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Abstract

This article introduces the R package ExtremeBounds to perform extreme bounds
analysis (EBA), a sensitivity test that examines how robustly the dependent variable of
a regression model is related to a variety of possible determinants. ExtremeBounds sup-
ports Leamer’s EBA that focuses on the upper and lower extreme bounds of regression
coefficients, as well as Sala-i-Martin’s EBA which considers their entire distribution. In
contrast to existing alternatives, it can estimate models of a variety of user-defined sizes,
use regression models other than Ordinary Least Squares, incorporate non-linearities in
the model specification, and apply custom weights and standard errors. To alleviate
concerns about the multicollinearity and conceptual overlap of examined variables, Ex-
tremeBounds allows users to specify sets of mutually exclusive variables, and can restrict
the analysis to coefficients from regression models that yield a variance inflation factor
within a pre-specified limit.
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1. Introduction

In this article, I introduce the R package ExtremeBounds to perform extreme bounds analysis
(EBA), a sensitivity test that examines how robustly the dependent variable of a regression
model is associated with a variety of possible determinants. EBA sifts through a large number
of model specifications to answer the following questions:

e Which determinants are robustly associated with the dependent variable across a large
number of possible regression models?

o Is a particular determinant robustly associated with the dependent variable?

Extreme bounds analysis is useful for testing whether minor changes in the list of examined
variables can fundamentally alter the conclusions of empirical research studies. Researchers
can therefore use EBA to demonstrate the “inferential sturdiness” of their results — in other
words, their robustness to the inclusion or exclusion of a variety of plausible explanatory
variables. After all, as Leamer (1985) argues, “a fragile inference is not worth taking seriously.”
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In addition, extreme bounds analysis can help researchers address model uncertainty in re-
gression analysis. Even in cases where the correct functional form (e.g., linear, log-linear or
quadratic) is known, it may not be obvious which variables belong in the “true” regression
(Sala-i-Martin 1997). To aid with variable selection, EBA can identify explanatory variables
that are most robustly associated with the outcome variable.

Extreme bounds analysis is, of course, not the only method that can be useful in dealing
with model uncertainty and regressor selection. Alternative approaches include a variety
of Bayesian model averaging methods (Clyde and George 1994), the Bayesian Averaging of
Classical Estimates (Sala-i-Martin, Doppelhofer, and Miller 2004) or random forests (Breiman
2001). Nevertheless, EBA may be appealing to researchers because it is easy to grasp intu-
itively, relatively simple to estimate, and yields results that are easy to interpret within the
frequentist inference framework.

Extreme bounds analysis has been used to examine a plethora of questions of interest to social
scientists. Economists have used it to examine the determinants of long-term economic growth
(Sala-i-Martin 1997; Levine and Renelt 1992; Sturm and de Haan 2005), regional growth rates
(Reed 2009), foreign direct investment (Moosa and Cardak 2006), as well as investment in
research and development (Wang 2010). Political scientists have analyzed democratization
(Gassebner, Lamla, and Vreeland 2013), political repression (Hafner-Burton 2005) and lending
decisions by the International Monetary Fund (Moser and Sturm 2011). Other examples of
EBA in the social scientific literature include an examination of the relationship between wage
inequality and crime rates (Fowles and Merva 1996), of the effects of concealed weapons laws
in the United States (Bartley and Cohen 1998), and even of the determinants of Olympic
medal counts (Moosa and Smith 2004).

The R package ExtremeBounds supports a demanding version of EBA, proposed by Leamer
(1985), that focuses on the upper and lower extreme bounds of regression estimates, as well
as a more flexible version by Sala-i-Martin (1997). Sala-i-Martin’s EBA considers the entire
distribution of regression coefficients — i.e., coefficients from all estimated regression models,
not just those that yield the upper and lower extreme bounds. For Sala-i-Martin’s version
of extreme bounds analysis, ExtremeBounds estimates the normal model in which regression
coefficients are assumed to be normally distributed across models, as well as the generic model
which makes no such assumption.

Despite the relative ease with which EBA can be implemented in most statistical programming
languages, only a handful of ready-made software solutions exist for its estimation. Available
packages include the module eba (Impavido 1998) for Stata (StataCorp 2017), procedure
EBA (Doan 2004) for RATS (Estima 2014) and program MICRO-EBA (Fowles 1988, 2012)
for Gauss (Aptech Systems 2016) and SHAZAM (SHAZAM Analytics 2015).

These packages can only estimate Leamer’s extreme bounds analysis (Shiba 1992) or, in the
case of EBA for RATS, its slightly modified version suggested by Granger and Uhlig (1990).
Recent scholarship has, however, tended to follow Sala-i-Martin (1997) and consider the entire
distribution of coefficients that emerge from the extreme bounds analysis (e.g., Gassebner
et al. 2013; Sturm and de Haan 2005). In addition, researchers have used histograms to
illustrate the distribution of estimated regression coefficients graphically (e.g., Hegre and
Sambanis 2006). The packages listed above do not support Sala-i-Martin’s EBA or generate
graphical output. As a result, they do not provide a satisfactory implementation of extreme
bounds analysis that would accurately reflect the method’s contemporary use.
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The ExtremeBounds package, by contrast, estimates both Leamer’s and Sala-i-Martin’s ver-
sions of extreme bounds analysis. It is the first EBA package for the R statistical programming
language (R Core Team 2017). It can be installed free of charge from the Comprehensive R
Archive Network (CRAN) (2017) in the usual way:

R> install.packages("ExtremeBounds")

The package provides users with a large number of important features that distinguish it from
existing alternatives for EBA estimation. In particular, ExtremeBounds can estimate models
of a variety of user-defined sizes, use regression models other than Ordinary Least Squares
and incorporate non-linearities in the model specification. In addition, it can apply custom
weights and standard errors in order to give regression models with a better fit more weight
in the analysis.

To alleviate concerns about the multicollinearity or conceptual overlap of examined variables,
ExtremeBounds allows users to specify sets of mutually exclusive variables. It can also re-
strict the analysis to coefficients from regression models that yield a variance inflation factor
within a given maximum limit. The variance inflation factor is a rule-of-thumb indicator of
multicollinearity in Ordinary Least Squares regression models (Mansfield and Helms 1982).
More specifically, it quantifies how much the variance of estimated regression coefficients is
increased due to regressor collinearity.

In the next section, I briefly describe Leamer’s and Sala-i-Martin’s extreme bounds analysis.
I then provide an overview of the ExtremeBounds package’s capabilities in Section 3. In
Section 4, I demonstrate them on an empirical example that involves the fuel efficiency of
automobiles. Section 5 concludes.

2. Extreme bounds analysis (EBA)

In this section, I present a brief description of extreme bounds analysis. My discussion is
by no means intended to be exhaustive. Instead, I aim to familiarize the reader with the
fundamentals of this method’s estimation procedure. More detailed and rigorous treatments
of extreme bounds analysis can be found in Leamer (1985), Leamer and Leonard (1983) and
Sala-i-Martin (1997). For a critical perspective on EBA, please refer to McAleer, Pagan, and
Volker (1985), Breusch (1990), Hendry and Krolzig (2004) or Angrist and Pischke (2010).

The basic idea of extreme bounds analysis is quite simple. We are interested in finding
out which variables from the set X are robustly associated with the dependent variable
y. To do so, we run a large number of regression models. Each has y as the dependent
variable and includes a set of standard explanatory variables F' that are included in each
regression model. In addition, each model includes a different subset D of the variables
in X. Following the convention in the literature, we will refer to F' as the free variables
and to X as the doubtful variables. Some subset of the doubtful variables X might be so-
called focus variables that are of particular interest to the researcher. The doubtful variables
whose regression coefficients retain their statistical significance in a large enough proportion
of estimated models are declared to be robust, whereas those that do not are labelled fragile.

More formally, to find out whether a focus variable v € X is robustly correlated with the
dependent variable y, we estimate a set of regression models of the following form:

y=a;+pjv+v;F+6;D;+¢ (1)
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where j indexes regression models, F' is the full set of free variables that will be included
in every regression model, D; is a vector of k£ variables taken from the set X of doubtful
variables, and ¢ is the error term. While D; has conventionally been limited to no more than
three doubtful variables per model (Levine and Renelt 1992; Achen 2005), the particular
choice of k, the number of doubtful variables to be included in each combination, is up to the
researcher.

The above regression is estimated for each of the M possible combinations of D; C X. The
estimated regression coefficients Bj on the focus variable v, along with the corresponding
standard errors 6, are collected and stored for use in later calculations. In the original
formulation of extreme bounds analysis, the regressions were estimated by Ordinary Least
Squares (OLS). In recent research, however, other types of regression models have also been
used, such as ordered probit models (Bjgrnskov, Dreher, and Fischer 2008; Hafner-Burton
2005) or logistic models (Hegre and Sambanis 2006; Moser and Sturm 2011; Gassebner et al.
2013).

2.1. Leamer’s EBA

In order to determine whether a determinant is robust or fragile, Leamer’s extreme bounds
analysis focuses only on the extreme bounds of the regression coefficients (Leamer 1985). For
any focus variable v, the lower and upper extreme bounds are defined as the minimum and
maximum values of Bj +76; across the M estimated regression models, where 7 is the critical
value for the requested confidence level. For the conventional 95-percent confidence level, T
will thus be equal to approximately 1.96. If the upper and lower extreme bounds have the
same sign, the focus variable v is said to be robust. Conversely, if the bounds have opposite
signs, the variable is declared fragile.

The interval between the lower and upper extreme bound represents the set of values that are
not statistically significantly distinguishable from the coefficient estimate Bj- In other words,
a simple t-test would fail to reject the null hypothesis that the true parameter §8; equals any
value between the extreme bounds. Intuitively, Leamer’s version of extreme bounds analysis
scans a large number of model specifications for the lowest and highest value that the j3;
parameter could plausibly take at the requested confidence level. It then labels variables
robust and fragile based on whether these extreme bounds have the same or opposite signs,
respectively.

Leamer’s EBA relies on a very demanding criterion for robustness, since the results from a
single regression model are enough to classify a determinant as fragile. In other words, a
focus variable will be declared fragile even if the extreme bounds have the same sign in all
estimated models except one. Accordingly, Sala-i-Martin (1997) notes that “if the distribution
of [regression coefficients| has some positive and some negative support, then one is bound
to find one regression for which the estimated coefficient changes signs if enough regressions
are run.” It should come as no surprise that studies that have employed Leamer’s EBA to
test the robustness of determinants have generally concluded that most, if not all, examined
variables are fragile (Levine and Renelt 1992; Levine and Zervos 1993; Sala-i-Martin 1997).

2.2. Sala-i-Martin’s EBA

In response to the perceived stringency of Leamer’s EBA, Sala-i-Martin (1997) proposes an
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alternative method for extreme bounds analysis that focuses on the entire distribution of
regression coefficients, not just on its extreme bounds. Instead of applying a binary label of
robust or fragile, he assigns some level of confidence to the robustness of each of the variables.

In particular, Sala-i-Martin (1997) considers the value of CDF(0), the fraction of the variable’s
cumulative distribution that lies on each side of zero. To motivate his approach, he points out
that “if 95 percent of the density function for the estimates of 81 lies to the right of zero and
only 52 percent of the density function for ps lies to the right of zero, one will probably think
of variable 1 as being more likely to be correlated with [the dependent variable] than variable
27 In short, Sala-i-Martin’s EBA considers a variable more robust if a greater proportion of
its coefficient estimates lies on the same side of zero.

Although the coefficients in each individual model have an asymptotic normal distribution,
the coefficient estimates obtained from different regression models might be scattered in less
predictable ways and may not follow any particular distribution. For this reason, Sala-i-
Martin (1997) presents two variants of his extreme bounds analysis — a normal model, in
which the estimated regression coefficients are assumed to follow a normal distribution across
the estimated models, as well as a generic model, which does not assume any particular
distribution of regression coefficients.

To estimate the normal model, Sala-i-Martin first calculates the weighted mean of the regres-

sion coefficients 8; and of the variances 6?:

- M A
=) wib; (2)
j=1
M
o° =Y w;6; (3)
j=1

where w; represents weights that are applied to results from each estimated regression model.
Sala-i-Martin (1997) notes that applying weights enables the researcher to “give more weight
to regressions or models that are more likely to be the true model,” assuming that “the fit
of model j is an indication of its probability of being the true model.” Once the weighted
means of coefficients and standard errors are known, Sala-i-Martin calculates CDF(0) — i.e.,
the cumulative density function evaluated at zero — based on the assumed normal distribution
of regression coefficients such that

B~ N(B,5?) (4)

In the generic model, Sala-i-Martin estimates the cumulative density function from each
regression model separately, and pools them into an aggregate CDF(0) that then serves as a
measure of the doubtful variable’s robustness. First, he uses the sampling distribution of the
regression coefficient f3; to obtain an individual CDF(0), denoted by ¢;(0 | 5;, 6?), for each
estimated regression model. He then calculates the aggregate CDF(0) for § as the weighted
average of all the individual CDF(0)’s:

M
o(0) = > w;d;(0] B, 67) (5)
j=1
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In both the normal and the generic model, Sala-i-Martin applies weights that are proportional
to the integrated likelihood to give greater weight to models that provide a better fit:

L;

M (6)
> L
=1

w; =

In principle, of course, the weights could be based on any other measure of the goodness of
fit. Examples used in existing research literature include McFadden’s likelihood ratio index
(McFadden 1974) used by Hegre and Sambanis (2006), or applying equal weights to each
regression model (Sturm and de Haan 2005; Gassebner et al. 2013).

3. Overview of the ExtremeBounds package

The ExtremeBounds package consists of the main function eba(), which performs the ex-
treme bounds analysis, as well as of two related methods — print() and hist() — which
produce, respectively, histograms and text output to summarize the estimation results. In
this section, I provide an overview of these functions’ capabilities, and highlight features that
make ExtremeBounds the most versatile of the available EBA estimation tools. Users can
obtain a more detailed description of the arguments and output of each function by typing,
as appropriate, 7eba, ?print.eba or Thist.eba into the R console.

3.1. EBA estimation: Main function eba()

The main function eba() performs both Leamer’s and Sala-i-Martin’s versions of extreme
bounds analysis using variables from a data frame specified in the function’s argument data.
The user specifies the dependent variable (argument y), the free variables to be included in
all regression models (free), the focus variables that are of interest (focus), as well as the
full set of doubtful variables (doubtful). Note that the variables included in focus must be
a subset of those in doubtful. If the user does not provide any focus variables, eba() will
assume that all doubtful variables are of interest to the researcher.

It is often more convenient to specify the model variables through a single formula argument.
The eba() function allows the user to pass on a multiple-part formula that specifies the
dependent, free, focus and doubtful variables. These variables, along with the functional
form of the model, are passed on to the formula argument in an object of class "Formula", as
implemented by the Formula package (Zeileis and Croissant 2010). The model formula takes
the following most general form: y ~ free | focus | doubtful. If all doubtful variables
are of interest (i.e., all are focus variables), the user can pass on y ~ free | focus. Finally,
one can also specify a model, in which there are no free variables and all doubtful variables are
of interest: y ~ focus. When using the formula argument, the doubtful component of the
right-hand side need not contain the focus variables. Section 4 provides a practical example
of specifying the EBA model using both the single formula argument and the separate vy,
free, focus and doubtful arguments.

If no other arguments are specified, eba() will conduct a ‘standard’ extreme bounds analysis
based on Ordinary Least Squares (OLS) regressions with unadjusted standard errors. All
hypothesis tests will be performed at the conventional 95 percent confidence level against the
null hypothesis that the relevant parameter is equal to zero. Equal weights will be applied to
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results from each estimated model, and no maximum limit will be imposed on the variance
inflation factor. Following Levine and Renelt (1992), eba() will include up to three doubtful
variables in addition to the focus variable in each regression model.

The function eba(), however, also offers a great deal of flexibility for researchers who might
be interested in conducting a different kind of extreme bounds analysis. Every aspect of EBA
is fully customizable:

o eba() can estimate any type of regression model (argument reg.fun), not just Ordinary
Least Squares (OLS). Researchers can thus easily perform EBA using, for instance,
logistic or probit regressions. Attention can, furthermore, be restricted to regressions
in which the variance inflation factor on the examined coefficient does not exceed a
set maximum (argument vif). Alternatively, users can request that eba() only use
results from regression models that meet some other, user-specified condition (argument
include.fun).

o Regression models can be specified very flexibly (argument formula). They can con-
tain interaction terms, squared or cubic terms to account for non-linear relationships,
as well as the lags, natural logarithms or other functions of the included variables. The
function automatically transforms the variables and creates the appropriate model ma-
trices. These regression models can be of a variety of sizes, as the user can choose how
many doubtful variables should be included in each specification (argument k). Most
applications have included up to three doubtful variables per estimated model (e.g.,
Levine and Renelt 1992; Sala-i-Martin 1997). Nevertheless, the researcher’s choice of
k can be somewhat arbitrary in practice, and will generally have to strike a balance
between estimating more model specifications and controlling for too many variables.

o Users can specify sets of mutually exclusive variables that will never be included in the
same regression model to alleviate concerns about regressor multicollinearity (argument
exclusive). Specifying which doubtful variables cannot be included together can also
be useful when several doubtful variables measure the same substantive concept.

o All hypothesis tests can be performed at any requested confidence level (argument
level). In addition, the user can specify the null hypothesis value for each regression
coefficient (argument mu). eba() can thus check whether the estimated coefficients are
robustly different from any numerical value, not just from zero.

o If desired, weights can be applied to results from each estimated regression (argument
weights). The weights can be based on the regression R?, adjusted R2, McFadden’s
likelihood ratio index (McFadden 1974) or calculated by a user-provided function.

e In conjunction with other R packages, eba() can apply various types of standard errors
in its calculations (argument se.fun). It can, for instance, apply heteroskedasticity-
robust (Huber 1967; Eicker 1967; White 1980), clustered (Froot 1989; Williams 2000),
and Newey-West standard errors (Newey and West 1987) provided by the sandwich
package (Zeileis 2004, 2006), as well as panel-corrected standard errors (Beck and Katz
1995) from the pcse package (Bailey and Katz 2011). Additionally, users can also
provide eba() with their own functions to calculate standard errors.
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e To reduce the time required to complete the analysis, eba() can estimate a random
sample of any given size drawn from the full set of the regression models (argument
draws). For Sala-i-Martin’s EBA, this procedure yields unbiased estimates of the quan-
tities of interest that can give the researcher a good sense of the full results within a
reasonable time frame (Sala-i-Martin et al. 2004). Note, however, that random sampling
can lead to the overestimation of the lower extreme bound and to the underestimation
of the upper extreme bound in Leamer’s EBA. Researchers should therefore be cautious
in interpreting Leamer’s EBA results that are not estimated from the full universe of
regression models.

The function eba() returns an object of class "eba", which can then be passed on to the
print () method to obtain a text summary of EBA results, or to the hist() method to
produce histograms that will provide a graphical illustration of the estimation results. The
object contains a bounds data frame with the results of both Leamer’s and Sala-i-Martin’s
extreme bounds analysis, as well as a coefficients data frame with various quantities of
interest: the minimum, maximum, mean and median values of coefficient estimates, along
with the individual CDF(0)’s for Sala-i-Martin’s generic EBA model.

In addition, the object stores the total number of doubtful variable combinations that include
at least one focus variable (component ncomb), the number of regressions actually estimated
in total (nreg) and by variable (nreg.variable), along with the number of coefficients used
in the extreme bounds analysis (ncoef.variable). Importantly, the "eba"-class object also
contains the estimation results from each regression model (component regressions). As a
result, researchers can easily use the large number of regressions that EBA often produces in
their own analyses, whether those be modifications of extreme bounds analysis or an entirely
different statistical method.

3.2. Text summary: Method print ()

Once the function eba() has completed its calculations, the user can obtain a text summary
of the estimation results by passing the "eba"-class object to the print() method. The
summary contains information about the number of regressions that eba() has estimated, as
well as about the distribution of regression coeflicient estimates. Most importantly, it provides
a comprehensive summary of the analysis results for both Leamer’s and Sala-i-Martin’s EBA.
The user can adjust the number of decimal places to which all numerical figures in the output
are rounded by changing the value of the digits argument.

At the top of the text output, the print() method reproduces the eba() function call,
the confidence level, as well as the total number of variable combinations, the number of
regressions that were actually estimated (in total, by variable, and as a proportion of the
number of combinations) and the number of coefficients used in the EBA (by variable). The
remainder of the output is divided into four parts, which I briefly summarize below:

e Beta coefficients: This part contains the weighted mean of the estimated regres-
sion coefficients and of their standard errors. Individual regression models receive a
weight specified by the eba() function’s argument weights. In addition, the print ()
method also reports the value of the lowest and highest regression coefficients across
the estimated models, along with the corresponding standard errors.
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e Distribution of beta coefficients: Here, the method reports the percentage of re-
gression coefficients that are lower/greater than zero, along with the proportion that is
statistically significantly different from zero at the specified confidence level. If a differ-
ent value under the null hypothesis is specified, all regression coefficients are compared
with mu rather than with zero.

o Leamer’s Extreme Bounds Analysis: Both the lower and upper extreme bounds, at
the specified confidence levels, from Leamer’s extreme bounds analysis are reported.
Based on these bounds, each variable is classified as either robust or fragile.

e Sala-i-Martin’s Extreme Bounds Analysis: Finally, the print () method reports
results from Sala-i-Martin’s EBA. In particular, for both the normal and generic mod-
els, the text output prints out the value of the aggregate CDF(0) (or CDF(mu), if
appropriate), along with its complement 1 - CDF(0).

3.3. Histograms: Method hist()

In addition to providing text output with EBA results, the ExtremeBounds package can pro-
duce histograms that summarize the distribution of estimated regression coefficients graphi-
cally for each examined variable. These histograms can, furthermore, be superimposed with
curves that depict the corresponding kernel density or a normally distributed approxima-
tion to the coefficient distribution. Such approximations can give the researcher a succinct
summary of the shape of the coefficient distribution. As such, they provide a simple way of
examining whether the estimated regression coefficients concentrate around a particular value
or have, for instance, a multimodal distribution.

To produce EBA histograms, the user simply passes an "eba'"-class object created by the
main function eba() to the hist() method. The user can choose between histograms that
represent frequencies or probability densities (argument freq). Unless the set of variables to
be included is specified (argument variables), the method will produce histograms for all
variables included in the extreme bounds analysis.

By default, the histograms include vertical lines that indicate the parameter value under
the null hypothesis (argument mu.show), as well as a kernel density curve that relies on R’s
standard density method (argument density.show). The kernel density curve provides a
non-parametric estimate of the EBA coefficients’ probability density function. In addition,
the hist () method for "eba" objects can overlay the histograms with a density curve for a
normal distribution function that approximates the distribution of EBA coefficients (argument
normal.show).

Many formatting options are available. Users can change the colors and widths of the vertical
lines for null hypothesis values (arguments mu.col and mu.1lwd), of the kernel density curves
(density.col and density.lwd), and of the density curves for the normally distributed
approximation (normal.col and normal.lwd). The user also has complete control over a
variety of other visual properties of the histograms. These include the histograms’ title labels
(argument main), the range of values on the horizontal axis (x1im), as well as the color of the
histogram bars (col).
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4. Example: The fuel economy of automobiles

In this section, I demonstrate the capabilities of the ExtremeBounds package using an em-
pirical example. In particular, I identify robust determinants of the fuel economy of selected
automobiles using data from the data frame mtcars. This data frame is included in the
datasets package, which is part the standard R distribution (R Core Team 2017) and is there-
fore readily available to the beginning ExtremeBounds user.

The information in mtcars was extracted from the 1974 Motor Trend magazine, and com-
prises the fuel consumption and ten aspects of vehicle design and performance for a selection
of 1973-1974 automobile models. Existing research literature has already taken advantage of
these data for the purpose of demonstrating various statistical methods and procedures (Hock-
ing 1976; Henderson and Velleman 1981). The mtcars data set is particularly well-suited for
a demonstration of extreme bounds analysis, as its small size allows me to highlight the Ex-
tremeBounds package’s most important features without having to perform time-consuming
estimations of a very large number of regressions.

The data frame mtcars contains 32 observations. Each observation is one particular model of
automobile (e.g., "Mazda RX4", "Cadillac Fleetwood" or "Fiat X1-9"). For each model,
the data frame contains information on its fuel economy, expressed as the vehicle’s miles per
gallon (variable mpg), and about its engine — the number of cylinders (cyl) and carburetors
(carb), its displacement in cubic inches (disp), its gross horsepower (hp), as well as whether
it is a V- or a straight engine (vs). In addition, we are given information about each model’s
rear axle ratio (drat), weight in thousands of pounds (wt), and quarter-mile time in seconds
(gsec). The variable gear contains the number of forward gears, while am indicates whether
the automobile has an automatic or manual transmission, with a value of 1 denoting a manual
transmission.

4.1. Naive EBA with all combinations of doubtful variables

First, I would like to get a basic sense of which determinants might be most robustly associated
with the dependent variable mpg (miles per gallon). I therefore begin by conducting an EBA
that estimates all possible combinations of doubtful variables across the ten automobile design
and performance characteristics included in mtcars. Since I am interested in the robustness
or fragility of all the doubtful variables, I regard all of them as focus.

From a statistical point of view, this type of EBA is somewhat naive, as it does not take into
account the possibility of high multicollinearity among the included variables. Neither does
it account for the possibility that some variables measure similar concepts. The number of
cylinders (cyl) and the gross horsepower (hp) might, for example, both be seen as measures
of the engine’s overall performance. Researchers interested in examining the fuel economy of
automobiles would thus, in contrast to my naive EBA, be unlikely to include both explanatory
variables in the same regression model.

An extreme bounds analysis with all combinations of doubtful variables might nevertheless
yield some valuable insights. In particular, it provides a particularly strong test for a deter-
minant’s robustness. As McAleer et al. (1985) suggest, such an EBA might indicate which
variables should be treated as free, and therefore be included in all regression models in
further EBA analyses.
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I estimate the naive EBA by calling the eba() function:

R> naive.eba <- eba(formula = mpg ~ cyl + carb + disp + hp + vs + drat + wt
+ + gsec + gear + am, data = mtcars, k = 0:9)

Alternatively, I can use character vectors to specify the dependent and doubtful variables
using the y and doubtful arguments, respectively:

R> naive.eba <- eba(data = mtcars, y = "mpg", doubtful = c("cyl", "carb",
+ Ildl'sp” th" Ilvs" ”drat" ”Wt” Hqsecﬂ ”gear" Ilamﬂ) k = 0:9)

Since the focus argument is not specified, all the doubtful variables will be treated as focus
variables. The argument k = 0:9 ensures that, on top of the focus variable, up to nine
doubtful variables will be included in each regression model. As a result, regressions with all
possible combinations of the ten doubtful variables will be estimated. The eba() function
will return an object of class "eba" that will be stored in naive.eba.

Next, I ask ExtremeBounds to produce a set of histograms that summarize the EBA estima-
tion results. To do so, I simply pass the naive.eba object to the hist () method:

R> hist(naive.eba)

The resulting histograms are reproduced in Figure 1. The gray bins contain the Ordinary
Least Squares (OLS) coefficients on each examined variable from all of the estimated regres-
sion models. Superimposed over each histogram is a thick blue curve that represents the
corresponding kernel density, a non-parametric approximation of the shape of each regression
coefficient’s distribution. The kernel density curves can be helpful in identifying whether
these distributions have, for instance, multiple modes. There is also a red vertical line at
zero, the default coefficient value under the null hypothesis.

A visual inspection of the histograms allows me to get a quick overview of the EBA estimation
results. If most of the histogram bins’ area lies to the right of zero, a majority of the regres-
sion coefficient estimates on the corresponding variables are positive. A positive coefficient
indicates that, holding all else equal, a higher value of the examined variable is associated
with more miles per gallon, as given by the dependent variable (mpg). The results of the naive
EBA suggests that straight engines (vs), a greater rear axle ratio (drat), a slower quarter-
mile time (gsec), a greater number of forward gears (gear) and a manual transmission (am)
are associated with greater fuel economy.

Conversely, if most of the bins’ area lies to the left of zero, greater values of the correspond-
ing variable are associated with lower miles per gallon, ceteris paribus, in most estimated
regressions. Naive EBA estimation results indicate that engines with more cylinders (cyl),
curburetors (carb) and with greater gross horsepower (hp) achieve worse fuel economy. The
vehicle’s greater weight (wt) is consistently associated with greater fuel consumption. In fact,
wt is the only variable for which all of the estimated regression coefficients have the same (in
this case, negative) sign.

Engine displacement (disp) appears to be an interesting case, as the distribution of the
regression coefficients appears to be bimodal. Some are negative, while others are positive.
The bimodal nature of the distribution can be easily seen from the two different peaks of the
histogram bins, as well as from the double hump of the kernel density curve.

11
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Figure 1: Histograms that summarize the estimation results of the naive EBA. The mag-
nitudes of regression coefficients are on the horizontal axis. The vertical axis indicates the
corresponding probability density.
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4.2. A more sophisticated EBA

Having inspected the results of my naive EBA, I can now use the ExtremeBounds package’s
capabilities to make my analysis more sophisticated. In particular, I make the following
changes to the eba() function call:

¢ Results from the naive EBA have indicated that the regression coefficients on the ve-
hicle’s weight (variable wt) are negative, regardless of the model specification. For this
reason, I treat wt as a free variable to be included in all regression models.

e Some of the doubtful variables measure similar concepts, and were therefore inappropri-
ately included together in regression models by the naive EBA. To prevent conceptual
overlap, I use the exclusive parameter to specify two sets of mutually exclusive vari-
ables:

— One set consists of variables that might be construed as measuring the performance
of the engine: the number of cylinders (cyl), the number of carburetors (carb),
engine displacement (disp) and the gross horsepower (hp).

— The other set consists of the two doubtful variables that have to do with the car’s
transmission: the am indicator of an automatic vs. manual transmission, and the
number of forward gears (gear).

e [ am only interested in estimation results for the four variables that measure engine
performance: cyl, carb, disp and hp. I therefore specify them as the focus variables.

o Rather than estimating all possible combinations of the doubtful variables as I did in
the naive EBA, I only add combinations of up to three doubtful variables to the focus
variable in each specification. The value of the k argument will thus remain at its default
value of 0:3.

e To eliminate the influence of coefficient estimates from model specifications that suffer
from high multicollinearity, I specify a maximum acceptable variance inflation factor by
setting vif = 7.

o I use heteroskedasticity-robust standard errors (White 1980), as calculated by the
sandwich package (Zeileis 2004, 2006). To be able to do this, I define the se.robust
function (below) that calculates the standard errors, and pass it to the eba() function:

library("sandwich")

se.robust <- function(model.object) {
model.fit <- vcovHC(model.object, type = "HC")
out <- sqrt(diag(model.fit))
return(out)

3

e Finally, I give more weight to estimation results from regression models that provide a
better fit to the data. More specifically, I set the argument weights to "1ri", and thus
weight each model’s results by its likelihood ratio index (McFadden 1974).
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I execute the following R code to estimate this more sophisticated extreme bounds analysis:

R> sophisticated.eba <- eba(formula = mpg ~ wt | cyl + carb + disp + hp |
+ vs + drat + wt + gsec + gear + am, data = mtcars, exclusive = ~ cyl
+ + carb + disp + hp | am + gear, vif = 7, se.fun = se.robust,

+ weights = "lri")

I could, of course, achieve the same result by passing the sets of variables via the y, free,
doubtful and focus arguments, as shown below. The exclusive argument can accept a list
of character vectors in lieu of a multiple-part "Formula" object.

R> doubtful.variables <- c("cyl", "carb", "disp", "hp", "vs", '"drat", "wt",
+ Ilqsecll Ilgearll Ilam")
2 2
R> engine.variables <- c("cyl", "carb", "disp", "hp")
R> transmission.variables <- c("am", "gear")

R> sophisticated.eba <- eba(data = mtcars, y = "mpg", free = "wt",
+ doubtful = doubtful.variables, focus = engine.variables,

+ exclusive = list(engine.variables, transmission.variables),
+ vif = 7, se.fun = se.robust, weights = "lri")

Again, I produce a set of histograms that will allow me to get an initial sense of the results
of my analysis. This time, I include the hist() method’s variables argument to request
histograms only for the four focus variables that I am interested in. Additionally, I use the
main argument to make each histogram’s main title more descriptive and the normal.show
argument to request that hist () superimpose a density curve with a normally distributed
approximation to the coefficient distribution.

R> hist(sophisticated.eba, variables = c("cyl", "carb", "disp", "hp"),

+ main = c(cyl = "number of cylinders", carb = "number of carburetors”,
+ disp = "engine displacement", hp = "gross horsepower"),

+ normal.show = TRUE)

As the histograms in Figure 2 show, the more sophisticated EBA leads to more clear-cut
predictions about the signs of regression coefficients than the naive EBA estimated earlier.
The coefficients on all four focus variables are consistently negative. This result suggests
that, across a wide variety of reasonably well-specified regression models, a greater number of
cylinders and carburetors, as well as greater engine displacement and gross horsepower, are
associated with worse fuel economy (i.e., with fewer miles per gallon).

It is, moreover, evident that the blue kernel density curve and the green normally distributed
approximation are quite different from each other. This lack of alignment suggests that
regression coefficients are not normally distributed across model specifications.
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Figure 2: Histograms that summarize the estimation results of the sophisticated EBA. The
magnitudes of regression coeflicients are on the horizontal axis. The vertical axis indicates
the corresponding probability density.

In addition to histograms, ExtremeBounds allows users to examine EBA results through the
text output produced by the print () method. This method produces a wealth of detailed
information about the estimation results from both Leamer’s and Sala-i-Martin’s extreme
bounds analysis. In the interest of clarity, I reproduce only the portions of print () output
that are most relevant to my empirical example. ExtremeBounds users can type ?print.eba
in the R console to obtain a complete description of the text output.

I obtain a text summary of my analysis results by passing the "eba"-class object to the
print () method:

R> print(sophisticated.eba)

15
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At the top of the print() method’s text output, we find information about the number
of specifications that were estimated. In total, there are 148 possible combinations of the
examined doubtful variables that contain at least one focus variable. Since the parameter
draws is not specified, no random sampling of estimated models occurs. As a result, eba()
estimates all of the available combinations.

The free variable wt occurs, of course, in all 148 regression models. The focus variables are
included in fewer specifications since each of them does not appear in some doubtful variable
combinations. The four focus variables have, furthermore, been specified as mutually exclusive
(in the eba() function’s argument exclusive) and cannot therefore be included together in
the same regression model. The print () method reports that the focus variables cyl, carb,
disp and hp appear in 37 specifications each. The output also indicates that only 26 and 14
coefficient estimates (rather than all 37) were used in the extreme bounds analysis for the
variables cyl and disp, respectively. The reduction in the number of coefficients used occurs
because the variance inflation factors on some cyl and disp coefficients exceed the specified
maximum of 7.

Number of combinations: 148
Regressions estimated: 148 (100% of combinations)

Number of regressions by variable:

(Intercept) wt cyl carb disp hp
148 148 37 37 37 37

Number of coefficients used by variable:

(Intercept) Wt cyl carb disp hp
148 148 26 37 14 37

Next, the print() method reports the weighted means of coefficient and standard error
estimates for the free and focus variables across the estimated regression models. The weights
are specified in the eba() function’s weights argument. In the sophisticated analysis I ran,
I weight regression models by the likelihood ratio index.

The table reproduced below shows that, on average, a vehicle weight (wt) that is greater by a
thousand pounds is associated with 3.623 fewer miles per gallon (mpg). An additional cylinder
(cyl) or carburetor (carb) yields a decrease of 1.370 and 0.822 miles per gallon, respectively.
One cubic inch of additional engine displacement (disp) is associated with 0.016 fewer miles
per gallon. Finally, a gallon of fuel yields 0.027 fewer miles with each unit of gross horsepower
(hp). Relative to the size of the coefficients, the weighted standard errors are relatively small.
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Beta coefficients:

Type Coef (Wgt Mean) SE (Wgt Mean)

(Intercept)  free 26.199 6.286
wt free -3.623 0.902
cyl focus -1.370 0.403
carb focus -0.822 0.327
disp focus -0.016 0.008
hp focus -0.027 0.008

The text output from print () proceeds to summarize the distribution of coefficient estimates.
It reports the proportions, expressed as percentages, of estimated regression coefficients that
are lower or greater than zero. In our example, the coefficients on wt, cyl, carb, disp and
hp are all negative, while the coefficients on the intercept term in the linear regression are
always positive. These statistics are, of course, consistent with the information displayed in
the histograms in Figure 2.

Distribution of beta coefficients:

Type Pct(beta < 0) Pct(beta > 0)

(Intercept) free 0 100
wt free 100 0
cyl focus 100 0
carb focus 100 0
disp focus 100 0
hp focus 100 0

Even though all the free and focus variables’ coefficients are negative, some of the point esti-
mates may not be distinguishable from zero in a statistically significant way. The text output
also includes the percentages of regression coeflicients that are both statistically significant
and lower /greater than zero. We find that only in the case of the free variable wt are all the
coeflicients statistically significant. A very large majority of coefficient estimates are signif-
icant for the cyl and hp variables (92.3 and 81.1 percent, respectively). By contrast, only
about 60 percent of coefficients on carb and disp are statistically significant.

Distribution of beta coefficients:

Type Pct(signif & beta < 0) Pct(signif & beta > 0)

(Intercept) free 0.000 79.73
wt free 100.000 0.00
cyl focus 92.308 0.00
carb focus 59.459 0.00
disp focus 57.143 0.00
hp focus 81.081 0.00
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The print() method then goes on to summarize results from Leamer’s extreme bounds
analysis. It produces a table that includes the lower and upper extreme bounds of regression
coefficient estimates, and — based on these bounds — classifies determinants as robust or fragile.
Recall from my earlier discussion that the lower and upper extreme bounds are defined as the
minimum and maximum values of Bj =+ 76, across all estimated regression models. In this
case, T is the critical value for the 95 percent confidence level. The only variable that is found
to be robust using Leamer’s EBA is the free variable wt. Since the upper and lower extreme
bounds of all the focus variables have opposite signs, they are declared to be fragile.

Leamer's Extreme Bounds Analysis (EBA):

Type Lower Extreme Bound Upper Extreme Bound Robust/Fragile?

(Intercept) free -19.521 55.021 fragile
wt free -7.495 -0.659 robust
cyl focus -2.295 0.101 fragile
carb focus -2.197 0.358 fragile
disp focus -0.034 0.009 fragile
hp focus -0.052 0.002 fragile

Finally, the text output includes results from Sala-i-Martin’s extreme bounds analysis. The
histograms in Figure 2 suggest that the normally distributed approximation of the regression
coefficients’ distribution does not provide a good fit to the data. For this reason, I focus on
EBA results from the generic model, which does does not assume any particular distribution
of coefficient estimates across different specifications.

As the table presented below indicates, results from Sala-i-Martin’s EBA suggest very little
fragility of the coefficient estimates. For variables wt, cyl and hp, more than 99 percent of
the cumulative distribution of regression coefficients lies below zero. The same can be said of
more than 95 percent of the cumulative distributions for variables carb and disp. According
to results from Sala-i-Martin’s EBA, all of the free and focus variables appear to be robustly
(and negatively) associated with the automobiles’ miles per gallon (mpg). In contrast to
Leamer’s EBA in which a single insignificant coefficient implies fragility, the less stringent
Sala-i-Martin’s EBA classifies more variables as robust determinants of fuel economy.

Sala-i-Martin's Extreme Bounds Analysis (EBA):

Type G: CDF(beta <= 0) G: CDF(beta > 0)

(Intercept) free 2.756 97.244
wt free 99.957 0.043
cyl focus 99.521 0.479
carb focus 95.315 4.685
disp focus 95.200 4.800
hp focus 99.047 0.953

All in all, the extreme bounds analysis in this empirical example suggests that the examined
automobiles’ weight and engine performance are robustly associated with the vehicles’ fuel
economy. In conducting the analysis, I have demonstrated some of the most important fea-
tures of the ExtremeBounds package. Specifically, I have shown how researchers can estimate
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Leamer’s and Sala-i-Martin’s EBA using the fully customizable eba() function. The estima-
tion results can then be visually inspected with the help of the hist () method that produces
histograms of each examined variable’s coefficient estimates. Finally, the print () method
provides users with text output that contains a detailed summary of EBA estimation results.
In the next section, I conclude.

5. Concluding remarks

In this paper, I have introduced the ExtremeBounds package for the R statistical program-
ming language. The package allows researchers to perform extreme bounds analysis (EBA),
a sensitivity test that calculates how robustly a regression model’s dependent variable is
associated with a variety of possible determinants.

ExtremeBounds represents a significant improvement over existing software implementations
of extreme bounds analysis, as it supports not only Leamer’s version of extreme bounds
analysis, but also Sala-i-Martin’s EBA. Furthermore, the package allows users to customize
every aspect of the analysis: the type of regression model, its size and functional form, as
well as the standard errors and weights.

I have showcased many of these customizable features through an empirical example that
focused on the determinants of selected automobiles’ fuel economy. Along the way, I have also
demonstrated the package’s ability to produce histograms of estimated regression coefficients
via the hist () method, and to print out a detailed text summary of the EBA estimation
results through the print () method.
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