# Package 'EpiNow2'

February 20, 2025

Type Package

Title Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters

Version 1.7.1

**Description** Estimates the time-varying reproduction number,

rate of spread, and doubling time using a range of open-source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>), and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is actively supported.

#### License MIT + file LICENSE

URL https://epiforecasts.io/EpiNow2/,

https://epiforecasts.io/EpiNow2/dev/,

https://github.com/epiforecasts/EpiNow2

# BugReports https://github.com/epiforecasts/EpiNow2/issues

- **Depends** R (>= 3.5.0)
- **Imports** checkmate, cli, data.table, futile.logger (>= 1.4), ggplot2, lifecycle, lubridate, methods, patchwork, posterior, purrr, R.utils (>= 2.0.0), Rcpp (>= 0.12.0), rlang (>= 0.4.7), rstan (>= 2.26.0), rstantools (>= 2.2.0), runner, scales, stats, truncnorm, utils
- **Suggests** cmdstanr, covr, future, future.apply, here, knitr, precommit, progressr, rmarkdown, spelling, testthat, usethis, withr
- LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0)

Additional\_repositories https://stan-dev.r-universe.dev

Biarch true

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.3.2.9000

NeedsCompilation yes

SystemRequirements GNU make C++17

#### VignetteBuilder knitr

Author Sam Abbott [aut] (<https://orcid.org/0000-0001-8057-8037>), Joel Hellewell [aut] (<https://orcid.org/0000-0003-2683-0849>), Katharine Sherratt [aut], Katelyn Gostic [aut], Joe Hickson [aut], Hamada S. Badr [aut] (<https://orcid.org/0000-0002-9808-2344>), Michael DeWitt [aut] (<https://orcid.org/0000-0001-8940-1967>), James M. Azam [aut] (<https://orcid.org/0000-0001-5782-7330>), Robin Thompson [ctb], Sophie Meakin [ctb], James Munday [ctb], Nikos Bosse [ctb], Paul Mee [ctb], Peter Ellis [ctb], Pietro Monticone [ctb], Lloyd Chapman [ctb], Andrew Johnson [ctb], Kaitlyn Johnson [ctb] (<https://orcid.org/0000-0001-8011-0012>), EpiForecasts [aut], Sebastian Funk [aut, cre] (<https://orcid.org/0000-0002-2842-3406>)

Maintainer Sebastian Funk <sebastian.funk@lshtm.ac.uk>

**Repository** CRAN

Date/Publication 2025-02-19 23:40:09 UTC

# Contents

| +.dist_spec           | 4 |
|-----------------------|---|
| ==.dist_spec          | 5 |
| add_breakpoints       | 6 |
| apply_zero_threshold  | 6 |
| backcalc_opts         | 7 |
| bootstrapped_dist_fit | 8 |
| bound_dist            | 9 |
| c.dist_spec           | 0 |
| calc_CrI              | 1 |
| calc_CrIs 1           | 1 |
| calc_summary_measures | 2 |
| calc_summary_stats    | 3 |

2

# Contents

| clean_nowcasts            |              |
|---------------------------|--------------|
| clean_regions             | . 14         |
| collapse                  | . 14         |
| convert_to_logmean        | . 15         |
| convert_to_logsd          |              |
| convolve_and_scale        |              |
| delay_opts                |              |
| discretise                |              |
| Distributions             |              |
| dist_fit                  |              |
| epinow                    |              |
| epinow2_cmdstan_model     |              |
| estimate_delay            |              |
| estimate_infections       |              |
| estimate_secondary        |              |
| estimate_truncation       |              |
|                           |              |
| example_confirmed         |              |
| example_generation_time   |              |
| example_incubation_period |              |
| example_reporting_delay   |              |
| example_truncated         |              |
| expose_stan_fns           |              |
| extract_CrIs              |              |
| extract_inits             |              |
| extract_samples           |              |
| extract_stan_param        |              |
| fill_missing              |              |
| filter_leading_zeros      |              |
| filter_opts               | . 45         |
| fix_parameters            | . 45         |
| forecast_infections       | . 46         |
| forecast_opts             | . 48         |
| forecast_secondary        | . 49         |
| get_distribution          | . 50         |
| get_parameters            |              |
| get_pmf                   | . 51         |
| get_regional_results      |              |
| gp_opts                   | . 53         |
| growth to R               | . 54         |
| gt_opts                   | . 55         |
| is_constrained            |              |
| make_conf                 |              |
| map_prob_change           |              |
| max_dist_spec             |              |
| mean.dist spec            | . 50<br>. 59 |
| new_dist_spec             |              |
| obs opts                  |              |
| - 1                       |              |
| opts_list                 | . 02         |

| plot.dist_spec                                                                                                                                   | 63  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| plot.epinow                                                                                                                                      | 64  |
| plot.estimate_infections                                                                                                                         | 65  |
| plot.estimate_secondary                                                                                                                          | 65  |
| plot.estimate_truncation                                                                                                                         | 66  |
| plot_CrIs                                                                                                                                        | 67  |
| plot_estimates                                                                                                                                   | 67  |
| plot_summary                                                                                                                                     | 69  |
| print.dist_spec                                                                                                                                  | 69  |
| regional_epinow                                                                                                                                  | 70  |
| regional_summary                                                                                                                                 | 73  |
| report_plots                                                                                                                                     | 74  |
| report_summary                                                                                                                                   | 75  |
| rt_opts                                                                                                                                          | 76  |
| run_region                                                                                                                                       | 78  |
| $R\_to\_growth \ \ldots $ | 80  |
| secondary_opts                                                                                                                                   | 80  |
| setup_default_logging                                                                                                                            | 81  |
| setup_future                                                                                                                                     | 82  |
| setup_logging                                                                                                                                    | 83  |
| simulate_infections                                                                                                                              | 84  |
| simulate_secondary                                                                                                                               | 86  |
| stan_laplace_opts                                                                                                                                | 87  |
| stan_opts                                                                                                                                        | 88  |
| stan_pathfinder_opts                                                                                                                             | 89  |
| stan_sampling_opts                                                                                                                               | 90  |
| stan_vb_opts                                                                                                                                     | 91  |
| summary.epinow                                                                                                                                   | 92  |
| summary.estimate_infections                                                                                                                      | 92  |
| trunc_opts                                                                                                                                       | 93  |
| update_secondary_args                                                                                                                            | 94  |
|                                                                                                                                                  | 0.7 |
|                                                                                                                                                  | 96  |

# Index

+.dist\_spec

Creates a delay distribution as the sum of two other delay distributions.

# Description

[Experimental]

# Usage

## S3 method for class 'dist\_spec'
e1 + e2

#### Arguments

| e1 | The first delay distribution (of type <dist_spec>) to combine.</dist_spec>  |
|----|-----------------------------------------------------------------------------|
| e2 | The second delay distribution (of type <dist_spec>) to combine.</dist_spec> |

#### Value

A delay distribution representing the sum of the two delays

# Examples

```
# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(
    meanlog = 1.6, sdlog = 1, max = 20
)
dist1 + dist1
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
    shape = Normal(3, 0.5),
    rate = Normal(2, 0.5),
    max = 20
)
dist1 + dist2
```

==.dist\_spec Compares two delay distributions

#### Description

Compares two delay distributions

#### Usage

```
## S3 method for class 'dist_spec'
e1 == e2
## S3 method for class 'dist_spec'
e1 != e2
```

# Arguments

| e1 | The first delay distribution (of type <dist_spec>) to combine.</dist_spec>  |
|----|-----------------------------------------------------------------------------|
| e2 | The second delay distribution (of type <dist_spec>) to combine.</dist_spec> |

# Value

TRUE or FALSE

#### Examples

Fixed(1) == Normal(1, 0.5)

add\_breakpoints Add breakpoints to certain dates in a data set.

# Description

Add breakpoints to certain dates in a data set.

# Usage

```
add_breakpoints(data, dates = as.Date(character(0)))
```

# Arguments

| data  | A <data.frame> of disease reports (confirm) by date (date). confirm must be<br/>numeric and date must be in date format. Optionally this can also have a logical<br/>accumulate column which indicates whether data should be added to the next<br/>data point. This is useful when modelling e.g. weekly incidence data. See also<br/>the fill_missing() function which helps add the accumulate column with<br/>the desired properties when dealing with non-daily data. If any accumulation is<br/>done this happens after truncation as specified by the truncation argument.</data.frame> |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dates | A vector of dates to use as breakpoints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Value

A data.table with breakpoint set to 1 on each of the specified dates.

#### Examples

reported\_cases <- add\_breakpoints(example\_confirmed, as.Date("2020-03-26"))</pre>

| apply_zero_threshold | Convert zero case counts to NA (missing) if the 7-day average is above |
|----------------------|------------------------------------------------------------------------|
|                      | a threshold.                                                           |

# Description

This function aims to detect spurious zeroes by comparing the 7-day average of the case counts to a threshold. If the 7-day average is above the threshold, the zero case count is replaced with NA.

#### Usage

```
apply_zero_threshold(data, threshold = Inf, obs_column = "confirm")
```

#### backcalc\_opts

#### Arguments

| data       | A <data.frame> of disease reports (confirm) by date (date). confirm must be<br/>numeric and date must be in date format. Optionally this can also have a logical<br/>accumulate column which indicates whether data should be added to the next<br/>data point. This is useful when modelling e.g. weekly incidence data. See also<br/>the fill_missing() function which helps add the accumulate column with<br/>the desired properties when dealing with non-daily data. If any accumulation is<br/>done this happens after truncation as specified by the truncation argument.</data.frame> |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| threshold  | Numeric, defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold at the time of a zero observation count then the zero is replaced with a missing (NA) count and thus ignored in the likelihood.                                                                                                                                                                                                                                                                              |
| obs_column | Character (default: "confirm"). If given, only the column specified here will<br>be used for checking missingness. This is useful if using a data set that has<br>multiple columns of hwich one of them corresponds to observations that are to<br>be processed here.                                                                                                                                                                                                                                                                                                                          |

# Value

A data.table with the zero threshold applied.

backcalc\_opts Back Calculation Options

## Description

[**Stable**] Defines a list specifying the optional arguments for the back calculation of cases. Only used if rt = NULL.

#### Usage

```
backcalc_opts(
    prior = c("reports", "none", "infections"),
    prior_window = 14,
    rt_window = 1
)
```

#### Arguments

prior A character string defaulting to "reports". Defines the prior to use when deconvolving. Currently implemented options are to use smoothed mean delay shifted reported cases ("reports"), to use the estimated infections from the previous time step seeded for the first time step using mean shifted reported cases ("infections"), or no prior ("none"). Using no prior will result in poor real time performance. No prior and using infections are only supported when a Gaussian process is present . If observed data is not reliable then it a sensible first step is

|              | to explore increasing the prior_window wit a sensible second step being to no longer use reported cases as a prior (i.e set prior = "none").                                                                                                                                                                                                                                       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| prior_window | Integer, defaults to 14 days. The mean centred smoothing window to apply to mean shifted reports (used as a prior during back calculation). 7 days is minimum recommended settings as this smooths day of the week effects but depending on the quality of the data and the amount of information users wish to use as a prior (higher values equalling a less informative prior). |
| rt_window    | Integer, defaults to 1. The size of the centred rolling average to use when esti-<br>mating Rt. This must be odd so that the central estimate is included.                                                                                                                                                                                                                         |

# Value

A <backcalc\_opts> object of back calculation settings.

# Examples

```
# default settings
backcalc_opts()
```

bootstrapped\_dist\_fit Fit a Subsampled Bootstrap to Integer Values and Summarise Distribution Parameters

## Description

**[Stable]** Fits an integer adjusted distribution to a subsampled bootstrap of data and then integrates the posterior samples into a single set of summary statistics. Can be used to generate a robust reporting delay that accounts for the fact the underlying delay likely varies over time or that the size of the available reporting delay sample may not be representative of the current case load.

# Usage

```
bootstrapped_dist_fit(
  values,
  dist = "lognormal",
  samples = 2000,
  bootstraps = 10,
  bootstrap_samples = 250,
  max_value,
  verbose = FALSE
)
```

#### Arguments

| values | Integer vector of values.                                                        |
|--------|----------------------------------------------------------------------------------|
| dist   | Character string, which distribution to fit. Defaults to lognormal ("lognormal") |
|        | but gamma ("gamma") is also supported.                                           |

# bound\_dist

| samples           | Numeric, number of samples to take overall from the bootstrapped posteriors.                                                                                                             |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| bootstraps        | Numeric, defaults to 1. The number of bootstrap samples (with replacement) of the delay distribution to take. If samples is less than bootstraps, samples takes the value of bootstraps. |  |
| bootstrap_samples |                                                                                                                                                                                          |  |
|                   | Numeric, defaults to 250. The number of samples to take in each bootstrap if the sample size of the supplied delay distribution is less than its value.                                  |  |
| max_value         | Numeric, defaults to the maximum value in the observed data. Maximum delay to allow (added to output but does impact fitting).                                                           |  |
| verbose           | Logical, defaults to FALSE. Should progress messages be printed.                                                                                                                         |  |

# Value

A <dist\_spec> object summarising the bootstrapped distribution

# Examples

```
# lognormal
delays <- rlnorm(500, log(5), 1)
out <- bootstrapped_dist_fit(delays,
  samples = 1000, bootstraps = 10,
  dist = "lognormal"
)
out
```

bound\_dist Define bounds of a <dist\_spec>

# Description

[Experimental] This sets attributes for further processing

#### Usage

```
bound_dist(x, max = Inf, cdf_cutoff = 0)
```

# Arguments

| Х          | A <dist_spec>.</dist_spec>                                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| max        | Numeric, maximum value of the distribution. The distribution will be truncated at this value. Default: Inf, i.e. no maximum.                                                           |
| cdf_cutoff | Numeric; the desired CDF cutoff. Any part of the cumulative distribution function beyond 1 minus the value of this argument is removed. Default: $0$ , i.e. use the full distribution. |

# Value

a <dist\_spec> with relevant attributes set that define its bounds

```
c.dist_spec
```

#### Description

[**Experimental**] This combines the parameters so that they can be fed as multiple delay distributions to epinow() or estimate\_infections().

Note that distributions that already are combinations of other distributions cannot be combined with other combinations of distributions.

# Usage

## S3 method for class 'dist\_spec'
c(...)

#### Arguments

... The delay distributions to combine

# Value

Combined delay distributions (with class <dist\_spec>)

```
# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(
    meanlog = 1.6, sdlog = 1, max = 20
)
dist1 + dist1
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
    shape = Normal(3, 0.5),
    rate = Normal(2, 0.5),
    max = 20
)
c(dist1, dist2)
```

calc\_CrI

#### Description

[Stable] Adds symmetric a credible interval based on quantiles.

# Usage

calc\_CrI(samples, summarise\_by = NULL, CrI = 0.9)

# Arguments

| samples      | A data.table containing at least a value variable                                           |
|--------------|---------------------------------------------------------------------------------------------|
| summarise_by | A character vector of variables to group by.                                                |
| CrI          | Numeric between 0 and 1. The credible interval for which to return values. Defaults to 0.9. |

# Value

A data.table containing the upper and lower bounds for the specified credible interval.

#### Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add 90% credible interval
calc_CrI(samples)
# add 90% credible interval grouped by type
calc_CrI(samples, summarise_by = "type")</pre>
```

calc\_CrIs

Calculate Credible Intervals

#### Description

[Stable] Adds symmetric credible intervals based on quantiles.

## Usage

```
calc_CrIs(samples, summarise_by = NULL, CrIs = c(0.2, 0.5, 0.9))
```

# Arguments

| samples      | A data.table containing at least a value variable  |
|--------------|----------------------------------------------------|
| summarise_by | A character vector of variables to group by.       |
| CrIs         | Numeric vector of credible intervals to calculate. |

#### Value

A data.table containing the summarise\_by variables and the specified lower and upper credible intervals.

# Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add credible intervals
calc_CrIs(samples)
# add 90% credible interval grouped by type
calc_CrIs(samples, summarise_by = "type")</pre>
```

calc\_summary\_measures Calculate All Summary Measures

# Description

[Stable] Calculate summary statistics and credible intervals from a <data.frame> by group.

# Usage

```
calc_summary_measures(
  samples,
  summarise_by = NULL,
  order_by = NULL,
  CrIs = c(0.2, 0.5, 0.9)
)
```

## Arguments

| samples      | A data.table containing at least a value variable                                     |
|--------------|---------------------------------------------------------------------------------------|
| summarise_by | A character vector of variables to group by.                                          |
| order_by     | A character vector of parameters to order by, defaults to all summarise_by variables. |
| CrIs         | Numeric vector of credible intervals to calculate.                                    |

## Value

A data.table containing summary statistics by group.

# Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_measures(samples)
# by type
calc_summary_measures(samples, summarise_by = "type")</pre>
```

12

#### Description

[Stable] Calculate summary statistics from a <data.frame> by group. Currently supports the mean, median and standard deviation.

# Usage

calc\_summary\_stats(samples, summarise\_by = NULL)

#### Arguments

| samples      | A data.table containing at least a value variable |
|--------------|---------------------------------------------------|
| summarise_by | A character vector of variables to group by.      |

# Value

A data.table containing the upper and lower bounds for the specified credible interval

#### Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_stats(samples)
# by type
calc_summary_stats(samples, summarise_by = "type")</pre>
```

clean\_nowcasts Clean Nowcasts for a Supplied Date

#### Description

[Stable] This function removes nowcasts in the format produced by EpiNow2 from a target directory for the date supplied.

#### Usage

clean\_nowcasts(date = Sys.Date(), nowcast\_dir = ".")

#### Arguments

| date        | Date object. Defaults to today's date                                              |
|-------------|------------------------------------------------------------------------------------|
| nowcast_dir | Character string giving the filepath to the nowcast results directory. Defaults to |
|             | the current directory.                                                             |

#### Value

No return value, called for side effects

clean\_regions Clean Regions

#### Description

[Stable] Removes regions with insufficient time points, and provides logging information on the input.

# Usage

clean\_regions(data, non\_zero\_points)

#### Arguments

data A <data.frame> of disease reports (confirm) by date (date), and region (region). non\_zero\_points

Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 7.

#### Value

A dataframe of cleaned regional data

#### See Also

regional\_epinow()

collapse

Collapse nonparametric distributions in a <dist\_spec>

### Description

[Experimental] This convolves any consecutive nonparametric distributions contained in the <dist\_spec>.

# Usage

## S3 method for class 'dist\_spec'
collapse(x, ...)

# Arguments

| Х | A <dist_spec></dist_spec> |
|---|---------------------------|
|   | ignored                   |

#### Value

A <dist\_spec> where consecutive nonparametric distributions have been convolved

# Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)
# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
    meanlog = Normal(3, 0.5),
    sdlog = Normal(2, 0.5),
    max = 20
)
# The maxf the sum of two distributions
collapse(discretise(dist1 + dist2, strict = FALSE))
```

convert\_to\_logmean Convert mean and sd to log mean for a log normal distribution

# Description

[Stable] Convert from mean and standard deviation to the log mean of the lognormal distribution. Useful for defining distributions supported by estimate\_infections(), epinow(), and regional\_epinow().

#### Usage

```
convert_to_logmean(mean, sd)
```

#### Arguments

| mean | Numeric, mean of a distribution               |
|------|-----------------------------------------------|
| sd   | Numeric, standard deviation of a distribution |

#### Value

The log mean of a lognormal distribution

```
convert_to_logmean(2, 1)
```

convert\_to\_logsd

## Description

[Stable] Convert from mean and standard deviation to the log standard deviation of the lognormal distribution. Useful for defining distributions supported by estimate\_infections(), epinow(), and regional\_epinow().

#### Usage

convert\_to\_logsd(mean, sd)

#### Arguments

| mean | Numeric, mean of a distribution               |
|------|-----------------------------------------------|
| sd   | Numeric, standard deviation of a distribution |

### Value

The log standard deviation of a lognormal distribution

## Examples

```
convert_to_logsd(2, 1)
```

convolve\_and\_scale Convolve and scale a time series

### Description

This applies a lognormal convolution with given, potentially time-varying parameters representing the parameters of the lognormal distribution used for the convolution and an optional scaling factor. This is akin to the model used in estimate\_secondary() and simulate\_secondary().

#### Usage

```
convolve_and_scale(
   data,
   type = c("incidence", "prevalence"),
   family = c("none", "poisson", "negbin"),
   delay_max = 30,
   ...
)
```

#### Arguments

| data      | A <data.frame> containing the date of report and primary cases as a numeric vector.</data.frame>                                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type      | A character string indicating the type of observation the secondary reports are. Options include:                                                                                                                                                         |
|           | • "incidence": Assumes that secondary reports equal a convolution of previously observed primary reported cases. An example application is deaths from an infectious disease predicted by reported cases of that disease (or estimated infections).       |
|           | • "prevalence": Assumes that secondary reports are cumulative and are de-<br>fined by currently observed primary reports minus a convolution of sec-<br>ondary reports. An example application is hospital bed usage predicted by<br>hospital admissions. |
| family    | Character string defining the observation model. Options are Negative binomial ("negbin"), the default, Poisson ("poisson"), and "none" meaning the expectation is returned.                                                                              |
| delay_max | Integer, defaulting to 30 days. The maximum delay used in the convolution model.                                                                                                                                                                          |
|           | Additional parameters to pass to the observation model (i.e rnbinom or rpois).                                                                                                                                                                            |

#### Details

Up to version 1.4.0 this function was called simulate\_secondary().

#### Value

A <data.frame> containing simulated data in the format required by estimate\_secondary().

#### See Also

estimate\_secondary

### Examples

```
# load data.table for manipulation
library(data.table)
```

#### Incidence data example ####

```
# make some example secondary incidence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]
# Assume that only 40 percent of cases are reported
cases[, scaling := 0.4]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.8][, sdlog := 0.5]</pre>
```

```
# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "incidence")
cases
#### Prevalence data example ####
# make some example prevalence data
cases <- example_confirmed
cases <- as.data.table(cases)[, primary := confirm]
# Assume that only 30 percent of cases are reported
cases[, scaling := 0.3]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.6][, sdlog := 0.8]
# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "prevalence")
cases
```

delay\_opts

Delay Distribution Options

#### Description

[Stable] Returns delay distributions formatted for usage by downstream functions.

#### Usage

delay\_opts(dist = Fixed(0), default\_cdf\_cutoff = 0.001, weight\_prior = TRUE)

#### Arguments

| dist                       | A delay distribution or series of delay distributions. Default is a fixed distribu-                                                                                                                                                                                                                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | tion with all mass at 0, i.e. no delay.                                                                                                                                                                                                                                                                                                                |
| <pre>default_cdf_cut</pre> | toff                                                                                                                                                                                                                                                                                                                                                   |
|                            | Numeric; default CDF cutoff to be used if an unconstrained distribution is passed<br>as dist. If dist is already constrained by having a maximum or CDF cutoff this<br>is ignored. Note that this can only be done for <dist_spec> objects with fixed<br/>parameters.</dist_spec>                                                                      |
| weight_prior               | Logical; if TRUE (default), any priors given in dist will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE, no weight will be applied, i.e. any parameters in dist will be treated as a single parameters. |

#### Value

A <delay\_opts> object summarising the input delay distributions.

# discretise

#### See Also

convert\_to\_logmean() convert\_to\_logsd() bootstrapped\_dist\_fit() Distributions

#### Examples

```
# no delays
delay_opts()
# A single delay that has uncertainty
delay <- LogNormal(
    meanlog = Normal(1, 0.2),
    sdlog = Normal(0.5, 0.1),
    max = 14
)
delay_opts(delay)
# A single delay without uncertainty
delay <- LogNormal(meanlog = 1, sdlog = 0.5, max = 14)
delay_opts(delay)
# Multiple delays (in this case twice the same)
delay_opts(delay + delay)
```

discretise Discretise a <dist\_spec>

## Description

#### [Experimental]

## Usage

```
## S3 method for class 'dist_spec'
discretise(x, strict = TRUE, ...)
```

discretize(x, ...)

#### Arguments

| х      | A <dist_spec></dist_spec>                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| strict | Logical; If TRUE (default) an error will be thrown if a distribution cannot be discretised (e.g., because no finite maximum has been specified or parameters are uncertain). If FALSE then any distribution that cannot be discretised will be returned as is. |
|        | ignored                                                                                                                                                                                                                                                        |

# Value

A <dist\_spec> where all distributions with constant parameters are nonparametric.

#### Methodological details

The probability mass function of the discretised probability distribution is a vector where the first entry corresponds to the integral over the (0,1] interval of the corresponding continuous distribution (probability of integer 0), the second entry corresponds to the (0,2] interval (probability mass of integer 1), the third entry corresponds to the (1,3] interval (probability mass of integer 2), etc. This approximates the true probability mass function of a double censored distribution which arises from the difference of two censored events.

## References

Charniga, K., et al. "Best practices for estimating and reporting epidemiological delay distributions of infectious diseases using public health surveillance and healthcare data", *arXiv e-prints*, 2024. doi:10.48550/arXiv.2405.08841 Park, S. W., et al., "Estimating epidemiological delay distributions for infectious diseases", *medRxiv*, 2024. doi:10.1101/2024.01.12.24301247

# Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)
# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
    meanlog = Normal(3, 0.5),
    sdlog = Normal(2, 0.5),
    max = 20
)
# The maxf the sum of two distributions
discretise(dist1 + dist2, strict = FALSE)
```

Distributions Probability distributions

#### Description

Probability distributions

Generates a nonparametric distribution.

#### Usage

```
LogNormal(meanlog, sdlog, mean, sd, ...)
Gamma(shape, rate, scale, mean, sd, ...)
Normal(mean, sd, ...)
Fixed(value, ...)
```

## Distributions

NonParametric(pmf, ...)

#### Arguments

| meanlog, sdlog | mean and standard deviation of the distribution on the log scale with default values of $0$ and 1 respectively.                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mean, sd       | mean and standard deviation of the distribution                                                                                                                                                                                          |
|                | arguments to define the limits of the distribution that will be passed to bound_dist()                                                                                                                                                   |
| shape, scale   | shape and scale parameters. Must be positive, scale strictly.                                                                                                                                                                            |
| rate           | an alternative way to specify the scale.                                                                                                                                                                                                 |
| value          | Value of the fixed (delta) distribution                                                                                                                                                                                                  |
| pmf            | Probability mass of the given distribution; this is passed as a zero-indexed nu-<br>meric vector (i.e. the fist entry represents the probability mass of zero). If not<br>summing to one it will be normalised to sum to one internally. |

#### Details

Probability distributions are ubiquitous in EpiNow2, usually representing epidemiological delays (e.g., the generation time for delays between becoming infecting and infecting others; or reporting delays)

They are generated using functions that have a name corresponding to the probability distribution that is being used. They generated dist\_spec objects that are then passed to the models underlying EpiNow2. All parameters can be given either as fixed values (a numeric value) or as uncertain values (a dist\_sepc). If given as uncertain values, currently only normally distributed parameters (generated using Normal()) are supported.

Each distribution has a representation in terms of "natural" parameters (the ones used in stan) but can sometimes also be specified using other parameters such as the mean or standard deviation of the distribution. If not given as natural parameters then these will be calculated from the given parameters. If they have uncertainty, this will be done by random sampling from the given uncertainty and converting resulting parameters to their natural representation.

Currently available distributions are lognormal, gamma, normal, fixed (delta) and nonparametric. The nonparametric is a special case where the probability mass function is given directly as a numeric vector.

#### Value

A dist\_spec representing a distribution of the given specification.

```
LogNormal(mean = 4, sd = 1)
LogNormal(mean = 4, sd = 1, max = 10)
# If specifying uncertain parameters, use the natural parameters
LogNormal(meanlog = Normal(1.5, 0.5), sdlog = 0.25, max = 10)
Gamma(mean = 4, sd = 1)
Gamma(shape = 16, rate = 4)
```

```
Gamma(shape = Normal(16, 2), rate = Normal(4, 1))
Normal(mean = 4, sd = 1)
Normal(mean = 4, sd = 1, max = 10)
Fixed(value = 3)
Fixed(value = 3.5)
NonParametric(c(0.1, 0.3, 0.2, 0.4))
NonParametric(c(0.1, 0.3, 0.2, 0.1, 0.1))
```

| dist_fit |
|----------|
|----------|

Fit an Integer Adjusted Exponential, Gamma or Lognormal distributions

# Description

[Stable] Fits an integer adjusted exponential, gamma or lognormal distribution using stan.

# Usage

```
dist_fit(
 values = NULL,
 samples = 1000,
 cores = 1,
 chains = 2,
 dist = "exp",
 verbose = FALSE,
 backend = "rstan"
)
```

# Arguments

| values  | Numeric vector of values                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| samples | Numeric, number of samples to take. Must be >= 1000. Defaults to 1000.                                                                           |
| cores   | Numeric, defaults to 1. Number of CPU cores to use (no effect if greater than the number of chains).                                             |
| chains  | Numeric, defaults to 2. Number of MCMC chains to use. More is better with the minimum being two.                                                 |
| dist    | Character string, which distribution to fit. Defaults to exponential ("exp") but gamma ("gamma") and lognormal ("lognormal") are also supported. |
| verbose | Logical, defaults to FALSE. Should verbose progress messages be printed.                                                                         |
| backend | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                 |

#### Value

A stan fit of an interval censored distribution

22

#### epinow

# Examples

```
# integer adjusted exponential model
dist_fit(rexp(1:100, 2),
   samples = 1000, dist = "exp",
   cores = ifelse(interactive(), 4, 1), verbose = TRUE
)
# integer adjusted gamma model
dist_fit(rgamma(1:100, 5, 5),
   samples = 1000, dist = "gamma",
   cores = ifelse(interactive(), 4, 1), verbose = TRUE
)
# integer adjusted lognormal model
dist_fit(rlnorm(1:100, log(5), 0.2),
   samples = 1000, dist = "lognormal",
   cores = ifelse(interactive(), 4, 1), verbose = TRUE
)
```

epinow

Real-time Rt Estimation, Forecasting and Reporting

## Description

**[Stable]** This function wraps the functionality of estimate\_infections() in order to estimate Rt and cases by date of infection and forecast these infections into the future. In addition to the functionality of estimate\_infections() it produces additional summary output useful for reporting results and interpreting them as well as error catching and reporting, making it particularly useful for production use e.g. running at set intervals on a dedicated server.

#### Usage

```
epinow(
    data,
    generation_time = gt_opts(),
    delays = delay_opts(),
    truncation = trunc_opts(),
    rt = rt_opts(),
    backcalc = backcalc_opts(),
    gp = gp_opts(),
    obs = obs_opts(),
    forecast = forecast_opts(),
    stan = stan_opts(),
    CrIs = c(0.2, 0.5, 0.9),
    return_output = is.null(target_folder),
    output = c("samples", "plots", "latest", "fit", "timing"),
```

```
plot_args = list(),
target_folder = NULL,
target_date,
logs = tempdir(),
id = "epinow",
verbose = interactive(),
filter_leading_zeros = TRUE,
zero_threshold = Inf,
horizon
)
```

# Arguments

| data            | A <data.frame> of disease reports (confirm) by date (date). confirm must be<br/>numeric and date must be in date format. Optionally this can also have a logical<br/>accumulate column which indicates whether data should be added to the next<br/>data point. This is useful when modelling e.g. weekly incidence data. See also<br/>the fill_missing() function which helps add the accumulate column with<br/>the desired properties when dealing with non-daily data. If any accumulation is<br/>done this happens after truncation as specified by the truncation argument.</data.frame> |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| generation_time |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | A call to gt_opts() (or its alias generation_time_opts()) defining the gen-<br>eration time distribution used. For backwards compatibility a list of summary<br>parameters can also be passed.                                                                                                                                                                                                                                                                                                                                                                                                 |
| delays          | A call to delay_opts() defining delay distributions and options. See the documentation of delay_opts() and the examples below for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| truncation      | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate.                                                                                                                                                                                                                            |
| rt              | A list of options as generated by rt_opts() defining Rt estimation. Defaults<br>to rt_opts(). To generate new infections using the non-mechanistic model in-<br>stead of the renewal equation model, use rt = NULL. The non-mechanistic model<br>internally uses the setting rt = rt_opts(use_rt = FALSE, future = "project",<br>gp_on = "R0").                                                                                                                                                                                                                                                |
| backcalc        | A list of options as generated by backcalc_opts() to define the back calcula-<br>tion. Defaults to backcalc_opts().                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| gp              | A list of options as generated by gp_opts() to define the Gaussian process.<br>Defaults to gp_opts(). Set to NULL to disable the Gaussian process.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| obs             | A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| forecast        | A list of options as generated by forecast_opts() defining the forecast opi-<br>tions. Defaults to forecast_opts(). If NULL then no forecasting will be done.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| stan            | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                                                                                                                                                                                                                                              |

24

epinow

| CrIs                 | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                      |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| return_output        | Logical, defaults to FALSE. Should output be returned, this automatically up-<br>dates to TRUE if no directory for saving is specified.                                                                                                                                                                                                                 |  |
| output               | A character vector of optional output to return. Supported options are samples ("samples"), plots ("plots"), the run time ("timing"), copying the dated folder into a latest folder (if target_folder is not null, set using "latest"), and the stan fit ("fit"). The default is to return all options.                                                 |  |
| plot_args            | A list of optional arguments passed to plot.epinow().                                                                                                                                                                                                                                                                                                   |  |
| target_folder        | Character string specifying where to save results (will create if not present).                                                                                                                                                                                                                                                                         |  |
| target_date          | Date, defaults to maximum found in the data if not specified.                                                                                                                                                                                                                                                                                           |  |
| logs                 | Character path indicating the target folder in which to store log information.<br>Defaults to the temporary directory if not specified. Default logging can be<br>disabled if logs is set to NULL. If specifying a custom logging setup then the<br>code for setup_default_logging() and the setup_logging() function are a<br>sensible place to start. |  |
| id                   | A character string used to assign logging information on error. Used by regional_epinow() to assign errors to regions. Alter the default to run with error catching.                                                                                                                                                                                    |  |
| verbose              | Logical, defaults to TRUE when used interactively and otherwise FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging options.                                                                                                                     |  |
| filter_leading_zeros |                                                                                                                                                                                                                                                                                                                                                         |  |
|                      | Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.                                                                                                                                                                                                                                                                |  |
| zero_threshold       | <b>[Experimental]</b> Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using fill.                                                                                                            |  |
| horizon              | Deprecated; use forecast instead to specify the predictive horizon                                                                                                                                                                                                                                                                                      |  |

# Value

A list of output from estimate\_infections with additional elements summarising results and reporting errors if they have occurred.

# See Also

estimate\_infections() forecast\_infections() regional\_epinow()

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))
# set an example generation time. In practice this should use an estimate
# from the literature or be estimated from data
generation_time <- Gamma(</pre>
```

```
shape = Normal(1.3, 0.3),
 rate = Normal(0.37, 0.09),
 max = 14
)
# set an example incubation period. In practice this should use an estimate
# from the literature or be estimated from data
incubation_period <- LogNormal(</pre>
 meanlog = Normal(1.6, 0.06),
 sdlog = Normal(0.4, 0.07),
 max = 14
)
# set an example reporting delay. In practice this should use an estimate
# from the literature or be estimated from data
reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10)</pre>
# example case data
reported_cases <- example_confirmed[1:40]</pre>
# estimate Rt and nowcast/forecast cases by date of infection
out <- epinow(</pre>
 data = reported_cases,
 generation_time = gt_opts(generation_time),
 rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1)),
 delays = delay_opts(incubation_period + reporting_delay)
)
# summary of the latest estimates
summary(out)
# plot estimates
plot(out)
# summary of R estimates
summary(out, type = "parameters", params = "R")
options(old_opts)
```

epinow2\_cmdstan\_model Load and compile an EpiNow2 cmdstanr model

#### Description

The function has been adapted from a similar function in the epinowcast package (Copyright holder: epinowcast authors, under MIT License).

#### Usage

```
epinow2_cmdstan_model(
  model = "estimate_infections",
  dir = system.file("stan", package = "EpiNow2"),
  verbose = FALSE,
```

26

) ...

# Arguments

| model   | A character string indicating the model to use. Needs to be present in dir (with extension .stan). Defaults to "estimate_infections". |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| dir     | A character string specifying the path to any stan files to include in the model.<br>If missing the package default is used.          |
| verbose | Logical, defaults to TRUE. Should verbose messages be shown.                                                                          |
|         | Additional arguments passed to cmdstanr::cmdstan_model().                                                                             |

# Value

A cmdstanr model.

estimate\_delay Estimate a Delay Distribution

# Description

[**Maturing**] Estimate a log normal delay distribution from a vector of integer delays. Currently this function is a simple wrapper for bootstrapped\_dist\_fit().

# Usage

```
estimate_delay(delays, ...)
```

# Arguments

| delays | Integer vector of delays               |
|--------|----------------------------------------|
|        | Arguments to pass to internal methods. |

## Value

A <dist\_spec> summarising the bootstrapped distribution

# See Also

bootstrapped\_dist\_fit()

```
delays <- rlnorm(500, log(5), 1)
estimate_delay(delays, samples = 1000, bootstraps = 10)</pre>
```

estimate\_infections

*Estimate Infections, the Time-Varying Reproduction Number and the Rate of Growth* 

#### Description

[Maturing] Uses a non-parametric approach to reconstruct cases by date of infection from reported cases. It uses either a generative Rt model or non-parametric back calculation to estimate underlying latent infections and then maps these infections to observed cases via uncertain reporting delays and a flexible observation model. See the examples and function arguments for the details of all options. The default settings may not be sufficient for your use case so the number of warmup samples (stan\_args = list(warmup)) may need to be increased as may the overall number of samples. Follow the links provided by any warnings messages to diagnose issues with the MCMC fit. It is recommended to explore several of the Rt estimation approaches supported as not all of them may be suited to users own use cases. See here for an example of using estimate\_infections within the epinow wrapper to estimate Rt for Covid-19 in a country from the ECDC data source.

#### Usage

```
estimate_infections(
  data.
  generation_time = gt_opts(),
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  forecast = forecast_opts(),
  stan = stan_opts(),
 CrIs = c(0.2, 0.5, 0.9),
 weigh_delay_priors = TRUE,
  id = "estimate_infections",
  verbose = interactive(),
  filter_leading_zeros = TRUE,
  zero_threshold = Inf,
  horizon
)
```

# Arguments

data

A <data.frame> of disease reports (confirm) by date (date). confirm must be numeric and date must be in date format. Optionally this can also have a logical accumulate column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the fill\_missing() function which helps add the accumulate column with

|                        | the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the truncation argument.                                                                                                                                                                                                          |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| generation_tim         | e                                                                                                                                                                                                                                                                                                                                                                    |
|                        | A call to gt_opts() (or its alias generation_time_opts()) defining the gen-<br>eration time distribution used. For backwards compatibility a list of summary<br>parameters can also be passed.                                                                                                                                                                       |
| delays                 | A call to delay_opts() defining delay distributions and options. See the documentation of delay_opts() and the examples below for details.                                                                                                                                                                                                                           |
| truncation             | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate.  |
| rt                     | A list of options as generated by rt_opts() defining Rt estimation. Defaults<br>to rt_opts(). To generate new infections using the non-mechanistic model in-<br>stead of the renewal equation model, use rt = NULL. The non-mechanistic model<br>internally uses the setting rt = rt_opts(use_rt = FALSE, future = "project",<br>gp_on = "R0").                      |
| backcalc               | A list of options as generated by backcalc_opts() to define the back calcula-<br>tion. Defaults to backcalc_opts().                                                                                                                                                                                                                                                  |
| gp                     | A list of options as generated by gp_opts() to define the Gaussian process.<br>Defaults to gp_opts(). Set to NULL to disable the Gaussian process.                                                                                                                                                                                                                   |
| obs                    | A list of options as generated by obs_opts() defining the observation model.<br>Defaults to obs_opts().                                                                                                                                                                                                                                                              |
| forecast               | A list of options as generated by forecast_opts() defining the forecast opi-<br>tions. Defaults to forecast_opts(). If NULL then no forecasting will be done.                                                                                                                                                                                                        |
| stan                   | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                    |
| CrIs<br>weigh_delay_pr | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                   |
|                        | Logical. If TRUE (default), all delay distribution priors will be weighted by<br>the number of observation data points, in doing so approximately placing an<br>independent prior at each time step and usually preventing the posteriors from<br>shifting. If FALSE, no weight will be applied, i.e. delay distributions will be<br>treated as a single parameters. |
| id                     | A character string used to assign logging information on error. Used by regional_epinow() to assign errors to regions. Alter the default to run with error catching.                                                                                                                                                                                                 |
| verbose                | Logical, defaults to TRUE when used interactively and otherwise FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging options.                                                                                                                                  |
| filter_leading         | _zeros                                                                                                                                                                                                                                                                                                                                                               |
|                        | Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                                                                                                                                                                                                      |

| zero_threshold | [Experimental] Numeric defaults to Inf. Indicates if detected zero cases are   |
|----------------|--------------------------------------------------------------------------------|
|                | meaningful by using a threshold number of cases based on the 7-day average. If |
|                | the average is above this threshold then the zero is replaced using fill.      |
| horizon        | Deprecated; use forecast instead to specify the predictive horizon             |

#### Value

A list of output including: posterior samples, summarised posterior samples, data used to fit the model, and the fit object itself.

#### See Also

```
epinow() regional_epinow() forecast_infections() estimate_truncation()
```

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))</pre>
```

```
# get example case counts
reported_cases <- example_confirmed[1:60]</pre>
```

```
# set an example generation time. In practice this should use an estimate
# from the literature or be estimated from data
generation_time <- Gamma(</pre>
 shape = Normal(1.3, 0.3),
 rate = Normal(0.37, 0.09),
 max = 14
)
# set an example incubation period. In practice this should use an estimate
# from the literature or be estimated from data
incubation_period <- LogNormal(</pre>
 meanlog = Normal(1.6, 0.06),
 sdlog = Normal(0.4, 0.07),
 max = 14
)
# set an example reporting delay. In practice this should use an estimate
# from the literature or be estimated from data
reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10)</pre>
# for more examples, see the "estimate_infections examples" vignette
def <- estimate_infections(reported_cases,</pre>
 generation_time = gt_opts(generation_time),
 delays = delay_opts(incubation_period + reporting_delay),
 rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1))
)
# real time estimates
summary(def)
# summary plot
plot(def)
options(old_opts)
```

estimate\_secondary Estimate a Secondary Observation from a Primary Observation

#### Description

**[Stable]** Estimates the relationship between a primary and secondary observation, for example hospital admissions and deaths or hospital admissions and bed occupancy. See secondary\_opts() for model structure options. See parameter documentation for model defaults and options. See the examples for case studies using synthetic data and here for an example of forecasting Covid-19 deaths from Covid-19 cases. See here for a prototype function that may be used to estimate and forecast a secondary observation from a primary across multiple regions and here # nolint for an application forecasting Covid-19 deaths in Germany and Poland.

#### Usage

```
estimate_secondary(
  data,
  secondary = secondary_opts(),
 delays = delay_opts(LogNormal(meanlog = Normal(2.5, 0.5), sdlog = Normal(0.47, 0.25),
   max = 30), weight_prior = FALSE),
  truncation = trunc_opts(),
  obs = obs_opts(),
  stan = stan_opts(),
  burn_in = 14,
 CrIs = c(0.2, 0.5, 0.9),
  priors = NULL,
 model = NULL,
 weigh_delay_priors = FALSE,
  verbose = interactive(),
  filter_leading_zeros = FALSE,
  zero_threshold = Inf
)
```

#### Arguments

| data      | A <data.frame> containing the date of report and both primary and secondary reports. Optionally this can also have a logical accumulate column which indicates whether data should be added to the next data point. This is useful when modelling e.g. weekly incidence data. See also the fill_missing() function which helps add the accumulate column with the desired properties when dealing with non-daily data. If any accumulation is done this happens after truncation as specified by the truncation argument.</data.frame> |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| secondary | A call to secondary_opts() or a list containing the following binary variables:<br>cumulative, historic, primary_hist_additive, current, primary_current_additive.<br>These parameters control the structure of the secondary model, see secondary_opts()<br>for details.                                                                                                                                                                                                                                                              |

| delays          | A call to delay_opts() defining delay distributions between primary and sec-<br>ondary observations See the documentation of delay_opts() for details. By<br>default a diffuse prior is assumed with a mean of 14 days and standard devia-<br>tion of 7 days (with a standard deviation of 0.5 and 0.25 respectively on the log<br>scale).                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| truncation      | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. |
| obs             | A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts().                                                                                                                                                                                                                                                                |
| stan            | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                   |
| burn_in         | Integer, defaults to 14 days. The number of data points to use for estimation but not to fit to at the beginning of the time series. This must be less than the number of observations.                                                                                                                                                                             |
| CrIs            | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                  |
| priors          | A <data.frame> of named priors to be used in model fitting rather than the defaults supplied from other arguments. This is typically useful if wanting to inform an estimate from the posterior of another model fit.</data.frame>                                                                                                                                  |
| model           | A compiled stan model to override the default model. May be useful for package developers or those developing extensions.                                                                                                                                                                                                                                           |
| weigh_delay_pri | ors                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Logical. If TRUE, all delay distribution priors will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE (default), no weight will be applied, i.e. delay distributions will be treated as a single parameters.            |
| verbose         | Logical, should model fitting progress be returned. Defaults to interactive().                                                                                                                                                                                                                                                                                      |
| filter_leading_ | zeros<br>Logical, defaults to TRUE. Should zeros at the start of the time series be filtered<br>out.                                                                                                                                                                                                                                                                |
| zero_threshold  | <b>[Experimental]</b> Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using fill.                                                                                                                        |

# Value

A list containing: predictions (a <data.frame> ordered by date with the primary, and secondary observations, and a summary of the model estimated secondary observations), posterior which contains a summary of the entire model posterior, data (a list of data used to fit the model), and fit (the stanfit object).

#### estimate\_secondary

```
# set number of cores to use
old_opts <- options()</pre>
options(mc.cores = ifelse(interactive(), 4, 1))
# load data.table for manipulation
library(data.table)
#### Incidence data example ####
# make some example secondary incidence data
cases <- example_confirmed</pre>
cases <- as.data.table(cases)[, primary := confirm]</pre>
# Assume that only 40 percent of cases are reported
cases[, scaling := 0.4]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.8][, sdlog := 0.5]
# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "incidence")</pre>
#
# fit model to example data specifying a weak prior for fraction reported
# with a secondary case
inc <- estimate_secondary(cases[1:60],</pre>
  obs = obs_opts(scale = Normal(mean = 0.2, sd = 0.2), week_effect = FALSE)
)
plot(inc, primary = TRUE)
# forecast future secondary cases from primary
inc_preds <- forecast_secondary(</pre>
  inc, cases[seq(61, .N)][, value := primary]
)
plot(inc_preds, new_obs = cases, from = "2020-05-01")
#### Prevalence data example ####
# make some example prevalence data
cases <- example_confirmed</pre>
cases <- as.data.table(cases)[, primary := confirm]</pre>
# Assume that only 30 percent of cases are reported
cases[, scaling := 0.3]
# Parameters of the assumed log normal delay distribution
cases[, meanlog := 1.6][, sdlog := 0.8]
# Simulate secondary cases
cases <- convolve_and_scale(cases, type = "prevalence")</pre>
# fit model to example prevalence data
prev <- estimate_secondary(cases[1:100],</pre>
  secondary = secondary_opts(type = "prevalence"),
  obs = obs_opts(
    week_effect = FALSE,
```

```
scale = Normal(mean = 0.4, sd = 0.1)
)
plot(prev, primary = TRUE)
# forecast future secondary cases from primary
prev_preds <- forecast_secondary(
    prev, cases[seq(101, .N)][, value := primary]
)
plot(prev_preds, new_obs = cases, from = "2020-06-01")
options(old_opts)</pre>
```

estimate\_truncation Estimate Truncation of Observed Data

# Description

**[Stable]** Estimates a truncation distribution from multiple snapshots of the same data source over time. This distribution can then be used passed to the truncation argument in regional\_epinow(), epinow(), and estimate\_infections() to adjust for truncated data and propagate the uncertainty associated with data truncation into the estimates.

See here for an example of using this approach on Covid-19 data in England. The functionality offered by this function is now available in a more principled manner in the epinowcast R package.

The model of truncation is as follows:

- 1. The truncation distribution is assumed to be discretised log normal wit a mean and standard deviation that is informed by the data.
- 2. The data set with the latest observations is adjusted for truncation using the truncation distribution.
- 3. Earlier data sets are recreated by applying the truncation distribution to the adjusted latest observations in the time period of the earlier data set. These data sets are then compared to the earlier observations assuming a negative binomial observation model with an additive noise term to deal with zero observations.

This model is then fit using stan with standard normal, or half normal, prior for the mean, standard deviation, 1 over the square root of the overdispersion and additive noise term.

This approach assumes that:

- Current truncation is related to past truncation.
- Truncation is a multiplicative scaling of underlying reported cases.
- Truncation is log normally distributed.

# estimate\_truncation

# Usage

```
estimate_truncation(
    data,
    truncation = trunc_opts(LogNormal(meanlog = Normal(0, 1), sdlog = Normal(1, 1), max =
        10)),
    model = NULL,
    stan = stan_opts(),
    CrIs = c(0.2, 0.5, 0.9),
    filter_leading_zeros = FALSE,
    zero_threshold = Inf,
    weigh_delay_priors = FALSE,
    verbose = TRUE,
    ...,
    obs
)
```

# Arguments

| data                 | A list of <data.frame>s each containing a date variable and a confirm (numeric) variable. Each data set should be a snapshot of the reported data over time. All data sets must contain a complete vector of dates.</data.frame>                                                                                                                                    |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| truncation           | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. |
| model                | A compiled stan model to override the default model. May be useful for package developers or those developing extensions.                                                                                                                                                                                                                                           |
| stan                 | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                   |
| CrIs                 | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                  |
| filter_leading_zeros |                                                                                                                                                                                                                                                                                                                                                                     |
|                      | Logical, defaults to TRUE. Should zeros at the start of the time series be filtered out.                                                                                                                                                                                                                                                                            |
| zero_threshold       | <b>[Experimental]</b> Numeric defaults to Inf. Indicates if detected zero cases are meaningful by using a threshold number of cases based on the 7-day average. If the average is above this threshold then the zero is replaced using fill.                                                                                                                        |
| weigh_delay_pri      | ors                                                                                                                                                                                                                                                                                                                                                                 |
|                      | Deprecated; use the weight_prior option in trunc_opts() instead.                                                                                                                                                                                                                                                                                                    |
| verbose              | Logical, should model fitting progress be returned.                                                                                                                                                                                                                                                                                                                 |
|                      | Additional parameters to pass to rstan::sampling().                                                                                                                                                                                                                                                                                                                 |
| obs                  | Deprecated; use data instead.                                                                                                                                                                                                                                                                                                                                       |

A list containing: the summary parameters of the truncation distribution (dist), which could be passed to the truncation argument of epinow(), regional\_epinow(), and estimate\_infections(), the estimated CMF of the truncation distribution (cmf, can be used to adjusted new data), a <data.frame> containing the observed truncated data, latest observed data and the adjusted for truncation observations (obs), a <data.frame> containing the last observed data (last\_obs, useful for plotting and validation), the data used for fitting (data) and the fit object (fit).

#### Examples

```
# set number of cores to use
old_opts <- options()</pre>
options(mc.cores = ifelse(interactive(), 4, 1))
# fit model to example data
# See [example_truncated] for more details
est <- estimate_truncation(example_truncated,</pre>
  verbose = interactive(),
  chains = 2, iter = 2000
)
# summary of the distribution
est$dist
# summary of the estimated truncation cmf (can be applied to new data)
print(est$cmf)
# observations linked to truncation adjusted estimates
print(est$obs)
# validation plot of observations vs estimates
plot(est)
# Pass the truncation distribution to `epinow()`.
# Note, we're using the last snapshot as the observed data as it contains
# all the previous snapshots. Also, we're using the default options for
# illustrative purposes only.
out <- epinow(</pre>
  generation_time = generation_time_opts(example_generation_time),
  example_truncated[[5]],
  truncation = trunc_opts(est$dist)
)
plot(out)
options(old_opts)
```

example\_confirmed Example Confirmed Case Data Set

#### Description

[Stable] An example data frame of observed cases

36

# Value
### Usage

example\_confirmed

# Format

A data frame containing cases reported on each date.

example\_generation\_time

Example generation time

# Description

[Stable] An example of a generation time estimate. See here for details: https://github.com/epiforecasts/EpiNow2/blob/main/raw/generation-time.R

# Usage

example\_generation\_time

# Format

A dist\_spec object summarising the distribution

example\_incubation\_period

Example incubation period

# Description

[Stable] An example of an incubation period estimate. See here for details: https://github.com/epiforecasts/EpiNow2/blob/maraw/incubation-period.R # nolint

#### Usage

example\_incubation\_period

#### Format

A dist\_spec object summarising the distribution

example\_reporting\_delay

Example reporting delay

# Description

[Stable] An example of an reporting delay estimate. See here for details: https://github.com/epiforecasts/EpiNow2/blob/main raw/reporting-delay # nolint

## Usage

example\_reporting\_delay

### Format

A dist\_spec object summarising the distribution

example\_truncated Example Case Data Set with Truncation

# Description

[Stable] An example dataset of observed cases with truncation applied. This data is generated internally for use in the example of estimate\_truncation(). For details on how the data is generated, see https://github.com/epiforecasts/EpiNow2/blob/main/data-raw/truncated.R #nolint

# Usage

example\_truncated

#### Format

A list of data.tables containing cases reported on each date until a point of truncation. Each element of the list is a data.table with the following columns:

date Date of case report.

confirm Number of confirmed cases.

expose\_stan\_fns Expose internal package stan functions in R

# Description

**[Stable]** his function exposes internal stan functions in R from a user supplied list of target files. Allows for testing of stan functions in R and potentially user use in R code.

# Usage

```
expose_stan_fns(files, target_dir, ...)
```

### Arguments

| files      | A character vector indicating the target files.                  |
|------------|------------------------------------------------------------------|
| target_dir | A character string indicating the target directory for the file. |
|            | Additional arguments passed to rstan::expose_stan_functions().   |

# Value

No return value, called for side effects

extract\_CrIs Extract Credible Intervals Present

# Description

[Stable] Helper function to extract the credible intervals present in a <data.frame>.

# Usage

```
extract_CrIs(summarised)
```

#### Arguments

summarised A <data.frame> as processed by calc\_CrIs

# Value

A numeric vector of credible intervals detected in the <data.frame>.

### Examples

```
samples <- data.frame(value = 1:10, type = "car")
summarised <- calc_CrIs(samples,
   summarise_by = "type",
   CrIs = c(seq(0.05, 0.95, 0.05))
)
extract_CrIs(summarised)</pre>
```

extract\_inits Generate initial conditions from a Stan fit

# Description

[Experimental] Extracts posterior samples to use to initialise a full model fit. This may be useful for certain data sets where the sampler gets stuck or cannot easily be initialised. In estimate\_infections(), epinow() and regional\_epinow() this option can be engaged by setting stan\_opts(init\_fit = <stanfit>).

This implementation is based on the approach taken in epidemia authored by James Scott.

# Usage

```
extract_inits(fit, current_inits, exclude_list = NULL, samples = 50)
```

# Arguments

| fit           | A <stanfit> object.</stanfit>                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| current_inits | A function that returns a list of initial conditions (such as create_initial_conditions()). Only used in exclude_list is specified. |
| exclude_list  | A character vector of parameters to not initialise from the fit object, defaulting to NULL.                                         |
| samples       | Numeric, defaults to 50. Number of posterior samples.                                                                               |

### Value

A function that when called returns a set of initial conditions as a named list.

# Description

If the object argument is a <stanfit> object, it simply returns the result of rstan::extract(). If it is a <CmdStanMCMC> it returns samples in the same format as rstan::extract() does for <stanfit> objects.

#### Usage

```
extract_samples(stan_fit, pars = NULL, include = TRUE)
```

### Arguments

| stan_fit | A <stanfit> or <cmdstanmcmc> object as returned by fit_model().</cmdstanmcmc></stanfit>             |
|----------|-----------------------------------------------------------------------------------------------------|
| pars     | Any selection of parameters to extract                                                              |
| include  | whether the parameters specified in pars should be included (TRUE, the default) or excluded (FALSE) |

#### Value

List of data.tables with samples

extract\_stan\_param Extract a Parameter Summary from a Stan Object

# Description

[Stable] Extracts summarised parameter posteriors from a stanfit object using rstan::summary() in a format consistent with other summary functions in {EpiNow2}.

### Usage

```
extract_stan_param(
  fit,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  var_names = FALSE
)
```

### Arguments

| fit       | A <stanfit> objec.</stanfit>                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| params    | A character vector of parameters to extract. Defaults to all parameters.                                                    |
| CrIs      | Numeric vector of credible intervals to calculate.                                                                          |
| var_names | Logical defaults to FALSE. Should variables be named. Automatically set to TRUE if multiple parameters are to be extracted. |

# Value

A <data.table> summarising parameter posteriors. Contains a following variables: variable, mean, mean\_se, sd, median, and lower\_, upper\_ followed by credible interval labels indicating the credible intervals present.

fill\_missing

Fill missing data in a data set to prepare it for use within the package

### Description

**[Experimental]** This function ensures that all days between the first and last date in the data are present. It adds an accumulate column that indicates whether modelled observations should be accumulated onto a later data point. This is useful for modelling data that is reported less frequently than daily, e.g. weekly incidence data, as well as other reporting artifacts such as delayed weekedn reporting. The function can also be used to fill in missing observations with zeros.

### Usage

```
fill_missing(
   data,
   missing_dates = c("ignore", "accumulate", "zero"),
   missing_obs = c("ignore", "accumulate", "zero"),
   initial_accumulate,
   obs_column = "confirm",
   by = NULL
)
```

| data          | Data frame with a date column. The other columns depend on the model that the data are to be used, e.g. estimate_infections() or estimate_secondary(). See the documentation there for the expected format. The data must not already have an accumulate function, otherwise the function will fail with an error.                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| missing_dates | Character. Options are "ignore" (the default), "accumulate" and "zero". This determines how missing dates in the data are interpreted. If set to "ignore", any missing dates in the observation data will be interpreted as missing and skipped in the likelihood. If set to "accumulate", modelled observations on dates that are missing in the data will be accumulated and added to the next non-missing data |

point. This can be used to model incidence data that is reported less frequently than daily. In that case, the first data point is not included in the likelihood (unless initial\_accumulate is set to a value greater than one) but used only to reset modelled observations to zero. If "zero" then all observations on missing dates will be assumed to be of value 0.

missing\_obs Character. How to process dates that exist in the data but have observations with NA values. The options available are the same ones as for the missing\_dates argument.

```
initial_accumulate
```

Integer. The number of initial dates to accumulate if missing\_dates or missing\_obs is set to "accumulate". This argument needs ot have a minimum of 1. If it is set to 1 then no accumulation is happening on the first data point. If it is greater than 1 then dates are added to the beginning of the data set to get be able to have a sufficient number of modelled observations accumulated onto the first data point. For modelling weekly incidence data this should be set to 7. If accumulating and the first data point is not NA and this is argument is not set, then if all dates in the data have the same gap this will be taken as initial accumulation and a warning given to inform the user. If not all gaps are the same the first data point will be removed with a warning.

- obs\_column Character (default: "confirm"). If given, only the column specified here will be used for checking missingness. This is useful if using a data set that has multiple columns of hwich one of them corresponds to observations that are to be processed here.
- by Character vector. Name(s) of any additional column(s) where data processing should be done separately for each value in the column. This is useful when using data representing e.g. multiple geographies. If NULL (default) no such grouping is done.

### Value

a data.table with an accumulate column that indicates whether values are accumulated (see the documentation of the data argument in estimate\_infections())

### Examples

```
cases <- data.table::copy(example_confirmed)
## calculate weekly sum
cases[, confirm := data.table::frollsum(confirm, 7)]
## limit to dates once a week
cases <- cases[seq(7, nrow(cases), 7)]
## set the second observation to missing
cases[2, confirm := NA]
## fill missing data
fill_missing(cases, missing_dates = "accumulate", initial_accumulate = 7)</pre>
```

filter\_leading\_zeros Filter leading zeros from a data set.

# Description

Filter leading zeros from a data set.

### Usage

filter\_leading\_zeros(data, obs\_column = "confirm", by = NULL)

# Arguments

| data       | A <data.frame> of disease reports (confirm) by date (date). confirm must be<br/>numeric and date must be in date format. Optionally this can also have a logical<br/>accumulate column which indicates whether data should be added to the next<br/>data point. This is useful when modelling e.g. weekly incidence data. See also<br/>the fill_missing() function which helps add the accumulate column with<br/>the desired properties when dealing with non-daily data. If any accumulation is<br/>done this happens after truncation as specified by the truncation argument.</data.frame> |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| obs_column | Character (default: "confirm"). If given, only the column specified here will<br>be used for checking missingness. This is useful if using a data set that has<br>multiple columns of hwich one of them corresponds to observations that are to<br>be processed here.                                                                                                                                                                                                                                                                                                                          |
| by         | Character vector. Name(s) of any additional column(s) where data processing should be done separately for each value in the column. This is useful when using data representing e.g. multiple geographies. If NULL (default) no such grouping is done.                                                                                                                                                                                                                                                                                                                                         |

# Value

A data.table with leading zeros removed.

# Examples

```
cases <- data.frame(
    date = as.Date("2020-01-01") + 0:10,
    confirm = c(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
)
filter_leading_zeros(cases)</pre>
```

filter\_opts

#### Description

[Maturing] A helper function that allows the selection of region specific settings if present and otherwise applies the overarching settings.

## Usage

```
filter_opts(opts, region)
```

# Arguments

| opts   | Either a list of calls to an _opts() function or a single call to an _opts() func- |
|--------|------------------------------------------------------------------------------------|
|        | tion.                                                                              |
| region | A character string indicating a region of interest.                                |

### Value

A list of options

fix\_parameters Fix the parameters of a <dist\_spec>

# Description

[Experimental] If the given <dist\_spec> has any uncertainty, it is removed and the corresponding distribution converted into a fixed one.

#### Usage

```
## S3 method for class 'dist_spec'
fix_parameters(x, strategy = c("mean", "sample"), ...)
```

### Arguments

| х        | A <dist_spec></dist_spec>                                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| strategy | Character; either "mean" (use the mean estimates of the mean and standard de-<br>viation) or "sample" (randomly sample mean and standard deviation from un-<br>certainty given in the <dist_spec></dist_spec> |
|          | ignored                                                                                                                                                                                                       |

### Value

A <dist\_spec> object without uncertainty

### Examples

```
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist <- Gamma(
   shape = Normal(3, 0.5),
   rate = Normal(2, 0.5),
   max = 20
)
fix_parameters(dist)
```

forecast\_infections Forecast infections from a given fit and trajectory of the time-varying reproduction number

# Description

**[Stable]** This function simulates infections using an existing fit to observed cases but with a modified time-varying reproduction number. This can be used to explore forecast models or past counterfactuals. Simulations can be run in parallel using future::plan().

### Usage

```
forecast_infections(
    estimates,
    R = NULL,
    model = NULL,
    samples = NULL,
    batch_size = 10,
    backend = "rstan",
    verbose = interactive()
)
```

#### Arguments

| estimates | The estimates element of an epinow() run that has been done with output = "fit", or the result of estimate_infections() with return_fit set to TRUE.                                                                                                                                                                                                       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R         | A numeric vector of reproduction numbers; these will overwrite the reproduc-<br>tion numbers contained in estimates, except elements set to NA. Alternatively<br>accepts a <data.frame> containing at least date and value (integer) variables<br/>and optionally sample. More (or fewer) days than in the original fit can be<br/>simulated.</data.frame> |
| model     | A compiled stan model as returned by rstan::stan_model().                                                                                                                                                                                                                                                                                                  |
| samples   | Numeric, number of posterior samples to simulate from. The default is to use all samples in the estimates input.                                                                                                                                                                                                                                           |

| batch_size | Numeric, defaults to 10. Size of batches in which to simulate. May decrease run times due to reduced IO costs but this is still being evaluated. If set to NULL then all simulations are done at once. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| backend    | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                                                                       |
| verbose    | Logical defaults to interactive(). If the progressr package is available, a progress bar will be shown.                                                                                                |

### Value

A list of output as returned by estimate\_infections() but based on results from the specified scenario rather than fitting.

### See Also

```
generation_time_opts() delay_opts() rt_opts() estimate_infections() trunc_opts()
stan_opts() obs_opts() gp_opts()
```

### Examples

```
# set number of cores to use
old_opts <- options()</pre>
options(mc.cores = ifelse(interactive(), 4, 1))
# get example case counts
reported_cases <- example_confirmed[1:50]</pre>
# fit model to data to recover Rt estimates
est <- estimate_infections(reported_cases,</pre>
  generation_time = generation_time_opts(example_generation_time),
  delays = delay_opts(example_incubation_period + example_reporting_delay),
  rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1), rw = 7),
  obs = obs_opts(scale = Normal(mean = 0.1, sd = 0.01)),
  gp = NULL,
  forecast = forecast_opts(horizon = 0)
)
# update Rt trajectory and simulate new infections using it
R \leq c(rep(NA_real_, 26), rep(0.5, 10), rep(0.8, 14))
sims <- forecast_infections(est, R)</pre>
plot(sims)
# with a data.frame input of samples
R_dt <- data.frame(</pre>
 date = seq(
    min(summary(est, type = "parameters", param = "R")$date),
    by = "day", length.out = length(R)
  ),
  value = R
)
sims <- forecast_infections(est, R_dt)</pre>
```

```
plot(sims)
#' # with a data.frame input of samples
R_samples <- summary(est, type = "samples", param = "R")
R_samples <- R_samples[
,
.(date, sample, value)
][sample <= 1000][date <= "2020-04-10"]
R_samples <- R_samples[date >= "2020-04-01", value := 1.1]
sims <- forecast_infections(est, R_samples)
plot(sims)</pre>
```

options(old\_opts)

forecast\_opts Forecast options

### Description

[Stable] Defines a list specifying the arguments passed to underlying stan backend functions via stan\_sampling\_opts() and stan\_vb\_opts(). Custom settings can be supplied which override the defaults.

# Usage

forecast\_opts(horizon = 7, accumulate)

#### Arguments

| horizon    | Numeric, defaults to 7. Number of days into the future to forecast.              |
|------------|----------------------------------------------------------------------------------|
| accumulate | Integer, the number of days to accumulate in forecasts, if any. If not given and |
|            | observations are accumulated at constant frequency in the data used for fitting  |
|            | then the same accumulation will be used in forecasts unless set explicitly here. |

### Value

A <forecast\_opts> object of forecast setting.

# See Also

fill\_missing

### Examples

```
forecast_opts(horizon = 28, accumulate = 7)
```

# Description

[Experimental] This function forecasts secondary observations using the output of estimate\_secondary() and either observed primary data or a forecast of primary observations. See the examples of estimate\_secondary() for one use case. It can also be combined with estimate\_infections() to produce a forecast for a secondary observation from a forecast of a primary observation. See the examples of estimate\_secondary() for example use cases on synthetic data. See here for an example of forecasting Covid-19 deaths from Covid-19 cases.

### Usage

```
forecast_secondary(
   estimate,
   primary,
   primary_variable = "reported_cases",
   model = NULL,
   backend = "rstan",
   samples = NULL,
   all_dates = FALSE,
   CrIs = c(0.2, 0.5, 0.9)
)
```

| estimate        | An object of class "estimate_secondary" as produced by estimate_secondary().                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| primary         | A <data.frame> containing at least date and value (integer) variables and op-<br/>tionally sample. Used as the primary observation used to forecast the secondary<br/>observations. Alternatively, this may be an object of class "estimate_infections"<br/>as produced by estimate_infections(). If primary is of class "estimate_infections"<br/>then the internal samples will be filtered to have a minimum date ahead of those<br/>observed in the estimate object.</data.frame> |
| primary_variabl | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | A character string indicating the primary variable, defaulting to "reported_cases".<br>Only used when primary is of class <estimate_infections>.</estimate_infections>                                                                                                                                                                                                                                                                                                                |
| model           | A compiled stan model as returned by rstan::stan_model().                                                                                                                                                                                                                                                                                                                                                                                                                             |
| backend         | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                                                                                                                                                                                                                                                                                                                                                      |
| samples         | Numeric, number of posterior samples to simulate from. The default is to use all samples in the primary input when present. If not present the default is to use 1000 samples.                                                                                                                                                                                                                                                                                                        |
| all_dates       | Logical, defaults to FALSE. Should a forecast for all dates and not just those in the forecast horizon be returned.                                                                                                                                                                                                                                                                                                                                                                   |

# Value

A list containing: predictions (a <data.frame> ordered by date with the primary, and secondary observations, and a summary of the forecast secondary observations. For primary observations in the forecast horizon when uncertainty is present the median is used), samples a <data.frame> of forecast secondary observation posterior samples, and forecast a summary of the forecast secondary observation posterior.

### See Also

estimate\_secondary()

get\_distribution Get the distribution of a <dist\_spec>

### Description

[Experimental]

#### Usage

```
get_distribution(x, id = NULL)
```

### Arguments

| Х  | A <dist_spec>.</dist_spec>                                                             |
|----|----------------------------------------------------------------------------------------|
| id | Integer; the id of the distribution to use (if x is a composite distribution). If x is |
|    | a single distribution this is ignored and can be left at its default value of NULL.    |

# Value

A character string naming the distribution (or "nonparametric")

# Examples

```
dist <- Gamma(shape = 3, rate = 2, max = 10)
get_distribution(dist)</pre>
```

get\_parameters

# Description

[Experimental]

# Usage

get\_parameters(x, id = NULL)

# Arguments

| Х  | A <dist_spec>.</dist_spec>                                                             |
|----|----------------------------------------------------------------------------------------|
| id | Integer; the id of the distribution to use (if x is a composite distribution). If x is |
|    | a single distribution this is ignored and can be left at its default value of NULL.    |

### Value

A list of parameters of the distribution.

# Examples

dist <- Gamma(shape = 3, rate = 2)
get\_parameters(dist)</pre>

get\_pmf

Get the probability mass function of a nonparametric distribution

# Description

[Experimental]

#### Usage

get\_pmf(x, id = NULL)

## Arguments

| х  | A <dist_spec>.</dist_spec>                                                                                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| id | Integer; the id of the distribution to use (if x is a composite distribution). If x is a single distribution this is ignored and can be left at its default value of NULL. |

### Value

The pmf of the distribution

### Examples

```
dist <- discretise(Gamma(shape = 3, rate = 2, max = 10))
get_pmf(dist)</pre>
```

get\_regional\_results Get Combined Regional Results

# Description

**[Stable]** Summarises results across regions either from input or from disk. See the examples for details.

### Usage

```
get_regional_results(
  regional_output,
  results_dir,
  date,
  samples = TRUE,
  forecast = FALSE
)
```

Arguments

```
regional_output
```

|             | A list of output as produced by regional_epinow() and stored in the regional list.                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| results_dir | A character string indicating the folder containing the {EpiNow2} results to extract.                                                                   |
| date        | A Character string (in the format "yyyy-mm-dd") indicating the date to extract data for. Defaults to "latest" which finds the latest results available. |
| samples     | Logical, defaults to TRUE. Should samples be returned.                                                                                                  |
| forecast    | Logical, defaults to FALSE. Should forecast results be returned.                                                                                        |

# Value

A list of estimates, forecasts and estimated cases by date of report.

# Examples

```
# get example multiregion estimates
regional_out <- readRDS(system.file(
    package = "EpiNow2", "extdata", "example_regional_epinow.rds"
))
# from output
results <- get_regional_results(regional_out$regional, samples = FALSE)</pre>
```

gp\_opts

# Description

**[Stable]** Defines a list specifying the structure of the approximate Gaussian process. Custom settings can be supplied which override the defaults.

# Usage

```
gp_opts(
  basis_prop = 0.2,
  boundary_scale = 1.5,
  ls_mean = 21,
  ls_sd = 7,
  ls_min = 0,
  ls_max = 60,
  ls = LogNormal(mean = 21, sd = 7, max = 60),
  alpha = Normal(mean = 0, sd = 0.01),
  kernel = c("matern", "se", "ou", "periodic"),
 matern_order = 3/2,
 matern_type,
 w0 = 1,
  alpha_mean,
  alpha_sd
)
```

| basis_prop     | Numeric, the proportion of time points to use as basis functions. Defaults to 0.2. Decreasing this value results in a decrease in accuracy but a faster compute time (with increasing it having the first effect). In general smaller posterior length scales require a higher proportion of basis functions. See (Riutort-Mayol et al. 2020 https://arxiv.org/abs/2004.11408) for advice on updating this default. |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| boundary_scale | Numeric, defaults to 1.5. Boundary scale of the approximate Gaussian process. See (Riutort-Mayol et al. 2020 https://arxiv.org/abs/2004.11408) for advice on updating this default.                                                                                                                                                                                                                                 |
| ls_mean        | Deprecated; use 1s instead.                                                                                                                                                                                                                                                                                                                                                                                         |
| ls_sd          | Deprecated; use 1s instead.                                                                                                                                                                                                                                                                                                                                                                                         |
| ls_min         | Deprecated; use 1s instead.                                                                                                                                                                                                                                                                                                                                                                                         |
| ls_max         | Deprecated; use 1s instead.                                                                                                                                                                                                                                                                                                                                                                                         |
| ls             | A <dist_spec> giving the prior distribution of the lengthscale parameter of the Gaussian process kernel on the scale of days. Defaults to a Lognormal distribution with mean 21 days, sd 7 days and maximum 60 days: LogNormal(mean</dist_spec>                                                                                                                                                                     |

|                        | = 21, sd = 7, max = 60) (a lower limit of 0 will be enforced automatically to ensure positivity)                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alpha                  | A <dist_spec> giving the prior distribution of the magnitude parameter of the Gaussian process kernel. Should be approximately the expected standard deviation of the Gaussian process (logged Rt in case of the renewal model, logged infections in case of the nonmechanistic model). Defaults to a half-normal distribution with mean 0 and sd 0.01: Normal (mean = <math>0</math>, sd = <math>0.01</math>) (a lower limit of 0 will be enforced automatically to ensure positivity)</dist_spec> |
| kernel                 | Character string, the type of kernel required. Currently supporting the Matern kernel ("matern"), squared exponential kernel ("se"), periodic kernel, Ornstein-Uhlenbeck #' kernel ("ou"), and the periodic kernel ("periodic").                                                                                                                                                                                                                                                                    |
| matern_order           | Numeric, defaults to 3/2. Order of Matérn Kernel to use. Common choices are 1/2, 3/2, and 5/2. If kernel is set to "ou", matern_order will be automatically set to 1/2. Only used if the kernel is set to "matern".                                                                                                                                                                                                                                                                                 |
| <pre>matern_type</pre> | Deprecated; Numeric, defaults to 3/2. Order of Matérn Kernel to use. Currently, the orders 1/2, 3/2, 5/2 and Inf are supported.                                                                                                                                                                                                                                                                                                                                                                     |
| wØ                     | Numeric, defaults to 1.0. Fundamental frequency for periodic kernel. They are only used if kernel is set to "periodic".                                                                                                                                                                                                                                                                                                                                                                             |
| alpha_mean             | Deprecated; use alpha instead.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| alpha_sd               | Deprecated; use alpha instead.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Value

A <gp\_opts> object of settings defining the Gaussian process

# Examples

```
# default settings
gp_opts()
# add a custom length scale
gp_opts(ls = LogNormal(mean = 4, sd = 1, max = 20))
# use linear kernel
gp_opts(kernel = "periodic")
```

| growth_to_R | Convert Growth Rates to Reproduction numbers. |
|-------------|-----------------------------------------------|
|-------------|-----------------------------------------------|

# Description

[Questioning] See here # nolint for justification. Now handled internally by stan so may be removed in future updates if no user demand.

# Usage

growth\_to\_R(r, gamma\_mean, gamma\_sd)

### gt\_opts

### Arguments

| r          | Numeric, rate of growth estimates.                      |
|------------|---------------------------------------------------------|
| gamma_mean | Numeric, mean of the gamma distribution                 |
| gamma_sd   | Numeric, standard deviation of the gamma distribution . |

## Value

Numeric vector of reproduction number estimates

# Examples

growth\_to\_R(0.2, 4, 1)

gt\_opts

# Generation Time Distribution Options

# Description

[Stable] Returns generation time parameters in a format for lower level model use.

# Usage

```
gt_opts(dist = Fixed(1), default_cdf_cutoff = 0.001, weight_prior = TRUE)
generation_time_opts(
    dist = Fixed(1),
    default_cdf_cutoff = 0.001,
    weight_prior = TRUE
)
```

| dist           | A delay distribution or series of delay distributions. If no distribution is given a fixed generation time of 1 will be assumed. If passing a nonparametric distribution the first element should be zero (see <i>Details</i> section)                                                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| default_cdf_cu | itoff                                                                                                                                                                                                                                                                                                                                                  |
|                | Numeric; default CDF cutoff to be used if an unconstrained distribution is passed<br>as dist. If dist is already constrained by having a maximum or CDF cutoff this<br>is ignored. Note that this can only be done for <dist_spec> objects with fixed<br/>parameters.</dist_spec>                                                                      |
| weight_prior   | Logical; if TRUE (default), any priors given in dist will be weighted by the number of observation data points, in doing so approximately placing an independent prior at each time step and usually preventing the posteriors from shifting. If FALSE, no weight will be applied, i.e. any parameters in dist will be treated as a single parameters. |

### Details

Because the discretised renewal equation used in the package does not support zero generation times, any distribution specified here will be left-truncated at one, i.e. the first element of the nonparametric or discretised probability distribution used for the generation time is set to zero and the resulting distribution renormalised.

# Value

A <generation\_time\_opts> object summarising the input delay distributions.

# See Also

```
convert_to_logmean() convert_to_logsd() bootstrapped_dist_fit() Gamma() LogNormal()
Fixed()
```

# Examples

```
# default settings with a fixed generation time of 1
generation_time_opts()
# A fixed gamma distributed generation time
generation_time_opts(Gamma(mean = 3, sd = 2, max = 14))
# An uncertain gamma distributed generation time
generation_time_opts(
    Gamma(
        shape = Normal(mean = 3, sd = 1),
        rate = Normal(mean = 2, sd = 0.5),
        max = 14
    )
    )
# An example generation time
gt_opts(example_generation_time)
```

| is_constrained | <i>Check if a <dist_spec> is constrained, i.e. has a finite maximum or</dist_spec></i> |
|----------------|----------------------------------------------------------------------------------------|
|                | nonzero CDF cutoff.                                                                    |

## Description

[Experimental]

#### Usage

```
## S3 method for class 'dist_spec'
is_constrained(x, ...)
```

# make\_conf

#### Arguments

| х | A <dist_spec></dist_spec> |
|---|---------------------------|
|   | ignored                   |

# Value

Logical; TRUE if x is constrained

# Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)
# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(
    meanlog = Normal(3, 0.5),
    sdlog = Normal(2, 0.5),
    max = 20
)
# both distributions are constrained and therefore so is the sum
is_constrained(dist1 + dist2)
```

make\_conf

Format Credible Intervals

### Description

[Stable] Combines a list of values into formatted credible intervals.

# Usage

make\_conf(value, CrI = 90, reverse = FALSE)

### Arguments

| value   | List of value to map into a string. Requires, point, lower, and upper.         |
|---------|--------------------------------------------------------------------------------|
| CrI     | Numeric, credible interval to report. Defaults to 90.                          |
| reverse | Logical, defaults to FALSE. Should the reported credible interval be switched. |

# Value

A character vector formatted for reporting

### Examples

```
value <- list(median = 2, lower_90 = 1, upper_90 = 3)
make_conf(value)</pre>
```

map\_prob\_change

# Description

[**Stable**] Categorises a numeric variable into "Increasing" (< 0.05), "Likely increasing" (<0.4), "Stable" (< 0.6), "Likely decreasing" (< 0.95), "Decreasing" (<= 1)

#### Usage

map\_prob\_change(var)

### Arguments

var Numeric variable to be categorised

### Value

A character variable.

### Examples

var <- seq(0.01, 1, 0.01)
var
map\_prob\_change(var)</pre>

max.dist\_spec

Returns the maximum of one or more delay distribution

# Description

[Experimental] This works out the maximum of all the (parametric / nonparametric) delay distributions combined in the passed <dist\_spec> (ignoring any uncertainty in parameters)

#### Usage

## S3 method for class 'dist\_spec'
max(x, ...)

| х | The <dist_spec> to use</dist_spec> |
|---|------------------------------------|
|   | Not used                           |

#### mean.dist\_spec

### Value

A vector of means.

#### Examples

```
# A fixed gamma distribution with mean 5 and sd 1.
dist1 <- Gamma(mean = 5, sd = 1, max = 20)
max(dist1)
# An uncertain lognormal distribution with meanlog and sdlog normally
# distributed as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- LogNormal(</pre>
  meanlog = Normal(3, 0.5),
  sdlog = Normal(2, 0.5),
  max = 20
)
max(dist2)
# The max the sum of two distributions
max(dist1 + dist2)
```

mean.dist\_spec Returns the mean of one or more delay distribution

# Description

[Experimental] This works out the mean of all the (parametric / nonparametric) delay distributions combined in the passed <dist\_spec>.

### Usage

```
## S3 method for class 'dist_spec'
mean(x, ..., ignore_uncertainty = FALSE)
```

# Arguments х

. . .

The <dist\_spec> to use Not used ignore\_uncertainty

Logical; whether to ignore any uncertainty in parameters. If set to FALSE (the default) then the mean of any uncertain parameters will be returned as NA.

### Examples

```
# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 5, sd = 1, max = 20)
mean(dist1)
```

```
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
    shape = Normal(3, 0.5),
    rate = Normal(2, 0.5),
    max = 20
)
mean(dist2)
# The mean of the sum of two distributions
mean(dist1 + dist2)
```

| new_dist_spec | Internal function for generating a dist_spec given parameters and a |
|---------------|---------------------------------------------------------------------|
|               | distribution.                                                       |

# Description

[Experimental] This will convert all parameters to natural parameters before generating a dist\_spec. If they have uncertainty this will be done using sampling.

### Usage

```
new_dist_spec(params, distribution, max = Inf, cdf_cutoff = 0)
```

#### Arguments

| params       | Parameters of the distribution (including max)                                                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| distribution | Character; the distribution to use.                                                                                                                                                         |
| max          | Numeric, maximum value of the distribution. The distribution will be truncated at this value. Default: Inf, i.e. no maximum.                                                                |
| cdf_cutoff   | Numeric; the desired CDF cutoff. Any part of the cumulative distribution func-<br>tion beyond 1 minus the value of this argument is removed. Default: 0, i.e. use<br>the full distribution. |

#### Value

A dist\_spec of the given specification.

### Examples

```
new_dist_spec(
  params = list(mean = 2, sd = 1),
  distribution = "normal"
)
```

obs\_opts

# Description

**[Stable]** Defines a list specifying the structure of the observation model. Custom settings can be supplied which override the defaults.

# Usage

```
obs_opts(
  family = c("negbin", "poisson"),
  dispersion = Normal(mean = 0, sd = 0.25),
  weight = 1,
  week_effect = TRUE,
  week_length = 7,
  scale = Fixed(1),
  na = c("missing", "accumulate"),
  likelihood = TRUE,
  return_likelihood = FALSE,
  phi
)
```

| family      | Character string defining the observation model. Options are Negative binomial ("negbin"), the default, and Poisson.                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dispersion  | A <dist_spec> specifying a prior on the dispersion parameter of the reporting process, used only if familiy is "negbin". Internally parameterised such that this parameter is one over the square root of the phi parameter for overdispersion of the negative binomial distribution. # nolint Defaults to a half-normal distribution with mean of 0 and standard deviation of 0.25: Normal(mean = 0, sd = 0.25). A lower limit of zero will be enforced automatically.</dist_spec> |
| weight      | Numeric, defaults to 1. Weight to give the observed data in the log density.                                                                                                                                                                                                                                                                                                                                                                                                        |
| week_effect | Logical defaulting to TRUE. Should a day of the week effect be used in the observation model.                                                                                                                                                                                                                                                                                                                                                                                       |
| week_length | Numeric assumed length of the week in days, defaulting to 7 days. This can<br>be modified if data aggregated over a period other than a week or if data has a<br>non-weekly periodicity.                                                                                                                                                                                                                                                                                            |
| scale       | A <dist_spec> specifying a prior on the scaling factor to be applied to map<br/>latent infections (convolved to date of report). Defaults to a fixed value of 1, i.e.<br/>no scaling: Fixed(1). A lower limit of zero will be enforced automatically. If<br/>setting to a prior distribution and no overreporting is expected, it might be sen-<br/>sible to set a maximum of 1 via the max option when declaring the distribution.</dist_spec>                                     |
| na          | Deprecated; use the fill_missing() function instead                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| likelihood      | Logical, defaults to TRUE. Should the likelihood be included in the model.  |
|-----------------|-----------------------------------------------------------------------------|
| return_likeliho | od                                                                          |
|                 | Logical, defaults to FALSE. Should the likelihood be returned by the model. |
| phi             | deprecated; use dispersion instead                                          |

### Value

An <obs\_opts> object of observation model settings.

### Examples

```
# default settings
obs_opts()
# Turn off day of the week effect
obs_opts(week_effect = TRUE)
# Scale reported data
obs_opts(scale = Normal(mean = 0.2, sd = 0.02))
```

opts\_list

Forecast optiong

# Description

[Maturing] Define a list of \_opts() to pass to regional\_epinow() \_opts() accepting arguments. This is useful when different settings are needed between regions within a single regional\_epinow() call. Using opts\_list() the defaults can be applied to all regions present with an override passed to regions as necessary (either within opts\_list() or externally).

### Usage

```
opts_list(opts, reported_cases, ...)
```

# Arguments

| opts           | An _opts() function call such as rt_opts().                              |
|----------------|--------------------------------------------------------------------------|
| reported_cases | A data frame containing a region variable indicating the target regions. |
|                | Optional override for region defaults. See the examples for use case.    |

#### Value

A named list of options per region which can be passed to the \_opt accepting arguments of regional\_epinow.

# See Also

```
regional_epinow() rt_opts()
```

### plot.dist\_spec

### Examples

```
# uses example case vector
cases <- example_confirmed[1:40]
cases <- data.table::rbindlist(list(
    data.table::copy(cases)[, region := "testland"],
    cases[, region := "realland"]
))
# default settings
opts_list(rt_opts(), cases)
# add a weekly random walk in realland
opts_list(rt_opts(), cases, realland = rt_opts(rw = 7))
# add a weekly random walk externally
rt <- opts_list(rt_opts(), cases)
rt$realland$rw <- 7
rt
```

plot.dist\_spec Plot PMF and CDF for a dist\_spec object

### Description

[**Experimental**] This function takes a <dist\_spec> object and plots its probability mass function (PMF) and cumulative distribution function (CDF) using {ggplot2}.

### Usage

```
## S3 method for class 'dist_spec'
plot(x, samples = 50L, res = 1, cumulative = TRUE, ...)
```

| x          | A <dist_spec> object</dist_spec>                                                                  |
|------------|---------------------------------------------------------------------------------------------------|
| samples    | Integer; Number of samples to generate for distributions with uncertain parameters (default: 50). |
| res        | Numeric; Resolution of the PMF and CDF (default: 1, i.e. integer discretisation).                 |
| cumulative | Logical; whether to plot the cumulative distribution in addition to the probability mass function |
|            | ignored                                                                                           |

### Examples

```
# A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 1.6, sd = 0.5, max = 20)
# Plot discretised distribution with 1 day discretisation window
plot(dist1)
# Plot discretised distribution with 0.01 day discretisation window
plot(dist1, res = 0.01, cumulative = FALSE)
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
  shape = Normal(3, 0.5),
  rate = Normal(2, 0.5),
  max = 20
)
plot(dist2)
# Multiple distributions with 0.1 discretisation window and do not plot the
# cumulative distribution
plot(dist1 + dist2, res = 0.1, cumulative = FALSE)
```

plot.epinow

Plot method for epinow

# Description

[Maturing] plot method for class <epinow>.

### Usage

## S3 method for class 'epinow'
plot(x, type = "summary", ...)

### Arguments

| х    | A list of output as produced by epinow().                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | A character vector indicating the name of the plot to return. Defaults to "sum-<br>mary" with supported options being "infections", "reports", "R", "growth_rate",<br>"summary", "all". If "all" is supplied all plots are generated. |
|      | Pass additional arguments to report_plots                                                                                                                                                                                             |

### Value

List of plots as produced by report\_plots()

# See Also

plot plot.estimate\_infections report\_plots estimate\_infections

plot.estimate\_infections

Plot method for estimate\_infections

### Description

[Maturing] plot method for class <estimate\_infections>.

### Usage

```
## S3 method for class 'estimate_infections'
plot(
    x,
    type = c("summary", "infections", "reports", "R", "growth_rate", "all"),
    ...
)
```

### Arguments

| х    | A list of output as produced by estimate_infections                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | A character vector indicating the name of the plot to return. Defaults to "sum-<br>mary" with supported options being "infections", "reports", "R", "growth_rate",<br>"summary", "all". If "all" is supplied all plots are generated. |
|      | Pass additional arguments to report_plots                                                                                                                                                                                             |

### Value

List of plots as produced by report\_plots()

### See Also

plot report\_plots estimate\_infections

plot.estimate\_secondary

Plot method for estimate\_secondary

# Description

[Experimental] plot method for class "estimate\_secondary".

#### Usage

```
## S3 method for class 'estimate_secondary'
plot(x, primary = FALSE, from = NULL, to = NULL, new_obs = NULL, ...)
```

### Arguments

| х       | A list of output as produced by estimate_secondary                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| primary | Logical, defaults to FALSE. Should primary reports also be plot?                                                                                            |
| from    | Date object indicating when to plot from.                                                                                                                   |
| to      | Date object indicating when to plot up to.                                                                                                                  |
| new_obs | A <data.frame> containing the columns date and secondary which replace<br/>the secondary observations stored in the estimate_secondary output.</data.frame> |
|         | Pass additional arguments to plot function. Not currently in use.                                                                                           |

# Value

A ggplot object.

### See Also

plot estimate\_secondary

plot.estimate\_truncation

Plot method for estimate\_truncation

# Description

[Experimental] plot() method for class <estimate\_truncation>. Returns a plot faceted over each dataset used in fitting with the latest observations as columns, the data observed at the time (and so truncated) as dots and the truncation adjusted estimates as a ribbon.

# Usage

```
## S3 method for class 'estimate_truncation'
plot(x, ...)
```

# Arguments

| Х | A list of output as produced by estimate_truncation()             |
|---|-------------------------------------------------------------------|
|   | Pass additional arguments to plot function. Not currently in use. |

# Value

ggplot2 object

### See Also

plot estimate\_truncation

plot\_CrIs

# Description

[Stable] Adds lineranges for user specified credible intervals

# Usage

plot\_CrIs(plot, CrIs, alpha, linewidth)

# Arguments

| plot      | A {ggplot2} plot                                                                       |
|-----------|----------------------------------------------------------------------------------------|
| CrIs      | Numeric list of credible intervals present in the data. As produced by extract_CrIs(). |
| alpha     | Numeric, overall alpha of the target line range                                        |
| linewidth | Numeric, line width of the default line range.                                         |

# Value

A {ggplot2} plot.

plot\_estimates Plot Estimates

# Description

**[Questioning]** Allows users to plot the output from estimate\_infections() easily. In future releases it may be depreciated in favour of increasing the functionality of the S3 plot methods.

# Usage

```
plot_estimates(
    estimate,
    reported,
    ylab,
    hline,
    obs_as_col = TRUE,
    max_plot = 10,
    estimate_type = c("Estimate", "Estimate based on partial data", "Forecast")
)
```

### Arguments

| estimate            | A <data.table> of estimates containing the following variables: date, type (must contain "estimate", "estimate based on partial data" and optionally "fore-cast").</data.table> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reported            | A <data.table> of reported cases with the following variables: date, confirm.</data.table>                                                                                      |
| ylab                | Character string. Title for the plot y axis.                                                                                                                                    |
| hline               | Numeric, if supplied gives the horizontal intercept for a indicator line.                                                                                                       |
| obs_as_col          | Logical, defaults to TRUE. Should observed data, if supplied, be plotted using columns or as points (linked using a line).                                                      |
| <pre>max_plot</pre> | Numeric, defaults to 10. A multiplicative upper bound on the\ number of cases shown on the plot. Based on the maximum number of reported cases.                                 |
| estimate_type       | Character vector indicating the type of data to plot. Default to all types with supported options being: "Estimate", "Estimate based on partial data", and "Forecast".          |

### Value

A ggplot2 object

### Examples

```
# get example model results
out <- readRDS(system.file(</pre>
  package = "EpiNow2", "extdata", "example_estimate_infections.rds"
))
# plot infections
plot_estimates(
  estimate = out$summarised[variable == "infections"],
  reported = out$observations,
  ylab = "Cases", max_plot = 2
) + ggplot2::facet_wrap(~type, scales = "free_y")
# plot reported cases estimated via Rt
plot_estimates(
  estimate = out$summarised[variable == "reported_cases"],
  reported = out$observations,
 ylab = "Cases"
)
# plot Rt estimates
plot_estimates(
  estimate = out$summarised[variable == "R"],
  ylab = "Effective Reproduction No.",
  hline = 1
)
#' # plot Rt estimates without forecasts
plot_estimates(
```

#### plot\_summary

```
estimate = out$summarised[variable == "R"],
ylab = "Effective Reproduction No.",
hline = 1, estimate_type = "Estimate"
)
```

plot\_summary

Plot a Summary of the Latest Results

## Description

[Questioning] Used to return a summary plot across regions (using results generated by summarise\_results()). May be depreciated in later releases in favour of enhanced S3 methods.

# Usage

```
plot_summary(summary_results, x_lab = "Region", log_cases = FALSE, max_cases)
```

### Arguments

summary\_results

|                      | A data.table as returned by summarise_results() (the data object).      |
|----------------------|-------------------------------------------------------------------------|
| x_lab                | A character string giving the label for the x axis, defaults to region. |
| log_cases            | Logical, should cases be shown on a logged scale. Defaults to FALSE.    |
| <pre>max_cases</pre> | Numeric, no default. The maximum number of cases to plot.               |

#### Value

A {ggplot2} object

print.dist\_spec Prints the parameters of one or more delay distributions

# Description

**[Experimental]** This displays the parameters of the uncertain and probability mass functions of fixed delay distributions combined in the passed <dist\_spec>.

#### Usage

## S3 method for class 'dist\_spec'
print(x, ...)

| х | The <dist_spec> to use</dist_spec> |
|---|------------------------------------|
|   | Not used                           |

#### Value

invisible

#### Examples

```
#' # A fixed lognormal distribution with mean 5 and sd 1.
dist1 <- LogNormal(mean = 1.5, sd = 0.5, max = 20)
print(dist1)
# An uncertain gamma distribution with shape and rate normally distributed
# as Normal(3, 0.5) and Normal(2, 0.5) respectively
dist2 <- Gamma(
    shape = Normal(3, 0.5), rate = Normal(2, 0.5), max = 20
)
print(dist2)
```

regional\_epinow

Real-time Rt Estimation, Forecasting and Reporting by Region

#### Description

[Maturing] Efficiently runs epinow() across multiple regions in an efficient manner and conducts basic data checks and cleaning such as removing regions with fewer than non\_zero\_points as these are unlikely to produce reasonable results whilst consuming significant resources. See the documentation for epinow() for further information.

By default all arguments supporting input from \_opts() functions are shared across regions (including delays, truncation, Rt settings, stan settings, and gaussian process settings). Region specific settings are supported by passing a named list of \_opts() calls (with an entry per region) to the relevant argument. A helper function (opts\_list()) is available to facilitate building this list.

Regions can be estimated in parallel using the {future} package (see setup\_future()). The progress of producing estimates across multiple regions can be tracked using the {progressr} package. Modify this behaviour using progressr::handlers() and enable it in batch by setting R\_PROGRESSR\_ENABLE=TRUE as an environment variable.

### Usage

```
regional_epinow(
   data,
   generation_time = gt_opts(),
   delays = delay_opts(),
   truncation = trunc_opts(),
   rt = rt_opts(),
   backcalc = backcalc_opts(),
   gp = gp_opts(),
   obs = obs_opts(),
   forecast = forecast_opts(),
   stan = stan_opts(),
```

# regional\_epinow

```
horizon,
CrIs = c(0.2, 0.5, 0.9),
target_folder = NULL,
target_date,
non_zero_points = 2,
output = c("regions", "summary", "samples", "plots", "latest"),
return_output = is.null(target_folder),
summary_args = list(),
verbose = FALSE,
logs = tempdir(check = TRUE),
....)
```

| data            | $A \verb+ data.frame+ of disease reports (confirm) by date (date), and region (region).$                                                                                                                                                                                                                                                                            |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| generation_time |                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                 | A call to gt_opts() (or its alias generation_time_opts()) defining the gen-<br>eration time distribution used. For backwards compatibility a list of summary<br>parameters can also be passed.                                                                                                                                                                      |  |  |
| delays          | A call to delay_opts() defining delay distributions and options. See the documentation of delay_opts() and the examples below for details.                                                                                                                                                                                                                          |  |  |
| truncation      | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. |  |  |
| rt              | A list of options as generated by rt_opts() defining Rt estimation. Defaults to rt_opts(). To generate new infections using the non-mechanistic model instead of the renewal equation model, use rt = NULL. The non-mechanistic model internally uses the setting rt = rt_opts(use_rt = FALSE, future = "project", gp_on = "R0").                                   |  |  |
| backcalc        | A list of options as generated by backcalc_opts() to define the back calcula-<br>tion. Defaults to backcalc_opts().                                                                                                                                                                                                                                                 |  |  |
| gp              | A list of options as generated by gp_opts() to define the Gaussian process.<br>Defaults to gp_opts(). Set to NULL to disable the Gaussian process.                                                                                                                                                                                                                  |  |  |
| obs             | A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts().                                                                                                                                                                                                                                                                |  |  |
| forecast        | A list of options as generated by forecast_opts() defining the forecast opi-<br>tions. Defaults to forecast_opts(). If NULL then no forecasting will be done.                                                                                                                                                                                                       |  |  |
| stan            | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                   |  |  |
| horizon         | Deprecated; use forecast instead to specify the predictive horizon                                                                                                                                                                                                                                                                                                  |  |  |
| CrIs            | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                  |  |  |
| target_folder   | Character string specifying where to save results (will create if not present).                                                                                                                                                                                                                                                                                     |  |  |

| target_date     | Date, defaults to maximum found in the data if not specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| non_zero_points |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                 | Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| output          | A character vector of optional output to return. Supported options are the indi-<br>vidual regional estimates ("regions"), samples ("samples"), plots ("plots"), copy-<br>ing the individual region dated folder into a latest folder (if target_folder is<br>not null, set using "latest"), the stan fit of the underlying model ("fit"), and an<br>overall summary across regions ("summary"). The default is to return samples<br>and plots alongside summarised estimates and summary statistics. If target_folder<br>is not NULL then the default is also to copy all results into a latest folder. |  |
| return_output   | Logical, defaults to FALSE. Should output be returned, this automatically up-<br>dates to TRUE if no directory for saving is specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| summary_args    | A list of arguments passed to regional_summary(). See the regional_summary() documentation for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| verbose         | Logical defaults to FALSE. Outputs verbose progress messages to the console from epinow().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| logs            | Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging() and the setup_logging() function are a sensible place to start.                                                                                                                                                                                                                                                              |  |
|                 | Pass additional arguments to epinow(). See the documentation for epinow() for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

# Value

A list of output stratified at the top level into regional output and across region output summary output

# See Also

epinow() estimate\_infections() setup\_future() regional\_summary()

# Examples

```
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))</pre>
```

```
# uses example case vector
cases <- example_confirmed[1:60]
cases <- data.table::rbindlist(list(
    data.table::copy(cases)[, region := "testland"],
    cases[, region := "realland"]
))
```

# run epinow across multiple regions and generate summaries
```
# samples and warmup have been reduced for this example
# for more examples, see the "estimate_infections examples" vignette
def <- regional_epinow(
    data = cases,
    generation_time = gt_opts(example_generation_time),
    delays = delay_opts(example_incubation_period + example_reporting_delay),
    rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.2)),
    stan = stan_opts(
        samples = 100, warmup = 200
    ),
    verbose = interactive()
    )
    options(old_opts)
```

regional\_summary Regional Summary Output

## Description

[Maturing] Used to produce summary output either internally in regional\_epinow or externally.

## Usage

```
regional_summary(
  regional_output = NULL,
  data,
  results_dir = NULL,
  summary_dir = NULL,
  target_date = NULL,
  region_scale = "Region",
  all_regions = TRUE,
  return_output = is.null(summary_dir),
  plot = TRUE,
  max_plot = 10,
  ...
)
```

#### Arguments

regional\_output

|             | A list of output as produced by regional_epinow() and stored in the regional list.                     |
|-------------|--------------------------------------------------------------------------------------------------------|
| data        | A <data.frame> of disease reports (confirm) by date (date), and region (region).</data.frame>          |
| results_dir | An optional character string indicating the location of the results directory to extract results from. |
| summary_dir | A character string giving the directory in which to store summary of results.                          |
|             |                                                                                                        |

| target_date   | A character string giving the target date for which to extract results (in the format "yyyy-mm-dd"). Defaults to latest available estimates.    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| region_scale  | A character string indicating the name to give the regions being summarised.                                                                    |
| all_regions   | Logical, defaults to TRUE. Should summary plots for all regions be returned rather than just regions of interest.                               |
| return_output | Logical, defaults to FALSE. Should output be returned, this automatically updates to TRUE if no directory for saving is specified.              |
| plot          | Logical, defaults to TRUE. Should regional summary plots be produced.                                                                           |
| max_plot      | Numeric, defaults to 10. A multiplicative upper bound on the\ number of cases shown on the plot. Based on the maximum number of reported cases. |
|               | Additional arguments passed to report_plots.                                                                                                    |

## Value

A list of summary measures and plots

# See Also

regional\_epinow

# Examples

```
# get example output from regional_epinow model
regional_out <- readRDS(system.file(
   package = "EpiNow2", "extdata", "example_regional_epinow.rds"
))
regional_summary(
   regional_output = regional_out$regional,
   data = regional_out$summary$reported_cases
)</pre>
```

report\_plots Report plots

# Description

[Questioning] Returns key summary plots for estimates. May be depreciated in later releases as current S3 methods are enhanced.

## Usage

```
report_plots(summarised_estimates, reported, target_folder = NULL, ...)
```

## report\_summary

## Arguments

| summarised_estimates                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------|--|
| A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. |  |
| It should also contain the following estimates: R, infections, reported_cases_rt, and r (rate of growth).   |  |
| A <data.table> of reported cases with the following variables: date, confirm.</data.table>                  |  |
| Character string specifying where to save results (will create if not present).                             |  |
| Additional arguments passed to plot_estimates().                                                            |  |
|                                                                                                             |  |

# Value

A named list of ggplot2 objects, list(infections, reports, R, growth\_rate, summary), which correspond to a summary combination (last item) and for the leading items.

# See Also

```
plot_estimates() of summarised_estimates[variable == "infections"], summarised_estimates[variable
== "reported_cases"], summarised_estimates[variable == "R"], and summarised_estimates[variable
== "growth_rate"], respectively.
```

# Examples

```
# get example output form estimate_infections
out <- readRDS(system.file(
    package = "EpiNow2", "extdata", "example_estimate_infections.rds"
))
# plot infections
plots <- report_plots(
    summarised_estimates = out$summarised,
    reported = out$observations
)
plots
```

report\_summary Provide Summary Statistics for Estimated Infections and Rt

## Description

[Questioning] Creates a snapshot summary of estimates. May be removed in later releases as S3 methods are enhanced.

## Usage

```
report_summary(
   summarised_estimates,
   rt_samples,
   target_folder = NULL,
   return_numeric = FALSE
)
```

# Arguments

| summarised_estimates |                                                                                                                                                                                               |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R, infections, and r (rate of growth). |
| rt_samples           | A data.table containing Rt samples with the following variables: sample and value.                                                                                                            |
| target_folder        | Character string specifying where to save results (will create if not present).                                                                                                               |
| return_numeric       | Should numeric summary information be returned.                                                                                                                                               |

## Value

A data.table containing formatted and numeric summary measures

| rt_opts Time-Varying Reproduction Number Options |  |
|--------------------------------------------------|--|
|--------------------------------------------------|--|

# Description

**[Stable]** Defines a list specifying the optional arguments for the time-varying reproduction number. Custom settings can be supplied which override the defaults.

# Usage

```
rt_opts(
    prior = LogNormal(mean = 1, sd = 1),
    use_rt = TRUE,
    rw = 0,
    use_breakpoints = TRUE,
    future = "latest",
    gp_on = c("R_t-1", "R0"),
    pop = 0
)
```

76

# Arguments

| prior           | A <dist_spec> giving the prior of the initial reproduciton number. Ignored if use_rt is FALSE. Defaults to a LogNormal distributin with mean of 1 and standard deviation of 1: LogNormal(mean = 1, sd = 1). A lower limit of 0 will be enforced automatically.</dist_spec>                                                                                                                                                                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| use_rt          | Logical, defaults to TRUE. Should Rt be used to generate infections and hence reported cases.                                                                                                                                                                                                                                                                                                                                                                                                        |
| rw              | Numeric step size of the random walk, defaults to 0. To specify a weekly random walk set rw = 7. For more custom break point settings consider passing in a breakpoints variable as outlined in the next section.                                                                                                                                                                                                                                                                                    |
| use_breakpoints | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | Logical, defaults to TRUE. Should break points be used if present as a breakpoint variable in the input data. Break points should be defined as 1 if present and otherwise 0. By default breakpoints are fit jointly with a global non-parametric effect and so represent a conservative estimate of break point changes (alter this by setting gp = NULL).                                                                                                                                          |
| future          | A character string or integer. This argument indicates how to set future Rt values. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be used forwards in time.                                                      |
| gp_on           | Character string, defaulting to "R_t-1". Indicates how the Gaussian process, if<br>in use, should be applied to Rt. Currently supported options are applying the<br>Gaussian process to the last estimated Rt (i.e Rt = Rt-1 * GP), and applying the<br>Gaussian process to a global mean (i.e Rt = R0 * GP). Both should produced<br>comparable results when data is not sparse but the method relying on a global<br>mean will revert to this for real time estimates, which may not be desirable. |
| рор             | Integer, defaults to 0. Susceptible population initially present. Used to adjust Rt estimates when otherwise fixed based on the proportion of the population that is susceptible. When set to 0 no population adjustment is done.                                                                                                                                                                                                                                                                    |

## Value

An <rt\_opts> object with settings defining the time-varying reproduction number.

# Examples

```
# default settings
rt_opts()
# add a custom length scale
rt_opts(prior = LogNormal(mean = 2, sd = 1))
# add a weekly random walk
rt_opts(rw = 7)
```

run\_region

## Description

[Maturing] Internal function that handles calling epinow(). Future work will extend this function to better handle stan logs and allow the user to modify settings between regions.

# Usage

```
run_region(
  target_region,
  generation_time,
 delays,
  truncation,
  rt,
 backcalc,
  gp,
 obs,
  stan,
 horizon,
 CrIs,
 data,
  target_folder,
  target_date,
  return_output,
 output,
  complete_logger,
 verbose,
 progress_fn = NULL,
  . . .
)
```

# Arguments

| target_region   | Character string indicating the region being evaluated                                                                                                                                                                                                                                                                                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| generation_time |                                                                                                                                                                                                                                                                                                                                                                     |
|                 | A call to gt_opts() (or its alias generation_time_opts()) defining the gen-<br>eration time distribution used. For backwards compatibility a list of summary<br>parameters can also be passed.                                                                                                                                                                      |
| delays          | A call to delay_opts() defining delay distributions and options. See the documentation of delay_opts() and the examples below for details.                                                                                                                                                                                                                          |
| truncation      | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. |

| rt              | A list of options as generated by rt_opts() defining Rt estimation. Defaults<br>to rt_opts(). To generate new infections using the non-mechanistic model in-<br>stead of the renewal equation model, use rt = NULL. The non-mechanistic model<br>internally uses the setting rt = rt_opts(use_rt = FALSE, future = "project",<br>gp_on = "R0").                                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| backcalc        | A list of options as generated by backcalc_opts() to define the back calcula-<br>tion. Defaults to backcalc_opts().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gp              | A list of options as generated by gp_opts() to define the Gaussian process.<br>Defaults to gp_opts(). Set to NULL to disable the Gaussian process.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| obs             | A list of options as generated by obs_opts() defining the observation model.<br>Defaults to obs_opts().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| stan            | A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| horizon         | Deprecated; use forecast instead to specify the predictive horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CrIs            | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| data            | A <data.frame> of disease reports (confirm) by date (date), and region (region).</data.frame>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| target_folder   | Character string specifying where to save results (will create if not present).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| target_date     | Date, defaults to maximum found in the data if not specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| return_output   | Logical, defaults to FALSE. Should output be returned, this automatically updates to TRUE if no directory for saving is specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| output          | A character vector of optional output to return. Supported options are the indi-<br>vidual regional estimates ("regions"), samples ("samples"), plots ("plots"), copy-<br>ing the individual region dated folder into a latest folder (if target_folder is<br>not null, set using "latest"), the stan fit of the underlying model ("fit"), and an<br>overall summary across regions ("summary"). The default is to return samples<br>and plots alongside summarised estimates and summary statistics. If target_folder<br>is not NULL then the default is also to copy all results into a latest folder. |
| complete_logger |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | Character string indicating the logger to output the completion of estimation to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| verbose         | Logical defaults to FALSE. Outputs verbose progress messages to the console from epinow().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| progress_fn     | Function as returned by progressr::progressor(). Allows the use of a progress bar. If NULL (default), no progress bar is used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Pass additional arguments to epinow(). See the documentation for epinow() for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Value

A list of processed output as produced by process\_region()

# See Also

regional\_epinow()

R\_to\_growth

# Description

[Questioning] See here # nolint for justification. Now handled internally by stan so may be removed in future updates if no user demand.

## Usage

R\_to\_growth(R, gamma\_mean, gamma\_sd)

## Arguments

| R          | Numeric, Reproduction number estimates                  |
|------------|---------------------------------------------------------|
| gamma_mean | Numeric, mean of the gamma distribution                 |
| gamma_sd   | Numeric, standard deviation of the gamma distribution . |

## Value

Numeric vector of reproduction number estimates

## Examples

R\_to\_growth(2.18, 4, 1)

secondary\_opts Secondary Reports Options

## Description

**[Stable]** Returns a list of options defining the secondary model used in estimate\_secondary(). This model is a combination of a convolution of previously observed primary reports combined with current primary reports (either additive or subtractive). It can optionally be cumulative. See the documentation of type for sensible options to cover most use cases and the returned values of secondary\_opts() for all currently supported options.

## Usage

```
secondary_opts(type = c("incidence", "prevalence"), ...)
```

| Arguments |                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type      | A character string indicating the type of observation the secondary reports are.<br>Options include:                                                                                                                                                           |
|           | • "incidence": Assumes that secondary reports equal a convolution of previ-<br>ously observed primary reported cases. An example application is deaths<br>from an infectious disease predicted by reported cases of that disease (or<br>estimated infections). |
|           | • "prevalence": Assumes that secondary reports are cumulative and are de-<br>fined by currently observed primary reports minus a convolution of sec-<br>ondary reports. An example application is hospital bed usage predicted by<br>hospital admissions.      |
|           | Overwrite options defined by type. See the returned values for all options that can be passed.                                                                                                                                                                 |

## Value

A <secondary\_opts> object of binary options summarising secondary model used in estimate\_secondary(). Options returned are cumulative (should the secondary report be cumulative), historic (should a convolution of primary reported cases be used to predict secondary reported cases), primary\_hist\_additive (should the historic convolution of primary reported cases be additive or subtractive), current (should currently observed primary reported cases contribute to current secondary reported cases), primary\_current\_additive (should current primary reported cases be additive or subtractive).

## See Also

```
estimate_secondary()
```

# Examples

```
# incidence model
secondary_opts("incidence")
```

```
# prevalence model
secondary_opts("prevalence")
```

setup\_default\_logging Setup Default Logging

# Description

**[Questioning]** Sets up default logging. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

## Usage

```
setup_default_logging(
   logs = tempdir(check = TRUE),
   mirror_epinow = FALSE,
   target_date = NULL
)
```

# Arguments

| logs          | Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging() and the setup_logging() function are a sensible place to start. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mirror_epinow | Logical, defaults to FALSE. Should internal logging be returned from epinow() to the console.                                                                                                                                                                                                                                               |
| target_date   | Date, defaults to maximum found in the data if not specified.                                                                                                                                                                                                                                                                               |

# Value

No return value, called for side effects

## Examples

setup\_default\_logging()

setup\_future

Set up Future Backend

## Description

**[Stable]** A utility function that aims to streamline the set up of the required future backend with sensible defaults for most users of regional\_epinow(). More advanced users are recommended to setup their own {future} backend based on their available resources. Running this requires the {future} package to be installed.

## Usage

```
setup_future(
   data,
   strategies = c("multisession", "multisession"),
   min_cores_per_worker = 4
)
```

82

## setup\_logging

## Arguments

| data                 | A <data.frame> of disease reports (confirm) by date (date), and region (region).</data.frame>                                                                                                                                                                                                                                                                                                                  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| strategies           | A vector length 1 to 2 of strategies to pass to future::plan(). Nesting of parallelisation is from the top level down. The default is to set up nesting parallelisation with both using future::multisession() (future::multicore() will likely be a faster option on supported platforms). For single level parallelisation use a single strategy or future::plan() directly. See future::plan() for options. |  |
| min_cores_per_worker |                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                      | Numeric, the minimum number of cores per worker. Defaults to 4 which assumes 4 MCMC chains are in use per region.                                                                                                                                                                                                                                                                                              |  |

# Value

Numeric number of cores to use per worker. If greater than 1 pass to stan\_args = list(cores = "output from setup future") or use future = TRUE. If only a single strategy is used then nothing is returned.

setup\_logging Setup Logging

# Description

[Questioning] Sets up {futile.logger} logging, which is integrated into {EpiNow2}. See the documentation for {futile.logger} for full details. By default {EpiNow2} prints all logs at the "INFO" level and returns them to the console. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

## Usage

```
setup_logging(
  threshold = "INFO",
  file = NULL,
  mirror_to_console = FALSE,
  name = "EpiNow2"
)
```

## Arguments

| threshold         | Character string indicating the logging level see (?futile.logger for details of the available options). Defaults to "INFO". |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| file              | Character string indicating the path to save logs to. By default logs will be written to the console.                        |  |
| mirror_to_console |                                                                                                                              |  |
|                   | Logical, defaults to FALSE. If saving logs to a file should they also be duplicated in the console.                          |  |

name Character string defaulting to EpiNow2. This indicates the name of the logger to setup. The default logger for EpiNow2 is called EpiNow2. Nested options include: Epinow2.epinow which controls all logging for epinow() and nested functions, EpiNow2.epinow.estimate\_infections (logging in estimate\_infections(), and EpiNow2.epinow.estimate\_infections.fit (logging in fitting functions).
 Value

Nothing

simulate\_infections Simulate infections using the renewal equation

# Description

Simulations are done from given initial infections and, potentially time-varying, reproduction numbers. Delays and parameters of the observation model can be specified using the same options as in estimate\_infections().

#### Usage

```
simulate_infections(
    R,
    initial_infections,
    day_of_week_effect = NULL,
    generation_time = generation_time_opts(),
    delays = delay_opts(),
    truncation = trunc_opts(),
    obs = obs_opts(),
    CrIs = c(0.2, 0.5, 0.9),
    backend = "rstan",
    seeding_time = NULL,
    pop = 0
)
```

#### Arguments

```
R
```

a data frame of reproduction numbers (column R) by date (column date). Column R must be numeric and date must be in date format. If not all days between the first and last day in the date are present, it will be assumed that R stays the same until the next given date.

initial\_infections

numeric; the initial number of infections (i.e. before R applies). Note that results returned start the day after, i.e. the initial number of infections is not reported again. See also seeding\_time

day\_of\_week\_effect either NULL (no day of the week effect) or a numerical vector of length specified in obs\_opts() as week\_length (default: 7) if week\_effect is set to TRUE. Each element of the vector gives the weight given to reporting on this day (normalised to 1). The default is NULL. generation\_time A call to gt\_opts() (or its alias generation\_time\_opts()) defining the generation time distribution used. For backwards compatibility a list of summary parameters can also be passed. A call to delay\_opts() defining delay distributions and options. See the docudelays mentation of delay\_opts() and the examples below for details. truncation A call to trunc\_opts() defining the truncation of the observed data. Defaults to trunc\_opts(), i.e. no truncation. See the estimate\_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate\_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. obs A list of options as generated by obs\_opts() defining the observation model. Defaults to obs\_opts(). CrIs Numeric vector of credible intervals to calculate. backend Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr". seeding\_time Integer; the number of days before the first time point of R; default is NULL, in which case it is set to the maximum of the generation time. The minimum is 1, i.e. the first reproduction number given applies on the day after the index cases given by initial\_infections. If the generation time is longer than 1 day on average, a seeding time of 1 will always lead to an initial decline (as there are no infections before the initial ones). Instead, if this is greater than 1, an initial part of the epidemic (before the first value of R given) of seeding\_time days is assumed to have followed exponential growth roughly in line with the growth rate implied by the first value of R. рор Integer, defaults to 0. Susceptible population initially present. Used to adjust Rt estimates when otherwise fixed based on the proportion of the population that is susceptible. When set to 0 no population adjustment is done.

## Details

In order to simulate, all parameters that are specified such as the mean and standard deviation of delays or observation scaling, must be fixed. Uncertain parameters are not allowed.

#### Value

A data.table of simulated infections (variable infections) and reported cases (variable reported\_cases) by date.

# Examples

R <- data.frame(

```
date = seq.Date(as.Date("2023-01-01"), length.out = 14, by = "day"),
R = c(rep(1.2, 7), rep(0.8, 7))
)
sim <- simulate_infections(
R = R,
initial_infections = 100,
generation_time = generation_time_opts(
fix_parameters(example_generation_time)
),
delays = delay_opts(fix_parameters(example_reporting_delay)),
obs = obs_opts(family = "poisson")
)
```

simulate\_secondary Simulate secondary observations from primary observations

## Description

Simulations are done from a given trajectory of primary observations by applying any given delays and observation parameters.

## Usage

```
simulate_secondary(
    primary,
    day_of_week_effect = NULL,
    secondary = secondary_opts(),
    delays = delay_opts(),
    truncation = trunc_opts(),
    obs = obs_opts(),
    CrIs = c(0.2, 0.5, 0.9),
    backend = "rstan"
)
```

## Arguments

| primary         | a data frame of primary reports (column primary) by date (column date). Col-<br>umn primary must be numeric and date must be in date format. it will be<br>assumed that primary is zero on the missing days.                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| day_of_week_eff | fect                                                                                                                                                                                                                                                                                     |
|                 | either NULL (no day of the week effect) or a numerical vector of length specified<br>in obs_opts() as week_length (default: 7) if week_effect is set to TRUE.<br>Each element of the vector gives the weight given to reporting on this day (nor-<br>malised to 1). The default is NULL. |
| secondary       | A call to secondary_opts() or a list containing the following binary variables:<br>cumulative, historic, primary_hist_additive, current, primary_current_additive.<br>These parameters control the structure of the secondary model, see secondary_opts()<br>for details.                |

86

| delays     | A call to delay_opts() defining delay distributions and options. See the documentation of delay_opts() and the examples below for details.                                                                                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| truncation | A call to trunc_opts() defining the truncation of the observed data. Defaults to trunc_opts(), i.e. no truncation. See the estimate_truncation() help file for an approach to estimating this from data where the dist list element returned by estimate_truncation() is used as the truncation argument here, thereby propagating the uncertainty in the estimate. |
| obs        | A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts().                                                                                                                                                                                                                                                                |
| CrIs       | Numeric vector of credible intervals to calculate.                                                                                                                                                                                                                                                                                                                  |
| backend    | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                                                                                                                                                                                                                                    |

# Details

In order to simulate, all parameters that are specified such as the mean and standard deviation of delays or observation scaling, must be fixed. Uncertain parameters are not allowed.

A function of the same name that was previously based on a reimplementation of that model in R with potentially time-varying scalings and delays is available as 'convolve\_and\_scale()

#### Value

A data.table of simulated secondary observations (column secondary) by date.

#### Examples

```
## load data.table to manipulate `example_confirmed` below
library(data.table)
cases <- as.data.table(example_confirmed)[, primary := confirm]
sim <- simulate_secondary(
    cases,
    delays = delay_opts(fix_parameters(example_reporting_delay)),
    obs = obs_opts(family = "poisson")
)
```

stan\_laplace\_opts Stan Laplace algorithm Options

#### Description

**[Experimental]** Defines a list specifying the arguments passed to cmdstanr::laplace().

## Usage

```
stan_laplace_opts(backend = "cmdstanr", trials = 10, ...)
```

# Arguments

| backend | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr". |
|---------|----------------------------------------------------------------------------------------------------------------------------------|
| trials  | Numeric, defaults to 10. Number of attempts to use rstan::vb()] before failing.                                                  |
|         | Additional parameters to pass to cmdstanr::laplace().                                                                            |

# Value

A list of arguments to pass to cmdstanr::laplace().

# Examples

stan\_laplace\_opts()

stan\_opts

Stan Options

# Description

[Stable] Defines a list specifying the arguments passed to underlying stan backend functions via stan\_sampling\_opts() and stan\_vb\_opts(). Custom settings can be supplied which override the defaults.

# Usage

```
stan_opts(
   object = NULL,
   samples = 2000,
   method = c("sampling", "vb", "laplace", "pathfinder"),
   backend = c("rstan", "cmdstanr"),
   return_fit = TRUE,
   ...
)
```

## Arguments

| object  | Stan model object. By default uses the compiled package default if using the "rstan" backend, and the default model obtained using epinow2_cmdstan_model() if using the "cmdstanr" backend.                                                                                                                                       |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| samples | Numeric, defaults to 2000. Number of posterior samples.                                                                                                                                                                                                                                                                           |
| method  | A character string, defaulting to sampling. Currently supports MCMC sampling ("sampling") or approximate posterior sampling via variational inference ("vb") and, as experimental features if the "cmdstanr" backend is used, approximate posterior sampling with the laplace algorithm ("laplace") or pathfinder ("pathfinder"). |

| backend    | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| return_fit | Logical, defaults to TRUE. Should the fit stan model be returned.                                                                                    |
|            | Additional parameters to pass to underlying option functions, <pre>stan_sampling_opts()</pre> or <pre>stan_vb_opts()</pre> , depending on the method |

## Value

A <stan\_opts> object of arguments to pass to the appropriate rstan functions.

### See Also

stan\_sampling\_opts() stan\_vb\_opts()

# Examples

```
# using default of [rstan::sampling()]
stan_opts(samples = 1000)
```

# using vb
stan\_opts(method = "vb")

stan\_pathfinder\_opts Stan pathfinder algorithm Options

# Description

[Experimental] Defines a list specifying the arguments passed to cmdstanr::laplace().

### Usage

```
stan_pathfinder_opts(backend = "cmdstanr", samples = 2000, trials = 10, ...)
```

# Arguments

| backend | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr". |
|---------|----------------------------------------------------------------------------------------------------------------------------------|
| samples | Numeric, defaults to 2000. Number of posterior samples.                                                                          |
| trials  | Numeric, defaults to 10. Number of attempts to use rstan::vb()] before failing.                                                  |
|         | Additional parameters to pass to cmdstanr::laplace().                                                                            |

# Value

A list of arguments to pass to cmdstanr::laplace().

# Examples

stan\_laplace\_opts()

# Description

[Stable] Defines a list specifying the arguments passed to either rstan::sampling() or cmdstanr::sample(). Custom settings can be supplied which override the defaults.

## Usage

```
stan_sampling_opts(
  cores = getOption("mc.cores", 1L),
  warmup = 250,
  samples = 2000,
  chains = 4,
  control = list(),
  save_warmup = FALSE,
  seed = as.integer(runif(1, 1, 1e+08)),
  future = FALSE,
  max_execution_time = Inf,
  backend = c("rstan", "cmdstanr"),
  ...
)
```

## Arguments

| cores       | Number of cores to use when executing the chains in parallel, which defaults to 1 but it is recommended to set the mc.cores option to be as many processors as the hardware and RAM allow (up to the number of chains).               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| warmup      | Numeric, defaults to 250. Number of warmup samples per chain.                                                                                                                                                                         |
| samples     | Numeric, default 2000. Overall number of posterior samples. When using mul-<br>tiple chains iterations per chain is samples / chains.                                                                                                 |
| chains      | Numeric, defaults to 4. Number of MCMC chains to use.                                                                                                                                                                                 |
| control     | List, defaults to empty. control parameters to pass to underlying rstan function.<br>By default adapt_delta = $0.9$ and max_treedepth = 12 though these settings<br>can be overwritten.                                               |
| save_warmup | Logical, defaults to FALSE. Should warmup progress be saved.                                                                                                                                                                          |
| seed        | Numeric, defaults uniform random number between 1 and 1e8. Seed of sam-<br>pling process.                                                                                                                                             |
| future      | Logical, defaults to FALSE. Should stan chains be run in parallel using future.<br>This allows users to have chains fail gracefully (i.e when combined with max_execution_time).<br>Should be combined with a call to future::plan(). |

| max_execution_time |                                                                                                                                                                                                                                                                                                                        |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    | Numeric, defaults to Inf (seconds). If set wil kill off processing of each chain if not finished within the specified timeout. When more than 2 chains finish successfully estimates will still be returned. If less than 2 chains return within the allowed time then estimation will fail with an informative error. |  |
| backend            | Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".                                                                                                                                                                                       |  |
|                    | Additional parameters to pass to rstan::sampling() or cmdstanr::sample().                                                                                                                                                                                                                                              |  |

# Value

A list of arguments to pass to rstan::sampling() or cmdstanr::sample().

## Examples

stan\_sampling\_opts(samples = 2000)

stan\_vb\_opts

Stan Variational Bayes Options

# Description

[Stable] Defines a list specifying the arguments passed to rstan::vb() or cmdstanr::variational(). Custom settings can be supplied which override the defaults.

# Usage

stan\_vb\_opts(samples = 2000, trials = 10, iter = 10000, ...)

# Arguments

| samples | Numeric, default 2000. Overall number of approximate posterior samples.                                   |
|---------|-----------------------------------------------------------------------------------------------------------|
| trials  | Numeric, defaults to 10. Number of attempts to use rstan::vb()] before failing.                           |
| iter    | Numeric, defaulting to 10000. Number of iterations to use in rstan::vb().                                 |
|         | Additional parameters to pass to rstan::vb() or cmdstanr::variational(), depending on the chosen backend. |

## Value

A list of arguments to pass to rstan::vb() or cmdstanr::variational(), depending on the chosen backend.

# Examples

stan\_vb\_opts(samples = 1000)

summary.epinow

# Description

[Stable] summary method for class "epinow".

## Usage

```
## S3 method for class 'epinow'
summary(
   object,
   output = c("estimates", "forecast", "estimated_reported_cases"),
   date = NULL,
   params = NULL,
   ...
)
```

# Arguments

| object | A list of output as produced by "epinow".                                                                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| output | A character string of output to summarise. Defaults to "estimates" but also supports "forecast", and "estimated_reported_cases". |
| date   | A date in the form "yyyy-mm-dd" to inspect estimates for.                                                                        |
| params | A character vector of parameters to filter for.                                                                                  |
|        | Pass additional summary arguments to lower level methods                                                                         |

## Value

Returns a <data.frame> of summary output

# See Also

summary.estimate\_infections epinow

summary.estimate\_infections

Summary output from estimate\_infections

# Description

[Stable] summary method for class "estimate\_infections".

# trunc\_opts

# Usage

```
## S3 method for class 'estimate_infections'
summary(
   object,
   type = c("snapshot", "parameters", "samples"),
   date = NULL,
   params = NULL,
   ...
)
```

## Arguments

| object | A list of output as produced by "estimate_infections".                                                                                                                                                                                                                                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type   | A character vector of data types to return. Defaults to "snapshot" but also supports "parameters", and "samples". "snapshot" return a summary at a given date (by default the latest date informed by data). "parameters" returns summarised parameter estimates that can be further filtered using params to show just the parameters of interest and date. "samples" similarly returns posterior samples. |
| date   | A date in the form "yyyy-mm-dd" to inspect estimates for.                                                                                                                                                                                                                                                                                                                                                   |
| params | A character vector of parameters to filter for.                                                                                                                                                                                                                                                                                                                                                             |
|        | Pass additional arguments to report_summary                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                             |

# Value

Returns a <data.frame> of summary output

# See Also

summary estimate\_infections report\_summary

trunc\_opts

Truncation Distribution Options

# Description

[Stable] Returns a truncation distribution formatted for usage by downstream functions. See estimate\_truncation() for an approach to estimate these distributions.

## Usage

```
trunc_opts(dist = Fixed(0), default_cdf_cutoff = 0.001, weight_prior = FALSE)
```

## Arguments

| dist               | A delay distribution or series of delay distributions reflecting the truncation.<br>It can be specified using the probability distributions interface in EpiNow2 (See ?EpiNow2::Distributions) or estimated using estimate_truncation(), which returns a dist object, suited for use here out-of-box. Default is a fixed distribution with maximum 0, i.e. no truncation. |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| default_cdf_cutoff |                                                                                                                                                                                                                                                                                                                                                                           |
|                    | Numeric; default CDF cutoff to be used if an unconstrained distribution is passed<br>as dist. If dist is already constrained by having a maximum or CDF cutoff this<br>is ignored. Note that this can only be done for <dist_spec> objects with fixed<br/>parameters.</dist_spec>                                                                                         |
| weight_prior       | Logical; if TRUE, the truncation prior will be weighted by the number of ob-<br>servation data points, in doing so approximately placing an independent prior at<br>each time step and usually preventing the posteriors from shifting. If FALSE<br>(default), no weight will be applied, i.e. the truncation distribution will be<br>treated as a single parameter.      |

# Value

A <trunc\_opts> object summarising the input truncation distribution.

## See Also

convert\_to\_logmean() convert\_to\_logsd() bootstrapped\_dist\_fit() Distributions

# Examples

```
# no truncation
trunc_opts()
# truncation dist
trunc_opts(dist = LogNormal(mean = 3, sd = 2, max = 10))
```

update\_secondary\_args Update estimate\_secondary default priors

## Description

[Stable] This functions allows the user to more easily specify data driven or model based priors for estimate\_secondary() from example from previous model fits using a <data.frame> to overwrite other default settings. Note that default settings are still required.

### Usage

```
update_secondary_args(data, priors, verbose = TRUE)
```

# Arguments

| data    | A list of data and arguments as returned by create_stan_data().                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| priors  | A <data.frame> of named priors to be used in model fitting rather than the defaults supplied from other arguments. This is typically useful if wanting to inform a estimate from the posterior of another model fit. Priors that are currently use to update the defaults are the scaling fraction ("frac_obs"), and delay parameters ("delay_params"). The <data.frame> should have the following variables: variable, mean, and sd.</data.frame></data.frame> |
| verbose | Logical, defaults to FALSE. Should verbose progress messages be returned.                                                                                                                                                                                                                                                                                                                                                                                       |

# Value

A list as produced by create\_stan\_data().

# Examples

```
priors <- data.frame(variable = "frac_obs", mean = 3, sd = 1)
data <- list(obs_scale_mean = 4, obs_scale_sd = 3)
update_secondary_args(data, priors)</pre>
```

# Index

```
!=.dist_spec (==.dist_spec), 5
* datasets
    example_confirmed, 36
    example_generation_time, 37
    example_incubation_period, 37
    example_reporting_delay, 38
    example_truncated, 38
+.dist_spec, 4
==.dist_spec, 5
add_breakpoints, 6
apply_zero_threshold, 6
backcalc_opts, 7
backcalc_opts(), 24, 29, 71, 79
bootstrapped_dist_fit, 8
bootstrapped_dist_fit(), 19, 27, 56, 94
bound_dist,9
bound_dist(), 21
c.dist_spec, 10
calc_CrI, 11
calc_CrIs, 11
calc_summary_measures, 12
calc_summary_stats, 13
clean_nowcasts, 13
clean_regions, 14
cmdstanr::cmdstan_model(),27
cmdstanr::laplace(), 87-89
cmdstanr::sample(), 90, 91
cmdstanr::variational(), 91
collapse, 14
convert_to_logmean, 15
convert_to_logmean(), 19, 56, 94
convert_to_logsd, 16
convert_to_logsd(), 19, 56, 94
convolve_and_scale, 16
create_initial_conditions(), 40
```

```
delay_opts, 18
```

delay\_opts(), 24, 29, 32, 47, 71, 78, 85, 87
discretise, 19
discretize(discretise), 19
dist\_fit, 22
Distributions, 19, 20, 94

epinow, 23 epinow(), 10, 15, 16, 30, 34, 36, 40, 46, 64, 70, 72, 78, 79, 82, 84 epinow2\_cmdstan\_model, 26 epinow2\_cmdstan\_model(), 88 estimate\_delay, 27 estimate\_infections, 28 estimate\_infections(), 10, 15, 16, 23, 25, 34, 36, 40, 42, 43, 46, 47, 49, 67, 72, 84 estimate\_secondary, 31 estimate\_secondary(), 16, 17, 42, 49, 50, 80, 81, 94 estimate\_truncation, 34 estimate\_truncation(), 24, 29, 30, 32, 35, 66, 71, 78, 85, 87, 93, 94 example\_confirmed, 36 example\_generation\_time, 37 example\_incubation\_period, 37 example\_reporting\_delay, 38 example\_truncated, 38 expose\_stan\_fns, 39 extract\_CrIs, 39 extract\_CrIs(), 67 extract\_inits, 40 extract\_samples, 41 extract\_stan\_param, 41

fill\_missing, 42
fill\_missing(), 6, 7, 24, 28, 31, 44, 61
filter\_leading\_zeros, 44
filter\_opts, 45
fit\_model(), 41
fix\_parameters, 45

# INDEX

Fixed (Distributions), 20 Fixed(), 56 forecast\_infections, 46 forecast\_infections(), 25, 30 forecast\_opts, 48 forecast\_opts(), 24, 29, 71 forecast\_secondary, 49 future::multicore(), 83 future::multisession(), 83 future::plan(), 46, 83, 90 Gamma (Distributions), 20 Gamma(), 56 generation\_time\_opts (gt\_opts), 55 generation\_time\_opts(), 24, 29, 47, 71, 78, 85 get\_distribution, 50 get\_parameters, 51 get\_pmf, 51 get\_regional\_results, 52 gp\_opts, 53 gp\_opts(), 24, 29, 47, 71, 79 growth\_to\_R, 54 gt\_opts, 55 gt\_opts(), 24, 29, 71, 78, 85 interactive(), 32, 47 is\_constrained, 56 LogNormal (Distributions), 20 LogNormal(), 56 make\_conf, 57 map\_prob\_change, 58 max.dist\_spec, 58 mean.dist\_spec, 59 new\_dist\_spec, 60 NonParametric (Distributions), 20 Normal (Distributions), 20 obs\_opts, 61 obs\_opts(), 24, 29, 32, 47, 71, 79, 85-87 opts\_list, 62 opts\_list(), 62, 70 plot (plot.estimate\_infections), 65 plot(), 66 plot.dist\_spec, 63

plot.epinow, 64

plot.epinow(), 25 plot.estimate\_infections, 65 plot.estimate\_secondary, 65 plot.estimate\_truncation, 66 plot\_CrIs, 67 plot\_estimates, 67 plot\_estimates(), 75 plot\_summary, 69 print.dist\_spec, 69 process\_region(), 79 progressr::handlers(), 70 progressr::progressor(), 79 R\_to\_growth, 80 regional\_epinow, 70 regional\_epinow(), 14-16, 25, 29, 30, 34, 36, 40, 52, 62, 73, 79, 82 regional\_summary, 73 regional\_summary(), 72 report\_plots, 74 report\_plots(), 64, 65 report\_summary, 75 rstan::expose\_stan\_functions(), 39 rstan::extract(), 41 rstan::sampling(), 35, 90, 91 rstan::stan\_model(), 46, 49 rstan::vb(), 91 rt\_opts, 76 rt\_opts(), 24, 29, 47, 62, 71, 79 run\_region, 78 secondary\_opts, 80 secondary\_opts(), 31, 80, 86 setup\_default\_logging, 81 setup\_default\_logging(), 25, 72, 82 setup\_future, 82 setup\_future(), 70, 72 setup\_logging, 83 setup\_logging(), 25, 72, 82 simulate\_infections, 84 simulate\_secondary, 86 simulate\_secondary(), 16, 17 stan\_laplace\_opts, 87 stan\_opts, 88 stan\_opts(), 24, 29, 32, 35, 47, 71, 79 stan\_pathfinder\_opts, 89 stan\_sampling\_opts, 90 stan\_sampling\_opts(), 48, 88, 89 stan\_vb\_opts, 91

# INDEX

stan\_vb\_opts(), 48, 88, 89
summarise\_results(), 69
summary(summary.epinow), 92
summary.epinow, 92
summary.estimate\_infections, 92

trunc\_opts, 93 trunc\_opts(), 24, 29, 32, 35, 47, 71, 78, 85, 87

update\_secondary\_args, 94

98