
Package ‘FAVA’
March 27, 2025

Title Quantify Compositional Variability Across Relative Abundance
Vectors

Version 1.0.9

Description Implements the statistic FAVA, an Fst-based Assessment of Variability across
vectors of relative Abundances, as well as a suite of helper functions which enable the
visualization and statistical analysis of relative abundance data. The 'FAVA' R package
accompanies the paper, “Quantifying compositional variability in microbial communities
with FAVA” by Morrison, Xue, and Rosenberg (2025) <doi:10.1073/pnas.2413211122>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

URL https://maikemorrison.github.io/FAVA/,

https://maikemorrison.github.io/FAVA/articles/microbiome_tutorial.html

BugReports https://github.com/MaikeMorrison/FAVA/issues

Imports dplyr, ggplot2, rlang, tidyr, stringr

Suggests patchwork (>= 1.2.0), rmarkdown, viridis, kableExtra, purrr,
ape, gridExtra, phyloseq, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Maike Morrison [aut, cre, cph]
(<https://orcid.org/0000-0003-0430-1401>)

Maintainer Maike Morrison <maike.morrison@gmail.com>

Repository CRAN

Date/Publication 2025-03-27 11:50:30 UTC

1

https://doi.org/10.1073/pnas.2413211122
https://maikemorrison.github.io/FAVA/
https://maikemorrison.github.io/FAVA/articles/microbiome_tutorial.html
https://github.com/MaikeMorrison/FAVA/issues
https://orcid.org/0000-0003-0430-1401

2 bootstrap_fava

Contents
bootstrap_fava . 2
fava . 4
fava_norm . 6
gini_simpson . 7
gini_simpson_mean . 8
gini_simpson_pooled . 10
plot_relabund . 11
relab_phyloseq . 14
time_weights . 15
window_fava . 16
window_list . 17
window_plot . 18
xue_microbiome_sample . 19
xue_species_info . 19
xue_species_similarity . 20
xue_species_tree . 20

Index 21

bootstrap_fava Statistically compare FAVA values between pairs of relative abundance
matrices.

Description

bootstrap_fava uses bootstrapping to statistically compare FAVA values between pairs of rel-
ative abundance matrices. bootstrap_fava takes the same options as fava, so, as with fava,
you can separately analyze multiple populations or groups of samples (specify group), and ac-
count for similarity among categories (specify S) or uneven weighting of rows (specify w or time).
bootstrap_fava follows the bootstrapping procedure defined by Efron and Tibshirani (1993). De-
tails on the bootstrapping procedure are available in the Methods section of the accompanying
paper.

Usage

bootstrap_fava(
relab_matrix,
n_replicates = 1000,
group,
K = NULL,
S = NULL,
w = NULL,
time = NULL,
normalized = FALSE,
seed = NULL,
alternative = "two.sided"

)

bootstrap_fava 3

Arguments

relab_matrix A data frame with rows containing non-negative entries that sum to 1. Each row
represents a sample, each column represents a category, and each entry repre-
sents the abundance of that category in the sample. If relab_matrix contains
any metadata, it must be on the left-hand side of the matrix, the right K entries of
each row must sum to 1, and K must be specified. Otherwise, all entries of each
row must sum to 1. relab_matrix must have at least one metadata column de-
scribing which group each row belongs to. The name(s) of the group column(s)
must be provided in the group parameter.

n_replicates The number of bootstrap replicate matrices to generate. Default is n_replicates
= 1000.

group A string (or vector of strings) specifying the name(s) of the column(s) that de-
scribes which group(s) each row (sample) belongs to. Use if relab_matrix is a
single matrix containing multiple groups of samples you wish to compare.

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equaling 1 if the categories are to be
treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(relab_matrix)).

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

normalized Optional; should normalized FAVA be used? Default is normalized = FALSE;
use normalized = TRUE to compute normalized FAVA. FAVA can only be nor-
malized if it is not weighted.

seed Optional; an integer to be used as a random seed for the simulations.

alternative Optional; do you want to do a one- or two.sided test? Default is alternative =
"two.sided". If you wish to do a one-sided test, specify either alternative =
"lesser" or alternative = "greater".

Value

A named list containing the following entries:

• p_values: The probability of observing the observed difference in variability between each
pair of groups if there were no difference between groups. Computed as the fraction of
bootstrap differences greater than or equal to the observed difference. Depends on what
alternative is specified ("greater", "lesser", or "two.sided").

4 fava

• bootstrap_distribution_plot: The distribution of bootstrap replicate differences in each
variability value. The observed differences are shown in red. The further the red points are
from 0, the more significant the statistical difference between groups.

• observed_stats: The observed diversity statistics for the groups.

• bootstrap_stats: The bootstrap replicate diversity statistics for the groups.

Examples

Statistically compare values of FAVA between
subjects in the xue_microbiome_sample data:

boot_out = bootstrap_fava(relab_matrix = xue_microbiome_sample,
n_replicates = 2, # use 1000 for a real analysis
seed = 1,
group = "subject",
K = 524,
S = xue_species_similarity)

Table of P-values comparing values of FAVA between group 1 and group 2:
boot_out$P_values

Plots of the bootstrap distributions of differences in FAVA between each pair of matrices,
and how the true observed differences (red dots) compare to the distribution.
boot_out$bootstrap_distribution_plot

fava Compute the Fst of a matrix of compositional vectors

Description

This function computes the population-genetic statistic Fst on any matrix with rows that sum to 1.
Values of 0 are achieved when each row is a permutation of (1,0,..., 0) and at least two categories
have non-zero abundance across all rows. The value equals 1 when each row is identical.

Usage

fava(
relab_matrix,
K = NULL,
S = NULL,
w = NULL,
time = NULL,
group = NULL,
normalized = FALSE

)

fava 5

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equaling 1 if the categories are to be
treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(relab_matrix)).

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

group Optional; a string (or vector of strings) specifying the name(s) of the column(s)
that describes which group(s) each row (sample) belongs to. Use if relab_matrix
is a single matrix containing multiple groups of samples you wish to compare.

normalized Optional; should normalized FAVA be used? Default is normalized = FALSE;
use normalized = TRUE to compute normalized FAVA. FAVA can only be nor-
malized if it is not weighted.

Value

A numeric value between 0 and 1.

Examples

Compute the Fst of
the following compositional vectors:
q1 = c(1, 0, 0, 0)
q2 = c(0.5, 0.5, 0, 0)
q3 = c(1/4, 1/4, 1/4, 1/4)
q4 = c(0, 0, 1, 0)
relative_abundances = matrix(c(q1, q2, q3, q4),

byrow = TRUE, nrow = 4)

fava(relative_abundances)

Incoporating weights:

Compute fava ignoring

6 fava_norm

rows 2 and 3
row_weights = c(0.5, 0, 0, 0.5)
fava(relative_abundances, w = row_weights)

Compute fava assuming that
categories 1 and 2 are identical:
similarity_matrix = diag(4)
similarity_matrix[1,2] = 1
similarity_matrix[2,1] = 1
fava(relative_abundances, S = similarity_matrix)

Assume categories 1 and 2 are identical AND
ignore rows 2 and 4:
row_weights = c(0.5, 0, 0.5, 0)
fava(relative_abundances, w = row_weights, S = similarity_matrix)

fava_norm Compute the normalized Fst of a matrix of compositional vectors

Description

This function computes the normalized Fst given the number of rows and the mean abundance of
the most abundant category. We employ the normalization employed in the FSTruct package by
Morrison, Alcala, and Rosenberg (2020) doi:10.1111/17550998.13647.

Usage

fava_norm(relab_matrix, K = ncol(relab_matrix))

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

Value

A numeric value between 0 and 1.

https://github.com/MaikeMorrison/FSTruct
https://doi.org/10.1111/1755-0998.13647

gini_simpson 7

Examples

Compute the weighted fava of
the following compositional vectors:
q1 = c(1, 0, 0, 0)
q2 = c(0.5, 0.5, 0, 0)
q3 = c(1/4, 1/4, 1/4, 1/4)
q4 = c(0, 0, 1, 0)
relative_abundances = matrix(c(q1, q2, q3, q4),

byrow = TRUE, nrow = 4)

fava_norm(relative_abundances)

gini_simpson Compute the Gini-Simpson index of a compositional vector

Description

This function computes the Gini-Simpson index, a statistical measure of variability known in pop-
ulation genetics as heterozygosity, of avector of non-negative entries which sum to 1. The function
returns a number between 0 and 1 which quantifies the variability of the vector. Values of 0 are
achieved when the vector is a permutation of (1,0,..., 0). The value approaches 1 as the number of
categories K increases when the vector is equal to (1/K, 1/K, ..., 1/K).

Usage

gini_simpson(q, K = length(q), S = diag(K))

Arguments

q A vector with K=length(q) non-negative entries that sum to 1.

K Optional; an integer specifying the number of categories in the data. Default is
K=length(q).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equalling 1 if the categories are to be
treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(q)).

Value

A numeric value between 0 and 1.

8 gini_simpson_mean

Examples

Compute unweighted Gini-Simpson index:
gini_simpson(q = c(0.4, 0.3, 0.3))

Compute Gini-Simpson index assuming that
categories 1 and 2 are identical:
similarity_matrix = diag(3)
similarity_matrix[1,2] = 1
similarity_matrix[2,1] = 1
gini_simpson(q = c(0.4, 0.3, 0.3), S = similarity_matrix)

gini_simpson_mean Compute the mean Gini-Simpson index of the rows in a matrix of com-
positional vectors

Description

This function computes the mean Gini-Simpson index, a statistical measure of variability known in
population genetics as heterozygosity, of a set of vectors of non-negative entries which sum to 1.
The function returns a number between 0 and 1 which quantifies the mean variability of the vectors.
Values of 0 are achieved when each vector is a permutation of (1,0,..., 0). The value approaches 1
as the number of categories K increases when the vectors are equal to (1/K, 1/K, ..., 1/K).

Usage

gini_simpson_mean(
relab_matrix,
K = NULL,
S = NULL,
w = NULL,
time = NULL,
group = NULL

)

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equalling 1 if the categories are to be

gini_simpson_mean 9

treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(relab_matrix)).

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

group Optional; a string (or vector of strings) specifying the name(s) of the column(s)
that describes which group(s) each row (sample) belongs to. Use if relab_matrix
is a single matrix containing multiple groups of samples you wish to compare.

Value

A numeric value between 0 and 1.

Examples

To compute the mean Gini-Simpson index of
the following compositional vectors...
q1 = c(1, 0, 0, 0)
q2 = c(0.5, 0.5, 0, 0)
q3 = c(1/4, 1/4, 1/4, 1/4)
q4 = c(0, 0, 1, 0)

we could compute the mean manually:
mean(sapply(list(q1, q2, q3, q4), gini_simpson))

Or we could use gini_simpson_mean:
relative_abundances = matrix(c(q1, q2, q3, q4),

byrow = TRUE, nrow = 4)

gini_simpson_mean(relative_abundances)

Incoporating weights:

Compute mean Gini-Simpson index ignoring
rows 2 and 3
row_weights = c(0.5, 0, 0, 0.5)
gini_simpson_mean(relative_abundances, w = row_weights)

Compute mean Gini-Simpson index assuming that
categories 1 and 2 are identical:
similarity_matrix = diag(4)
similarity_matrix[1,2] = 1
similarity_matrix[2,1] = 1
gini_simpson_mean(relative_abundances, S = similarity_matrix)

Assume categories 1 and 2 are identical AND
ignore rows 2 and 4:

10 gini_simpson_pooled

row_weights = c(0.5, 0, 0.5, 0)
gini_simpson_mean(relative_abundances, w = row_weights, S = similarity_matrix)

gini_simpson_pooled Compute the pooled Gini-Simpson index of the rows in a matrix of
compositional vectors

Description

This function computes the Gini-Simpson index of a "pooled" vector equal to colMeans(relab_matrix).
Values of 0 are achieved when this pooled vector is a permutation of (1,0,..., 0). The value ap-
proaches 1 as the number of categories K increases when this pooled vector is equal to (1/K, 1/K,
..., 1/K).

Usage

gini_simpson_pooled(
relab_matrix,
K = NULL,
S = NULL,
w = NULL,
time = NULL,
group = NULL

)

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equalling 1 if the categories are to be
treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(relab_matrix)).

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

plot_relabund 11

group Optional; a string (or vector of strings) specifying the name(s) of the column(s)
that describes which group(s) each row (sample) belongs to. Use if relab_matrix
is a single matrix containing multiple groups of samples you wish to compare.

Value

A numeric value between 0 and 1.

Examples

To compute the pooled Gini-Simpson index of
the following compositional vectors...
q1 = c(1, 0, 0, 0)
q2 = c(0.5, 0.5, 0, 0)
q3 = c(1/4, 1/4, 1/4, 1/4)
q4 = c(0, 0, 1, 0)

we could compute the mean manually:
qPooled = (q1 + q2 + q3 + q4)/4
gini_simpson(qPooled)

Or we could use gini_simpson_pooled:
relative_abundances = matrix(c(q1, q2, q3, q4),

byrow = TRUE, nrow = 4)

gini_simpson_pooled(relative_abundances)

Incoporating weights:

Compute pooled Gini-Simpson index ignoring
rows 2 and 3
row_weights = c(0.5, 0, 0, 0.5)
gini_simpson_pooled(relative_abundances, w = row_weights)

Compute pooled Gini-Simpson index assuming that
categories 1 and 2 are identical:
similarity_matrix = diag(4)
similarity_matrix[1,2] = 1
similarity_matrix[2,1] = 1
gini_simpson_pooled(relative_abundances, S = similarity_matrix)

Assume categories 1 and 2 are identical AND
ignore rows 2 and 4:
row_weights = c(0.5, 0, 0.5, 0)
gini_simpson_pooled(relative_abundances, w = row_weights, S = similarity_matrix)

plot_relabund Visualize a relative abundance matrix as a stacked bar plot.

12 plot_relabund

Description

This function enables graphical visualization of a matrix of compostional data. In the output plot,
each vertical bar represents a single vector; the height of each color in the bar corresponds to the
abundance of each category in that vector. Because this function produces a ggplot object, its output
can be modified using standard ggplot2 syntax.

Usage

plot_relabund(
relab_matrix,
group = NULL,
time = NULL,
w = NULL,
K = NULL,
arrange = FALSE

)

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

group Optional; a string specifying the name of the column that describes which group
each row (sample) belongs to. Use if matrices is a single matrix containing
multiple groups of samples you wish to compare.

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

arrange Optional; controls horizontal ordering of samples and vertical ordering of cat-
egories. If arrange = TRUE or arrange = "both", samples are ordered by the
categories of greatest abundance and categories are ordered in decreasing abun-
dance. If arrange = "vertical", sample order is unchanged but categories
are ordered in decreasing abundance. If arrange = "horizontal", samples are
ordered by the most abundant categories, but category order is unchanged. If
arrange is missing or arrange = FALSE, neither order is changed.

Value

A ggplot object containing a bar plot visualization of the relative abundance matrix.

plot_relabund 13

Examples

Make an example matrix of compositional data
Each row is an individual. Rows sum to 1.
population_A = matrix(c(

.5, .3, .2,

.4, .2, .4,

.5, .4, .1,

.6, .1, .3,

.2, 0, .8
),
nrow = 5,
byrow = TRUE
)

plot_relabund(relab_matrix = population_A,
K = 3, # How many categories per vector?
arrange = FALSE
)

plot_relabund(relab_matrix = population_A,
K = 3, # How many categories per vector?
arrange = "horizontal"
)

plot_relabund(relab_matrix = population_A,
K = 3, # How many categories per vector?
arrange = "vertical"
)

plot_relabund(relab_matrix = population_A,
K = 3, # How many categories per vector?
arrange = TRUE # could also be "both"
)

You can modify the plot as you would any ggplot2 object
plot_relabund(relab_matrix = population_A,

K = 3, # How many categories per vector?
arrange = TRUE
) +

Below are example, optional modifications to the default plot
ggplot2::ggtitle("Population A") +
ggplot2::scale_fill_brewer("Blues") +
ggplot2::scale_color_brewer("Blues") +
ggplot2::xlab("Individuals")
Note that both scale_fill and scale_color are needed to change the color of the bars.

Plot a dataset which has 2 populations

population_B = matrix(c(
.9, 0, .1,
.6, .4, 0,
.7, 0, .3,
.3, .4, .3,

14 relab_phyloseq

.5, .3, .2
),
nrow = 5,
byrow = TRUE
)

populations_AB = cbind(data.frame(c("A", "A", "A", "A", "A",
"B", "B", "B", "B", "B")),

rbind(population_A, population_B))
colnames(populations_AB) = c("population", "category_1", "category_2", "category_3")

plot_relabund(relab_matrix = populations_AB, group = "population")
plot_relabund(relab_matrix = populations_AB, group = "population", arrange = "vertical")
plot_relabund(relab_matrix = populations_AB, group = "population", arrange = "horizontal")
plot_relabund(relab_matrix = populations_AB, group = "population", arrange = "both")

relab_phyloseq Generate a relative abundance matrix with sample metadata and OTU
abundances from a phyloseq object.

Description

The R package phyloseq streamlines the storage and analysis of microbiome sequence data. This
function takes a phyloseq object and extracts the OTU table and the sample metadata and combines
them into one relative abundance matrix with rows corresponding to samples, metadata on the left-
hand side, and OTU relative abundances on the right-hand side.

Usage

relab_phyloseq(phyloseq_object)

Arguments

phyloseq_object

A phyloseq object containing both an OTU table (otu_table) and sample meta-
data (sample_data).

Value

A data frame with rows representing samples and columns representing sample data categories or
OTU relative abundances. OTU abundances are automatically normalized so that they sum to 1 for
each sample, though a warning will be provided if a renormalization was necessary.

time_weights 15

Examples

if (requireNamespace("phyloseq", quietly = TRUE)) {
data(GlobalPatterns, package = "phyloseq")

Make a small phyloseq object for demonstration
phyloseq_subset = phyloseq::subset_taxa(phyloseq::subset_samples(GlobalPatterns,

X.SampleID %in%
c("CL3", "CC1")),

Order == "Cenarchaeales")
otu_table = relab_phyloseq(phyloseq_subset)
otu_table[, 1:10]

}

time_weights Compute a normalized weighting vector based on a vector of sampling
times.

Description

This function takes a vector of sampling times, t = (t1, t2, . . . , tI) and computes a normalized
vector which can be used to weight each sample based on the time between the subsequent and the
preceding samples. The weighting vector w is defined such that each entry, wi = di/2T , where
T = tI − t1 and di = ti+1 − ti−1 for i not equal to 1 or I. d1 = t2 − t1 and dI = tI − tI−1.

Usage

time_weights(times, group = NULL)

Arguments

times A numeric vector of sampling times. Each entry must be greater than the previ-
ous entry.

group Optional; a character vector specifying the group identity of each sampling time.
Use if there are samples from multiple replicates or subjects in one dataset.

Value

A numeric vector. Each entry provides a weight for each entry in the provided times vector. If
group is not specified, the vector sums to 1. If group is specified, the vector sums to the number of
distinct groups.

Examples

time_vector = c(1, 8, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 44, 50, 57, 64)

time_weights(times = time_vector)

16 window_fava

window_fava Compute FAVA in sliding windows.

Description

This function computes FAVA in sliding window slices of a dataset.

Usage

window_fava(
relab_matrix,
window_size,
window_step = 1,
group = NULL,
index = NULL,
time = NULL,
w = NULL,
S = NULL,
K = NULL,
normalized = FALSE,
alpha = 0.5

)

Arguments

relab_matrix A matrix or data frame with rows containing non-negative entries that sum to
1. Each row represents a sample, each column represents a category, and each
entry represents the abundance of that category in the sample. If relab_matrix
contains any metadata, it must be on the left-hand side of the matrix, the right
K entries of each row must sum to 1, and K must be specified. Otherwise, all
entries of each row must sum to 1.

window_size An integer number specifying the number of samples per window.

window_step Optional; an integer specifying the distance between the first entry of adjacent
windows. Default is window_step=1.

group Optional; a string specifying the name of the column that describes which group
each row (sample) belongs to. Use if relab_matrix is a single matrix contain-
ing multiple groups of samples you wish to compare.

index Optional; a string specifying the name of the column in relab_matrix con-
taining an index for each sample. For example, if relab_matrix contains time
series data, index would be the column containing the time of each sample. If
index is not specified but time is, time is by default used as the index.

time Optional; a string specifying the name of the column that describes the sampling
time for each row. Include if you wish to weight FAVA by the distance between
samples.

window_list 17

w Optional; a vector of length I with non-negative entries that sum to 1. Entry
w[i] represents the weight placed on row i in the computation of the mean abun-
dance of each category across rows. The default value is w = rep(1/nrow(relab_matrix),
nrow(relab_matrix)).

S Optional; a K x K similarity matrix with diagonal elements equal to 1 and off-
diagonal elements between 0 and 1. Entry S[i,k] for i!=k is the similarity
between category and i and category k, equaling 1 if the categories are to be
treated as identical and equaling 0 if they are to be treated as totally dissimilar.
The default value is S = diag(ncol(relab_matrix)).

K Optional; an integer specifying the number of categories in the data. Default is
K=ncol(relab_matrix).

normalized Optional; should normalized FAVA be used? Default is normalized = FALSE;
use normalized = TRUE to compute normalized FAVA. FAVA can only be nor-
malized if it is not weighted.

alpha Optional; number between 0 and 1 specifying the opacity of the horizontal lines
plotted. Default is alpha = 0.5.

Value

A list of values of FAVA for each window.

Examples

A = matrix(c(.3,.7,0,.1,0,.9,.2,.5,.3,.1,.8,.1,.3,.4,.3,.6,.4,0,0,.5,.5),
ncol = 3, byrow = TRUE)

window_out = window_fava(relab_matrix = A, window_size = 4, normalized = TRUE)

window_list Generate sliding windows of specified length given the maximum num-
ber of samples

Description

This function generates a list of of sliding windows conditional on two parameters: the length of
each window (number of samples) and the total number of samples present in the data.

Usage

window_list(window_size, length, window_step = 1)

Arguments

window_size An integer number specifying the number of samples per window.

length An integer number specifying the total number of samples.

window_step Optional; an integer number specifying the distance between the first entry of
adjacent windows. Default is window_step=1.

18 window_plot

Value

A list of samples of sample indices. Each list entry represents one window.

Examples

window_list(window_size = 6, length = 40)
window_list(window_size = 6, length = 40, window_step = 2)

window_plot Generate a plot of FAVA in sliding windows.

Description

This function generates a plot of normalized or unnormalized, weighted or unweighted FAVA com-
puted in sliding windows across samples for one or many groups of samples.

Usage

window_plot(window_fava, alpha = 0.5)

Arguments

window_fava The output of window_fava.

alpha Optional; number between 0 and 1 specifying the opacity of the horizontal lines
plotted. Default is alpha = 0.5.

Value

A ggplot2 object.

Examples

A = matrix(c(.3,.7,0,.1,0,.9,.2,.5,.3,.1,.8,.1,.3,.4,.3,.6,.4,0,0,.5,.5),
ncol = 3, byrow = TRUE)

window_out = window_fava(relab_matrix = A, window_size = 4, normalized = TRUE)
window_out$window_data
window_out$window_plot

xue_microbiome_sample 19

xue_microbiome_sample Temporal microbiome composition data

Description

A subset of the data generated by Xue et al. (2024) detailing longitudinal composition of the human
gut microbiome for three subjects who experience an antiobitic perturbation between days 29 and
34. We include only the subjects XAA, XBA, and XCA. Data from doi:10.1101/2023.09.26.559480.

Usage

xue_microbiome_sample

Format

xue_microbiome_sample:
A data frame with 75 rows and 1,348 columns:

subject Subject ID: XBA, XDA, or XMA
timepoint Time (days) of sample collection
... Species names ...

xue_species_info Table of species information

Description

A data frame providing taxonomic information for the species included in xue_species_tree.

Usage

xue_species_info

Format

xue_species_info:
A data frame with 1346 rows and 9 columns:

species_id The species_id given in xue_microbiome_sample
kingdom, phylum, class, order, family, genus, species The corresponding taxonomic category

for each species
species_id_number The numeric code associated with each species, as used in xue_species_tree

https://doi.org/10.1101/2023.09.26.559480

20 xue_species_tree

xue_species_similarity

Species similarity matrix for the species included in
xue_microbiome_sample

Description

A similarity matrix, with entry (i,j) corresponding to the pairwise similarity between species i and
species j. This similarity matrix was derived from a phylogenetic distance matrix, inferred from
the tree xue_species_tree, using the expression s(i,j) = exp(-d(i,j)), where d(i,j) is the phylogenetic
distance between species i and j.

Usage

xue_species_similarity

Format

xue_species_similarity:
A data frame with 524 rows and 524 columns, each corresponding to one species.

xue_species_tree Phylogenetic tree for the species included in xue_microbiome_sample

Description

A phylogenetic tree in the Newick format.

Usage

xue_species_tree

Format

xue_species_tree:
A Newick tree.

Index

∗ datasets
xue_microbiome_sample, 19
xue_species_info, 19
xue_species_similarity, 20
xue_species_tree, 20

bootstrap_fava, 2

fava, 4
fava_norm, 6

gini_simpson, 7
gini_simpson_mean, 8
gini_simpson_pooled, 10

plot_relabund, 11

relab_phyloseq, 14

time_weights, 15

window_fava, 16
window_list, 17
window_plot, 18

xue_microbiome_sample, 19
xue_species_info, 19
xue_species_similarity, 20
xue_species_tree, 20

21

	bootstrap_fava
	fava
	fava_norm
	gini_simpson
	gini_simpson_mean
	gini_simpson_pooled
	plot_relabund
	relab_phyloseq
	time_weights
	window_fava
	window_list
	window_plot
	xue_microbiome_sample
	xue_species_info
	xue_species_similarity
	xue_species_tree
	Index

