 2.3 power function

Usage

to23(x)

Arguments

x The vector of values

Value

x^2.3

Examples

to23(2)

to25

Description

To 2.5 power

Usage

to25(x)

Arguments

x The vector of values

Value

x^(2.5)

Examples

to25(2)

to35	To 3.5 power
Description	
To 3.5 power	
Usage	
to35(x)	
Arguments	
х	The vector of values
Value	
x^(3.5)	
Examples	
to35(2)	

to72

Description

To the 7/2 power function

Usage

to72(x)

Arguments

х

The vector of values

Value

x^(7/2)

Examples

to72(2)

troot	Cube root function	

Description

Cube root function

Usage

troot(x)

Arguments

x The vector of values

Value

The cube root of x

Examples

troot(27)

Index

* datasets abalone, 4 breastcancer, 5 exoplanet, 9 SangerData2, 55 abalone.4 breastcancer, 5 compute_effects, 6 cos_deg, 7 diagn_plot, 7 erf,8 exoplanet, 9 exp_dbl, 10 FBMS (FBMS-package), 3 fbms, 10FBMS-package, 3 gauss, 12 gaussian.loglik, 12 gaussian.loglik.alpha, 13 gelu, 14 gen.params.gmjmcmc, 14 gen.params.mjmcmc, 16, 16 gen.probs.gmjmcmc, 18 gen.probs.mjmcmc, 19 get.best.model, 20 get.mpm.model, 21 gmjmcmc, 11, 16, 23 gmjmcmc.parallel, 11, 24

hs, 25

linear.g.prior.loglik, 26
log_prior, 29
logistic.loglik, 27

logistic.loglik.ala, 27 logistic.loglik.alpha, 28 marginal.probs, 29 merge_results, 30 merge_results(), 25 mjmcmc, *11*, 32 mjmcmc.parallel, 33 model.string, 34 ngelu, 34 nhs, 35 not, 35 nrelu, 36 p0, 36 p05, 37 p0p0, 37 p0p05, 38 p0p1, 38 p0p2, 39 p0p3, 39 p0pm05, 40 p0pm1, 40 p0pm2, 41 p2, 41 p3, 42 plot.gmjmcmc, 42 plot.gmjmcmc_merged, 43 plot.mjmcmc, 44 plot.mjmcmc_parallel, 45 pm05, 45 pm1, 46 pm2, 46 predict, 7 predict.bgnlm_model, 47 predict.gmjmcmc, 48 predict.gmjmcmc_merged, 49 predict.gmjmcmc_parallel, 50 predict.mjmcmc, 51

INDEX

to72,65 troot,65

predict.mjmcmc_parallel, 52 print.feature, 53 relu, <mark>5</mark>4 rmclapply, 54 SangerData2, 55 set.transforms, 55sigmoid, 56 sin_deg, 57 sqroot, 57 $\texttt{string.population}, \underline{58}$ string.population.models, 58 summary.gmjmcmc, 59 summary.gmjmcmc_merged, 60 summary.mjmcmc, 61 summary.mjmcmc_parallel, 62 to23, <mark>63</mark> to25, <mark>64</mark> to35, <mark>64</mark>