
Package ‘ERPM’
January 20, 2025

Type Package

Title Exponential Random Partition Models

Version 0.2.0

Date 2024-05-03

Description Simulates and estimates the Exponential Random Partition Model presented
in the paper Hoffman, Block, and Snijders (2023) <doi:10.1177/00811750221145166>.
It can also be used to estimate longitudinal partitions, following the model
proposed in Hoffman and Chabot (2023) <doi:10.1016/j.socnet.2023.04.002>.
The model is an exponential family distribution on the space of partitions
(sets of non-overlapping groups) and is called in reference to the Exponential
Random Graph Models (ERGM) for networks.

License GPL (>= 3)

Depends R (>= 4.2)

Imports numbers, utils, stats, igraph, RColorBrewer, snowfall

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Collate 'erpm-package.R' 'functions_utility.R'
'functions_Metropolis.R' 'functions_burninthining.R'
'functions_change_statistics.R' 'functions_estimate.R'
'functions_exactcalculations.R'
'functions_exchange_algorithm.R' 'functions_loglikelihood.R'
'functions_output.R' 'functions_phase1.R' 'functions_phase2.R'
'functions_phase3.R' 'functions_statistics.R'
'functions_visualisation.R' 'outcomeObjects.R'

URL https://github.com/stocnet/ERPM

BugReports https://github.com/stocnet/ERPM/issues

NeedsCompilation no

1

https://doi.org/10.1177/00811750221145166
https://doi.org/10.1016/j.socnet.2023.04.002
https://github.com/stocnet/ERPM
https://github.com/stocnet/ERPM/issues

2 Contents

Author Marion Hoffman [cre, aut, cph]
(<https://orcid.org/0000-0002-0741-7760>),

Alexandra Amani [aut],
Nico Keiser [aut]

Maintainer Marion Hoffman <marion.hoffman.31@gmail.com>

Repository CRAN

Date/Publication 2024-05-10 17:53:16 UTC

Contents
Bell_constraints . 3
calculate_denominator_Dirichlet_restricted . 4
calculate_proba_Dirichlet_restricted . 4
check_sizes . 5
computeStatistics . 6
computeStatistics_multiple . 6
compute_averagesize . 7
compute_numgroups_denominator . 8
correlation_between . 8
correlation_within . 9
correlation_with_size . 10
count_classes . 10
CUP . 11
draw_Metropolis_multiple . 12
draw_Metropolis_single . 14
estimate_ERPM . 17
estimate_logL . 20
estimate_multipleERPM . 22
exactestimates_numgroups . 25
find_all_partitions . 26
gridsearch_burninthining_multiple . 27
gridsearch_burninthining_single . 28
gridsearch_burnin_single . 29
gridsearch_thining_single . 31
group_size . 32
icc . 33
number_categories . 33
number_ties . 34
order_groupids . 35
outcomeObjects . 35
phase1 . 36
plot_averagesizes . 37
plot_numgroups_likelihood . 37
plot_partition . 38
print.results.bayesian.erpm . 39
print.results.list.erpm . 39
print.results.p3.erpm . 40

https://orcid.org/0000-0002-0741-7760

Bell_constraints 3

proportion_isolate . 40
range_attribute . 41
run_phase1_multiple . 41
run_phase1_single . 43
run_phase2_multiple . 45
run_phase2_single . 47
run_phase3_multiple . 49
run_phase3_single . 50
same_pairs . 52
similar_pairs . 52
simulate_burninthining_multiple . 53
simulate_burninthining_single . 54
simulate_burnin_single . 56
simulate_thining_single . 57
Stirling2_constraints . 58

Index 60

Bell_constraints Function to calculate the number of partitions with groups of sizes
between smin and smax

Description

Function to calculate the number of partitions with groups of sizes between smin and smax

Usage

Bell_constraints(n, smin, smax)

Arguments

n number of nodes

smin minimum group size possible in the partition

smax minimum group size possible in the partition

Value

a numeric

Examples

n <- 6
size_min <- 2
size_max <- 4
Bell_constraints(n,size_min,size_max)

4 calculate_proba_Dirichlet_restricted

calculate_denominator_Dirichlet_restricted

Calculate Dirichlet denominator

Description

Recursive function to calculate the denominator for the model with a single statistic for the number
of groups and a given parameter value. The set of possible partitions can be restricted to partitions
with groups of a certain size.

Usage

calculate_denominator_Dirichlet_restricted(n, smin, smax, alpha, results)

Arguments

n number of nodes

smin minimum size for a group

smax maximum size for a group

alpha parameter value

results a list

Value

a numeric

calculate_proba_Dirichlet_restricted

Calculate Dirichlet probability

Description

Calculate the probability of observing a partition with a given number of groups for a model with a
single statistic for the number of groups and a given parameter value. The set of possible partitions
can be restricted to partitions with groups of a certain size.

Usage

calculate_proba_Dirichlet_restricted(alpha, stat, n, smin, smax)

check_sizes 5

Arguments

alpha parameter value

stat observed stat (number of groups)

n number of nodes

smin minimum size for a group

smax maximum size for a group

Value

a numeric

check_sizes Function to determine whether a partition contains the allowed group
sizes

Description

Function to determine whether a partition contains the allowed group sizes

Usage

check_sizes(partition, sizes.allowed, numgroups.allowed)

Arguments

partition observed partition

sizes.allowed vector containing possible group sizes in the partition

numgroups.allowed

vector containing possible number of groups in the partition

Value

boolean

6 computeStatistics_multiple

computeStatistics Compute Statistics

Description

Function that computes the statistic vector for a given partition and a given model

Usage

computeStatistics(partition, nodes, effects, objects)

Arguments

partition vector, A partition

nodes data frame, Node set

effects list with a vector "names", and a vector "objects", Effects/sufficient statistics

objects list with a vector "name", and a vector "object", Objects used for statistics cal-
culation

Value

the statistics

computeStatistics_multiple

Compute Statistics multiple

Description

Function that computes the statistic vector for given (multiple) partitions and a given model

Usage

computeStatistics_multiple(
partitions,
presence.tables,
nodes,
effects,
objects,
single.obs = NULL

)

compute_averagesize 7

Arguments

partitions Observed partitions

presence.tables

to indicate which nodes were present when

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

single.obs equal NULL by default

Value

A list

compute_averagesize Compute the average size of a random partition

Description

Recursive function to compute the average size of a random partition for a given number of nodes

Usage

compute_averagesize(num.nodes)

Arguments

num.nodes number of nodes

Value

a numeric

Examples

n <- 6
compute_averagesize(n)

8 correlation_between

compute_numgroups_denominator

Compute denominator for model with number of groups

Description

Recursive function to compute the value of the denominator for the model with a single statistic
which is the number of groups

Usage

compute_numgroups_denominator(num.nodes, alpha)

Arguments

num.nodes number of nodes

alpha parameter value

Value

a numeric

correlation_between Between groups correlation

Description

This function computes the correlation between the group averages of the two attributes.

Usage

correlation_between(partition, attribute1, attribute2)

Arguments

partition A partition (vector)

attribute1 A vector containing the values of the first attribute

attribute2 A vector containing the values of the second attribute

Value

A number corresponding to the correlation coefficient

correlation_within 9

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
at2 <- c(3,5,20,2,1,0,0,9,0)
correlation_between(p,at,at2)

correlation_within Within groups correlation

Description

This function computes the correlation between the two attributes for individuals in the same group.

Usage

correlation_within(partition, attribute1, attribute2, group)

Arguments

partition A partition (vector)

attribute1 A vector containing the values of the first attribute

attribute2 A vector containing the values of the second attribute

group A number indicating the selected group

Value

A number corresponding to the correlation coefficient

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
at2 <- c(3,5,20,2,1,0,0,9,0)
correlation_within(p,at,at2,4)

10 count_classes

correlation_with_size Correlation with size

Description

This function computes the correlation between an attribute and the size of the groups.

Usage

correlation_with_size(partition, attribute, categorical)

Arguments

partition A partition (vector)

attribute A vector containing the values of the attribute

categorical A Boolean (True or False) indicating if the attribute is categorical

Value

A number corresponding to the correlation coefficient if the attribute is numerical or the correlation
ratio if the attribute is categorical.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
correlation_with_size(p,at,categorical=FALSE)

count_classes Function to count the number of partitions with a certain group size
structure, for all possible group size structure. Function to use after
calling the "find_all_partitions" function.

Description

Function to count the number of partitions with a certain group size structure, for all possible group
size structure. Function to use after calling the "find_all_partitions" function.

Usage

count_classes(allpartitions)

Arguments

allpartitions matrix containing all possible partitions for a nodeset

CUP 11

Value

integer(number of partitions with different group structures)

Examples

#find partitions first
n <- 6
all_partitions <- find_all_partitions(n)
count classes
counts_partition_classes <- count_classes(all_partitions)

CUP CUP

Description

This function tests a partition statistic against a "conditional uniform partition null hypothesi: It
compares a statistic computed on an observed partition and the same statistic computed on a set of
permuted partition (partitions with the same group structure as the observed partition, with nodes
being permuted).

Usage

CUP(observation, fun, permutations = NULL, num.permutations = 1000)

Arguments

observation A vector giving the observed partition

fun A function used to compute a given partition statistic to be computed

permutations A matrix, whose lines contain partitions which are permutations of the observed
partition. This argument is NULL by default (in that case, the permutations are
created automatically).

num.permutations

An integer indicating the number of permutations to generate, if they are not
already given. 1000 permutations are generated by default.

Details

This test is similar to Conditional Uniform Graph tests in networks (we translate this into Condtional
Uniform Partition tests).

Value

The value of the statistic calculated for the observed partition, the mean value of the statistic among
permuted partitions, the standard deviation of the statistic among permuted partitions, the propor-
tion of permutation below the observed statistic, the proportion of permutation above the observed
statistic, the lower boundary of the 95% CI, the upper boundary of the 95% CI

12 draw_Metropolis_multiple

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(0,1,1,1,1,0,0,0,0)
CUP(p,fun=function(x){same_pairs(x,at,'avg_pergroup')})

draw_Metropolis_multiple

Draw Metropolis multiple

Description

Function to sample the model with a Markov chain (single partition procedure).

Usage

draw_Metropolis_multiple(
theta,
first.partitions,
presence.tables,
nodes,
effects,
objects,
burnin,
thining,
num.steps,
neighborhood = c(0.7, 0.3, 0),
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
return.all.partitions = FALSE,
verbose = FALSE

)

Arguments

theta model parameters
first.partitions

starting partition for the Markov chain
presence.tables

matrix indicating which actors were present for each observations (mandatory)

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

draw_Metropolis_multiple 13

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

num.steps number of samples

neighborhood = c(0.7,0.3,0), way of choosing partitions: probability vector (2 actors swap,
merge/division, single actor move, single pair move, 2 pairs swap, 2 groups
reshuffle)

numgroups.allowed

= NULL, # vector containing the number of groups allowed in the partition (now,
it only works with vectors like num_min:num_max)

numgroups.simulated

= NULL, # vector containing the number of groups simulated

sizes.allowed = NULL, vector of group sizes allowed in sampling (now, it only works for
vectors like size_min:size_max)

sizes.simulated

= NULL, vector of group sizes allowed in the Markov chain but not necessraily
sampled (now, it only works for vectors like size_min:size_max)

return.all.partitions

= FALSE, option to return the sampled partitions on top of their statistics (for
GOF)

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list

Examples

define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A","B","C","D","E","F"),

gender = c(1,1,2,1,2,2),
age = c(20,22,25,30,30,31))

friendship <- matrix(c(0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0), 6, 6, TRUE)

specify whether nodes are present at different points of time
presence.tables <- matrix(c(1, 1, 1, 1, 1, 1,

0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1), 6, 3)

choose effects to be included in the estimated model
effects_multiple <- list(names = c("num_groups","same","diff","tie","inertia_1"),

objects = c("partitions","gender","age","friendship","partitions"),

14 draw_Metropolis_single

objects2 = c("","","","",""))
objects_multiple <- list()
objects_multiple[[1]] <- list(name = "friendship", object = friendship)

set parameter values for each of these effects
parameters <- c(-0.2,0.2,-0.1,0.5,1)

set a starting point for the simulation
first.partitions <- matrix(c(1, 1, 2, 2, 2, 3,

NA, 1, 1, 2, 2, 2,
1, NA, 2, 3, 3, 1), 6, 3)

generate the simulated sample
nsteps <- 50
sample <- draw_Metropolis_multiple(theta = parameters,

first.partitions = first.partitions,
nodes = nodes,
presence.tables = presence.tables,
effects = effects_multiple,
objects = objects_multiple,
burnin = 100,
thining = 100,
num.steps = nsteps,
neighborhood = c(0,1,0),
numgroups.allowed = 1:n,
numgroups.simulated = 1:n,
sizes.allowed = 1:n,
sizes.simulated = 1:n,
return.all.partitions = TRUE)

draw_Metropolis_single

Draw Metropolis single

Description

Function to sample the model with a Markov chain (single partition procedure).

Usage

draw_Metropolis_single(
theta,
first.partition,
nodes,
effects,
objects,

draw_Metropolis_single 15

burnin,
thining,
num.steps,
neighborhood = c(0.7, 0.3, 0),
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
return.all.partitions = FALSE

)

Arguments

theta model parameters

first.partition

starting partition for the Markov chain

nodes nodeset (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

num.steps number of samples

neighborhood = c(0.7,0.3,0), way of choosing partitions: probability vector (2 actors swap,
merge/division, single actor move, single pair move, 2 pairs swap, 2 groups
reshuffle)

numgroups.allowed

= NULL, # vector containing the number of groups allowed in the partition (now,
it only works with vectors like num_min:num_max)

numgroups.simulated

= NULL, # vector containing the number of groups simulated

sizes.allowed = NULL, vector of group sizes allowed in sampling (now, it only works for
vectors like size_min:size_max)

sizes.simulated

= NULL, vector of group sizes allowed in the Markov chain but not necessraily
sampled (now, it only works for vectors like size_min:size_max)

return.all.partitions

= FALSE option to return the sampled partitions on top of their statistics (for
GOF)

Value

A list

16 draw_Metropolis_single

Examples

define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A","B","C","D","E","F"),

gender = c(1,1,2,1,2,2),
age = c(20,22,25,30,30,31))

friendship <- matrix(c(0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0), 6, 6, TRUE)

choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups","same","diff","tie"),
objects = c("partition","gender","age","friendship"))
objects <- list()
objects[[1]] <- list(name = "friendship", object = friendship)

set parameter values for each of these effects
parameters <- c(-0.2, 0.2, -0.1, 0.5)

generate simulated sample, by setting the desired additional parameters for the
Metropolis sampler and choosing a starting point for the chain (first.partition)
nsteps <- 100
sample <- draw_Metropolis_single(theta = parameters,

first.partition = c(1,1,2,2,3,3),
nodes = nodes,
effects = effects,
objects = objects,
burnin = 100,
thining = 10,
num.steps = nsteps,
neighborhood = c(0,1,0),
numgroups.allowed = 1:n,
numgroups.simulated = 1:n,
sizes.allowed = 1:n,
sizes.simulated = 1:n,
return.all.partitions = TRUE)

or: simulate an estimated model
partition <- c(1,1,2,2,2,3) # the partition already defined for the (previous) estimation
nsimulations <- 1000
simulations <- draw_Metropolis_single(theta = estimation$results$est,

first.partition = partition,
nodes = nodes,
effects = effects,
objects = objects,
burnin = 100,
thining = 20,

estimate_ERPM 17

num.steps = nsimulations,
neighborhood = c(0,1,0),
sizes.allowed = 1:n,
sizes.simulated = 1:n,
return.all.partitions = TRUE)

estimate_ERPM Estimate ERPM

Description

Function to estimate a given model for a given observed partition. All options of the algorithm can
be specified here.

Usage

estimate_ERPM(
partition,
nodes,
objects,
effects,
startingestimates,
gainfactor = 0.1,
a.scaling = 0.8,
r.truncation.p1 = -1,
r.truncation.p2 = -1,
burnin = 30,
thining = 10,
length.p1 = 100,
min.iter.p2 = NULL,
max.iter.p2 = NULL,
multiplication.iter.p2 = 100,
num.steps.p2 = 6,
length.p3 = 1000,
neighborhood = c(0.7, 0.3, 0),
fixed.estimates = NULL,
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
double.averaging = FALSE,
inv.zcov = NULL,
inv.scaling = NULL,
parallel = FALSE,
parallel2 = FALSE,
cpus = 1,

18 estimate_ERPM

verbose = FALSE
)

Arguments

partition observed partition

nodes nodeset (data frame)

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")
startingestimates

first guess for the model parameters

gainfactor numeric used to decrease the size of steps made in the Newton optimization

a.scaling numeric used to reduce the influence of non-diagonal elements in the scaling
matrix (for stability)

r.truncation.p1

numeric used to limit extreme values in the covariance matrix (for stability)
r.truncation.p2

numeric used to limit extreme values in the covariance matrix (for stability)

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

length.p1 number of samples in phase 1

min.iter.p2 minimum number of sub-steps in phase 2

max.iter.p2 maximum number of sub-steps in phase 2
multiplication.iter.p2

value for the lengths of sub-steps in phase 2 (multiplied by 2.52^k)

num.steps.p2 number of optimisation steps in phase 2

length.p3 number of samples in phase 3

neighborhood way of choosing partitions: probability vector (actors swap, merge/division, sin-
gle actor move)

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

estimate_ERPM 19

double.averaging

option to average the statistics sampled in each sub-step of phase 2

inv.zcov initial value of the inverted covariance matrix (if a phase 3 was run before) to
bypass the phase 1

inv.scaling initial value of the inverted scaling matrix (if a phase 3 was run before) to bypass
the phase 1

parallel whether the phase 1 and 3 should be parallelized

parallel2 whether there should be several phases 2 run in parallel

cpus how many cores can be used

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list with the outputs of the three different phases of the algorithm

Examples

define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A","B","C","D","E","F"),

gender = c(1,1,2,1,2,2),
age = c(20,22,25,30,30,31))

friendship <- matrix(c(0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0), 6, 6, TRUE)

choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups","same","diff","tie"),

objects = c("partition","gender","age","friendship"))
objects <- list()
objects[[1]] <- list(name = "friendship", object = friendship)

define observed partition
partition <- c(1,1,2,2,2,3)

estimate
startingestimates <- c(-2,0,0,0)
estimation <- estimate_ERPM(partition,

nodes,
objects,
effects,
startingestimates = startingestimates,
burnin = 100,
thining = 20,
length.p1 = 500, # number of samples in phase 1

20 estimate_logL

multiplication.iter.p2 = 20, # iterations in phase 2
num.steps.p2 = 4, # number of phase 2 subphases
length.p3 = 1000) # number of samples in phase 3

get results table
estimation

estimate_logL Estimate log likelihood

Description

Function to estimate the log likelihood of a model for an observed partition

Usage

estimate_logL(
partition,
nodes,
effects,
objects,
theta,
theta_0,
M,
num.steps,
burnin,
thining,
neighborhoods = c(0.7, 0.3, 0),
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
logL_0 = NULL,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partition observed partition

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

estimate_logL 21

theta estimated model parameters

theta_0 model parameters if all other effects than "num-groups" are fixed to 0 (basic
Dirichlet partition model)

M number of steps in the path-sampling algorithm

num.steps number of samples in each step

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

neighborhoods = c(0.7,0.3,0) way of choosing partitions
numgroups.allowed

= NULL, # vector containing the number of groups allowed in the partition (now,
it only works with vectors like num_min:num_max)

numgroups.simulated

= NULL, # vector containing the number of groups simulated

sizes.allowed = NULL, vector of group sizes allowed in sampling (now, it only works for
vectors like size_min:size_max)

sizes.simulated

= NULL, vector of group sizes allowed in the Markov chain but not necessraily
sampled (now, it only works for vectors like size_min:size_max)

logL_0 = NULL, if known, the value of the log likelihood of the basic dirichlet model

parallel = FALSE, indicating whether the code should be run in parallel

cpus = 1, number of cpus required for the parallelization

verbose = FALSE, to print the current step the algorithm is in

Value

List with the log likelihood , AIC, lambda and the draws

Examples

estimate the log-likelihood and AIC of an estimated model (e.g. useful to compare two models)

define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A","B","C","D","E","F"),

gender = c(1,1,2,1,2,2),
age = c(20,22,25,30,30,31))

friendship <- matrix(c(0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0), 6, 6, TRUE)

choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups","same","diff","tie"),
objects = c("partition","gender","age","friendship"))

22 estimate_multipleERPM

objects <- list()
objects[[1]] <- list(name = "friendship", object = friendship)

define observed partition
partition <- c(1,1,2,2,2,3)
(an exemplary estimation is internally stored in order to save time)

first: estimate the ML estimates of a simple model with only one parameter
for number of groups (this parameter should be in the model!)
likelihood_function <- function(x){ exp(x*max(partition)) / compute_numgroups_denominator(n,x)}
curve(likelihood_function, from=-2, to=0)
parameter_base <- optimize(likelihood_function, interval=c(-2, 0), maximum=TRUE)
parameters_basemodel <- c(parameter_base$maximum,0,0,0)

estimate logL and AIC
logL_AIC <- estimate_logL(partition,

nodes,
effects,
objects,
theta = estimation$results$est,
theta_0 = parameters_basemodel,
M = 3,
num.steps = 200,
burnin = 100,
thining = 20)

logL_AIC$logL
logL_AIC$AIC

estimate_multipleERPM Estimate ERPM for multiple observations

Description

Function to estimate a given model for given observed (multiple) partitions. All options of the
algorithm can be specified here.

Usage

estimate_multipleERPM(
partitions,
presence.tables,
nodes,
objects,
effects,
startingestimates,
gainfactor = 0.1,

estimate_multipleERPM 23

a.scaling = 0.8,
r.truncation.p1 = -1,
r.truncation.p2 = -1,
burnin = 30,
thining = 10,
length.p1 = 100,
min.iter.p2 = NULL,
max.iter.p2 = NULL,
multiplication.iter.p2 = 200,
num.steps.p2 = 6,
length.p3 = 1000,
neighborhood = c(0.7, 0.3, 0),
fixed.estimates = NULL,
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
double.averaging = FALSE,
inv.zcov = NULL,
inv.scaling = NULL,
parallel = FALSE,
parallel2 = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partitions observed partitions
presence.tables

XXX

nodes nodeset (data frame)

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")
startingestimates

first guess for the model parameters

gainfactor numeric used to decrease the size of steps made in the Newton optimization

a.scaling numeric used to reduce the influence of non-diagonal elements in the scaling
matrix (for stability)

r.truncation.p1

numeric used to limit extreme values in the covariance matrix (for stability)
r.truncation.p2

numeric used to limit extreme values in the covariance matrix (for stability)

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

24 estimate_multipleERPM

length.p1 number of samples in phase 1

min.iter.p2 minimum number of sub-steps in phase 2

max.iter.p2 maximum number of sub-steps in phase 2
multiplication.iter.p2

value for the lengths of sub-steps in phase 2 (multiplied by 2.52^k)

num.steps.p2 number of optimisation steps in phase 2

length.p3 number of samples in phase 3

neighborhood way of choosing partitions: probability vector (actors swap, merge/division, sin-
gle actor move)

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

double.averaging

option to average the statistics sampled in each sub-step of phase 2

inv.zcov initial value of the inverted covariance matrix (if a phase 3 was run before) to
bypass the phase 1

inv.scaling initial value of the inverted scaling matrix (if a phase 3 was run before) to bypass
the phase 1

parallel whether the phase 1 and 3 should be parallelized

parallel2 whether there should be several phases 2 run in parallel

cpus how many cores can be used

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list with the outputs of the three different phases of the algorithm

Examples

define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A","B","C","D","E","F"),

gender = c(1,1,2,1,2,2),

exactestimates_numgroups 25

age = c(20,22,25,30,30,31))
friendship <- matrix(c(0, 1, 1, 1, 0, 0,

1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0), 6, 6, TRUE)

specify whether nodes are present at different points of time
presence.tables <- matrix(c(1, 1, 1, 1, 1, 1,

0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1), 6, 3)

choose effects to be included in the estimated model
effects_multiple <- list(names = c("num_groups","same","diff","tie","inertia_1"),

objects = c("partitions","gender","age","friendship","partitions"),
objects2 = c("","","","",""))

objects_multiple <- list()
objects_multiple[[1]] <- list(name = "friendship", object = friendship)

define the observation
partitions <- matrix(c(1, 1, 2, 2, 2, 3,

NA, 1, 1, 2, 2, 2,
1, NA, 2, 3, 3, 1), 6, 3)

estimate
startingestimates <- c(-2,0,0,0,0)
estimation <- estimate_multipleERPM(partitions,

presence.tables,
nodes,
objects_multiple,
effects_multiple,
startingestimates = startingestimates,
burnin = 100,
thining = 50,
gainfactor = 0.6,
length.p1 = 200,
multiplication.iter.p2 = 20,
num.steps.p2 = 4,
length.p3 = 1000)

get results table
estimation

exactestimates_numgroups

Exact estimates number of groups

26 find_all_partitions

Description

This function finds the best estimate for a model only including the statistics of number of groups.
It does a grid search for a vector of potential parameters, for all numbers of groups.

Usage

exactestimates_numgroups(num.nodes, pmin, pmax, pinc)

Arguments

num.nodes number of nodes

pmin lowest parameter value

pmax highest parameter value

pinc increment between different parameter values

Value

a list

find_all_partitions Function to enumerate all possible partitions for a given n

Description

Function to enumerate all possible partitions for a given n

Usage

find_all_partitions(n)

Arguments

n number of nodes

Value

matrix where each line corresponds to a possible partition

Examples

n <- 6
all_partitions <- find_all_partitions(n)

gridsearch_burninthining_multiple 27

gridsearch_burninthining_multiple

Grid - search burnin thining multiple

Description

Function that simulates the Markov chain for a given model and several sets of transitions (the
neighborhoods), for multiple partitions. For each neighborhood, it calculates the autocorrelation
of statistics for different thinings and the average statistics for different burn-ins. Then the best
neighborhood can be selected along with good values for burn-in and thining

Usage

gridsearch_burninthining_multiple(
partitions,
presence.tables,
theta,
nodes,
effects,
objects,
num.steps,
neighborhoods,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
max.thining,
parallel = FALSE,
cpus = 1

)

Arguments

partitions Observed partitions
presence.tables

Presence of nodes

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhoods List of probability vectors (proba actors swap, proba merge/division, proba sin-
gle actor move)

28 gridsearch_burninthining_single

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated
sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like

size_min:size_max)
sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

max.thining Where to stop adding thining
parallel False, to run different neighborhoods in parallel
cpus Equal to 1

Value

list

gridsearch_burninthining_single

Grid - search burnin thining single

Description

Function that simulates the Markov chain for a given model and several sets of transitions (the
neighborhoods), for a single partition. For each neighborhood, it calculates the autocorrelation
of statistics for different thinings and the average statistics for different burn-ins. Then the best
neighborhood can be selected along with good values for burn-in and thining

Usage

gridsearch_burninthining_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhoods,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
max.thining,
parallel = FALSE,
cpus = 1

)

gridsearch_burnin_single 29

Arguments

partition A partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhoods List of probability vectors (proba actors swap, proba merge/division, proba sin-
gle actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

max.thining Where to stop adding thining

parallel False, to run different neighborhoods in parallel

cpus Equal to 1

Value

list

gridsearch_burnin_single

Grid - search burnin single

Description

Function that can be used to find a good length for the burn-in of the Markov chain for a given
model and differents sets of transitions in the chain (the neighborhoods). For each neighborhood, it
draws a chain and calculates the mean statistics for different burn-ins.

30 gridsearch_burnin_single

Usage

gridsearch_burnin_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhoods,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
parallel = FALSE,
cpus = 1

)

Arguments

partition A partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhoods List of probability vectors (proba actors swap, proba merge/division, proba sin-
gle actor move)

numgroups.allowed

= NULL, # vector containing the number of groups allowed in the partition (now,
it only works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

parallel False, to run different neighborhoods in parallel

cpus Equal to 1

Value

all simulations

gridsearch_thining_single 31

gridsearch_thining_single

Grid - search thining single

Description

Function that can be used to find a good length for the thining of the Markov chain for a given
model and differents sets of transitions in the chain (the neighborhoods). For each neighborhood, it
draws a chain and calculates the autocorrelation of statistics for different thinings.

Usage

gridsearch_thining_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhoods,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
burnin,
max.thining,
parallel = FALSE,
cpus = 1

)

Arguments

partition A partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhoods List of probability vectors (proba actors swap, proba merge/division, proba sin-
gle actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

32 group_size

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

burnin length of the burn-in period

max.thining maximal value for the thining to be tested

parallel False, to run different neighborhoods in parallel

cpus Equal to 1

Value

all simulations

group_size Statistics on the size of groups in a partition

Description

This function computes the average or the standard deviation of the size of groups in a partition.

Usage

group_size(partition, stat)

Arguments

partition A partition (vector)

stat The statistic to compute : ’avg’ for average and ’sd’ for standard deviation

Value

A number corresponding to the correlation coefficient if the attribute is numerical or the correlation
ratio if the attribute is categorical.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
group_size(p,'avg')
group_size(p,'sd')

icc 33

icc Intra class correlation

Description

This function computes the intra class correlation correlation of attributes for 2 randomly drawn
individuals in the same group.

Usage

icc(partition, attribute)

Arguments

partition A partition
attribute A vector containing the values of the attribute

Value

A number corresponding to the ICC

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
icc(p, at)

number_categories Number of individuals having an attribute

Description

This function computes the total number of individuals being in a category of an attribute in a
partition. It also computes the sum of the proportion in each group of individuals being in a category.

Usage

number_categories(partition, attribute, stat, category)

Arguments

partition A partition (vector)
attribute A vector containing the values of the attribute
stat The statistic to compute : ’avg’ for the sum of proportion per group and ’sum’

for the total number
category The category to consider or category = ’all’ if all categories have to be consid-

ered

34 number_ties

Value

The statisic chosen in stat depending on the value of category. If category = ’all’, returns a vector.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(1,0,0,0,1,1,0,0,1)
number_categories(p,at,'avg','all')

number_ties Same pairs of individuals in a partition

Description

This function computes the number of ties.

Usage

number_ties(partition, dyadic_attribute, stat)

Arguments

partition A partition (vector)

dyadic_attribute

A matrix containing the values of the attribute

stat The statistic to compute : ’avg_pergroup’ for the average per group , ’sum_pergroup’
for the sum, ’sum_perind’ and ’avg_perind’ for the number of ties per individu-
als each individual has in its group.

Value

The statisic chosen in stat

Examples

p <- c(1,2,2,3,3,4)
v <- c(0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
at <- matrix(v,6,6, byrow = TRUE)
number_ties(p,at,'avg_pergroup')

order_groupids 35

order_groupids Function to replace the ids of the group without forgetting an id and
put in the first appearance order for example: [2 1 1 4 2] becomes
[1 2 2 3 1]

Description

Function to replace the ids of the group without forgetting an id and put in the first appearance order
for example: [2 1 1 4 2] becomes [1 2 2 3 1]

Usage

order_groupids(partition)

Arguments

partition observed partition

Value

a vector (partition)

outcomeObjects Exemplary outcome objects for the ERPM Package

Description

These are exemplary outcome objects for the ERPM package and can be used in order not to run all
precedent functions and thus save time. The following products are provided:

Format

estimation An results object created by the function estimate_ERPM().

36 phase1

phase1 Core function for Phase 1

Description

Core function for Phase 1

Usage

phase1(
startingestimates,
inv.zcov,
inv.scaling,
z.phase1,
z.obs,
nodes,
effects,
objects,
r.truncation.p1,
length.p1,
fixed.estimates,
verbose = FALSE

)

Arguments

startingestimates

vector containing initial parameter values

inv.zcov inverted covariance matrix

inv.scaling scaling matrix

z.phase1 statistics retrieved from phase 1

z.obs observed statistics

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

r.truncation.p1

numeric used to limit extreme values in the covariance matrix (for stability)

length.p1 number of samples in phase 1
fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

plot_averagesizes 37

Value

estimated parameters after phase 1

plot_averagesizes Plot average sizes

Description

Function to plot the average size of a random partition depending on the number of nodes

Usage

plot_averagesizes(nmin, nmax, ninc)

Arguments

nmin minimum number of nodes

nmax maximum number of nodes

ninc increment between the different number of nodes

Value

a vector

plot_numgroups_likelihood

Plot likelihood of number groups

Description

Function to plot the log-likelihood of the model with a single statistic (number of groups) depending
on the parameter value for this statistic

Usage

plot_numgroups_likelihood(m.obs, num.nodes, pmin, pmax, pinc)

Arguments

m.obs observed number of groups

num.nodes number of nodes

pmin lowest parameter value

pmax highest parameter value

pinc increment between different parameter values

38 plot_partition

Value

a vector

plot_partition Visualization of partition

Description

This function plot the groups of a partition

Usage

plot_partition(
partition,
title = NULL,
group.color = NULL,
attribute.color = NULL,
attribute.shape = NULL

)

Arguments

partition A partition (vector)

title Character, the title of the plot (default=NULL)

group.color A vector with the colors of the groups (default=NULL)

attribute.color

A vector, attribute to represent with colors (default=NULL)

attribute.shape

A vector, attribute to represent with shapes (default=NULL)

Value

A plot of the partition

Examples

p <- c(1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,4)
attr1 <- c(1,0,0,1,0,0,1,0,1,0,1,1,1,1,1,2)
attr2 <- c(1,1,1,1,0,0,3,0,1,0,1,1,1,1,1,2)
plot_partition(p,attribute.color = attr1, attribute.shape = attr2)

print.results.bayesian.erpm 39

print.results.bayesian.erpm

Print results of bayesian estimation (beta version)

Description

Print results of bayesian estimation (beta version)

Usage

S3 method for class 'results.bayesian.erpm'
print(x, ...)

Arguments

x output of the bayesian estimate function

... For internal use only.

Value

a data frame

print.results.list.erpm

Print estimation results

Description

Print estimation results

Usage

S3 method for class 'results.list.erpm'
print(x, ...)

Arguments

x output of the estimate function

... For internal use only.

Value

a data frame

40 proportion_isolate

print.results.p3.erpm Print results of estimation of phase 3

Description

Print results of estimation of phase 3

Usage

S3 method for class 'results.p3.erpm'
print(x, ...)

Arguments

x output of the estimate function

... For internal use only.

Value

a data frame

proportion_isolate Proportion of isolates

Description

This function computes the proportion of individuals not joining others.

Usage

proportion_isolate(partition)

Arguments

partition A partition (vector)

Value

A number corresponding to proportion of individuals alone.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
proportion_isolate(p)

range_attribute 41

range_attribute Range of attribute in groups

Description

This function computes the sum or the average range of an attribute for groups in a partition.

Usage

range_attribute(partition, attribute, stat)

Arguments

partition A partition (vector)

attribute A vector containing the values of the attribute

stat The statistic to compute : ’avg_pergroup’ for the average per group and ’sum_pergroup’
for the sum of the ranges

Value

The statisic chosen in stat

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
range_attribute(p,at,'avg_pergroup')

run_phase1_multiple Phase 1 wrapper for multiple observations

Description

Phase 1 wrapper for multiple observations

Usage

run_phase1_multiple(
partitions,
startingestimates,
z.obs,
presence.tables,
nodes,
effects,
objects,

42 run_phase1_multiple

burnin,
thining,
gainfactor,
a.scaling,
r.truncation.p1,
length.p1,
neighborhood,
fixed.estimates,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partitions observed partitions
startingestimates

vector containing initial parameter values

z.obs observed statistics
presence.tables

data frame to indicate which times nodes are present in the partition

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

gainfactor gain factor (useless now)

a.scaling scaling factor
r.truncation.p1

truncation factor (for stability)

length.p1 number of samples for phase 1

neighborhood vector for the probability of choosing a particular transition in the chain
fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

run_phase1_single 43

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessarily sampled
(now, it only works for vectors like size_min:size_max)

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

a list

run_phase1_single Phase 1 wrapper for single observation

Description

Phase 1 wrapper for single observation

Usage

run_phase1_single(
partition,
startingestimates,
z.obs,
nodes,
effects,
objects,
burnin,
thining,
gainfactor,
a.scaling,
r.truncation.p1,
length.p1,
neighborhood,
fixed.estimates,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
parallel = TRUE,
cpus = 1,
verbose = FALSE

)

44 run_phase1_single

Arguments

partition observed partition
startingestimates

vector containing initial parameter values

z.obs observed statistics

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

gainfactor gain factor (useless now)

a.scaling scaling factor
r.truncation.p1

truncation factor (for stability)

length.p1 number of samples for phase 1

neighborhood vector for the probability of choosing a particular transition in the chain

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessarily sampled
(now, it only works for vectors like size_min:size_max)

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

a list

run_phase2_multiple 45

run_phase2_multiple Phase 2 wrapper for multiple observation

Description

Phase 2 wrapper for multiple observation

Usage

run_phase2_multiple(
partitions,
estimates.phase1,
inv.zcov,
inv.scaling,
z.obs,
presence.tables,
nodes,
effects,
objects,
burnin,
thining,
num.steps,
gainfactors,
r.truncation.p2,
min.iter,
max.iter,
multiplication.iter,
neighborhood,
fixed.estimates,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
double.averaging,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partitions observed partitions
estimates.phase1

vector containing parameter values after phase 1

inv.zcov inverted covariance matrix

inv.scaling scaling matrix

46 run_phase2_multiple

z.obs observed statistics
presence.tables

data frame to indicate which times nodes are present in the partition

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

num.steps number of sub-phases in phase 2

gainfactors vector of gain factors
r.truncation.p2

truncation factor

min.iter minimum numbers of steps in each subphase

max.iter maximum numbers of steps in each subphase
multiplication.iter

used to calculate min.iter and max.iter if not specified

neighborhood vector for the probability of choosing a particular transition in the chain
fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

double.averaging

boolean to indicate whether we follow the double-averaging procedure (often
leads to better convergence)

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

a list

run_phase2_single 47

run_phase2_single Phase 2 wrapper for single observation

Description

Phase 2 wrapper for single observation

Usage

run_phase2_single(
partition,
estimates.phase1,
inv.zcov,
inv.scaling,
z.obs,
nodes,
effects,
objects,
burnin,
thining,
num.steps,
gainfactors,
r.truncation.p2,
min.iter,
max.iter,
multiplication.iter,
neighborhood,
fixed.estimates,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
double.averaging,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partition observed partition
estimates.phase1

vector containing parameter values after phase 1

inv.zcov inverted covariance matrix

inv.scaling scaling matrix

z.obs observed statistics

48 run_phase2_single

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

num.steps number of sub-phases in phase 2

gainfactors vector of gain factors
r.truncation.p2

truncation factor

min.iter minimum numbers of steps in each subphase

max.iter maximum numbers of steps in each subphase
multiplication.iter

used to calculate min.iter and max.iter if not specified

neighborhood vector for the probability of choosing a particular transition in the chain

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

double.averaging

boolean to indicate whether we follow the double-averaging procedure (often
leads to better convergence)

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

a list

run_phase3_multiple 49

run_phase3_multiple Phase 3 wrapper for multiple observation

Description

Phase 3 wrapper for multiple observation

Usage

run_phase3_multiple(
partitions,
estimates.phase2,
z.obs,
presence.tables,
nodes,
effects,
objects,
burnin,
thining,
a.scaling,
length.p3,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
fixed.estimates,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partitions observed partitions
estimates.phase2

vector containing parameter values after phase 2

z.obs observed statistics
presence.tables

data frame to indicate which times nodes are present in the partition

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

50 run_phase3_single

thining integer for the number of thining steps between sampling

a.scaling multiplicative factor for out-of-diagonal elements of the covariance matrix

length.p3 number of samples in phase 3

neighborhood vector for the probability of choosing a particular transition in the chain
numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

a list

run_phase3_single Phase 3 wrapper for single observation

Description

Phase 3 wrapper for single observation

Usage

run_phase3_single(
partition,
estimates.phase2,
z.obs,
nodes,
effects,
objects,
burnin,
thining,

run_phase3_single 51

a.scaling,
length.p3,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
fixed.estimates,
parallel = FALSE,
cpus = 1,
verbose = FALSE

)

Arguments

partition observed partition
estimates.phase2

vector containing parameter values after phase 2

z.obs observed statistics

nodes node set (data frame)

effects effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects objects used for statistics calculation (list with a vector "name", and a vector
"object")

burnin integer for the number of burn-in steps before sampling

thining integer for the number of thining steps between sampling

a.scaling multiplicative factor for out-of-diagonal elements of the covariance matrix

length.p3 number of sampled partitions in phase 3

neighborhood vector for the probability of choosing a particular transition in the chain
numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

fixed.estimates

if some parameters are fixed, list with as many elements as effects, these ele-
ments equal a fixed value if needed, or NULL if they should be estimated

parallel boolean to indicate whether the code should be run in parallel

cpus number of cpus if parallel = TRUE

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

52 similar_pairs

Value

a list

same_pairs Same pairs of individuals in a partition

Description

This function computes the total number, the average number having the same value of a categorical
variable and the number of individuals a partition.

Usage

same_pairs(partition, attribute, stat)

Arguments

partition A partition (vector)

attribute A vector containing the values of the attribute

stat The statistic to compute : ’avg_pergroup’ for the average, ’sum_pergroup’ for
the sum, ’sum_perind’ and ’avg_perind’ for the number of ties per individual
each individual has in its group.

Value

The statistic chosen in stat

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(0,1,1,1,1,0,0,0,0)
same_pairs(p,at,'avg_pergroup')

similar_pairs Similar pairs of individuals in a partition

Description

This function computes the total number, the average number having the close values of a numerical
variable and the number of individuals a partition.

Usage

similar_pairs(partition, attribute, stat, threshold)

simulate_burninthining_multiple 53

Arguments

partition A partition (vector)

attribute A vector containing the values of the attribute

stat The statistic to compute : ’avg_pergroup’ for the average, ’sum_pergroup’ for
the sum, ’sum_perind’ and ’avg_perind’ for individuals

threshold Threshold to determine if 2 individuals attributes values are close

Value

The statisic chosen in stat

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
similar_pairs(p,at,1,'avg_pergroup')

simulate_burninthining_multiple

Simulate burnin thining multiple

Description

Function that simulates the Markov chain for a given model and a set of transitions (the neighbor-
hood), for multiple partitions. It calculates the autocorrelation of statistics for different thinings and
the average statistics for different burn-ins.

Usage

simulate_burninthining_multiple(
partitions,
presence.tables,
theta,
nodes,
effects,
objects,
num.steps,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
max.thining,
verbose = FALSE

)

54 simulate_burninthining_single

Arguments

partitions Observed partitions

presence.tables

to indicate which nodes were present when

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhood Way of choosing partitions: probability vector (proba actors swap, proba merge/division,
proba single actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

max.thining maximal number of simulated steps in the thining

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list

simulate_burninthining_single

Simulate burnin thining single

Description

Function that simulates the Markov chain for a given model and a set of transitions (the neighbor-
hood), for a single partition. It calculates the autocorrelation of statistics for different thinings and
the average statistics for different burn-ins.

simulate_burninthining_single 55

Usage

simulate_burninthining_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
max.thining,
verbose = FALSE

)

Arguments

partition Observed partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhood Way of choosing partitions: probability vector (proba actors swap, proba merge/division,
proba single actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

max.thining maximal number of simulated steps in the thining

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list

56 simulate_burnin_single

simulate_burnin_single

Simulate burn in single

Description

Function that can be used to find a good length for the burn-in of the Markov chain for a given
model and a given set of transitions in the chain (the neighborhood). It draws a chain and calculates
the mean statistics for different burn-ins.

Usage

simulate_burnin_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated

)

Arguments

partition A partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

neighborhood Way of choosing partitions: probability vector (proba actors swap, proba merge/division,
proba single actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

simulate_thining_single 57

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

Value

A list with list the draws, the moving.means and the moving means smoothed

simulate_thining_single

Simulate thining single

Description

Function that can be used to find a good length for the thining of the Markov chain for a given
model and a set of transitions in the chain (the neighborhood). It draws a chain and calculates the
autocorrelation of statistics for different thinings.

Usage

simulate_thining_single(
partition,
theta,
nodes,
effects,
objects,
num.steps,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
burnin,
max.thining,
verbose = FALSE

)

Arguments

partition A partition (vector)

theta Initial model parameters

nodes Node set (data frame)

effects Effects/sufficient statistics (list with a vector "names", and a vector "objects")

objects Objects used for statistics calculation (list with a vector "name", and a vector
"object")

num.steps Number of samples wanted

58 Stirling2_constraints

neighborhood Way of choosing partitions: probability vector (proba actors swap, proba merge/division,
proba single actor move)

numgroups.allowed

vector containing the number of groups allowed in the partition (now, it only
works with vectors like num_min:num_max)

numgroups.simulated

vector containing the number of groups simulated

sizes.allowed Vector of group sizes allowed in sampling (now, it only works for vectors like
size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled
(now, it only works for vectors like size_min:size_max)

burnin number of simulated steps for the burn-in

max.thining maximal number of simulated steps in the thining

verbose logical: should intermediate results during the estimation be printed or not?
Defaults to FALSE.

Value

A list

Stirling2_constraints Function to calculate the number of partitions with k groups of sizes
between smin and smax

Description

Function to calculate the number of partitions with k groups of sizes between smin and smax

Usage

Stirling2_constraints(n, k, smin, smax)

Arguments

n number of nodes

k number of groups

smin minimum group size possible in the partition

smax maximum group size possible in the partition

Value

a numeric

Stirling2_constraints 59

Examples

n <- 6
k <- 2
size_min <- 2
size_max <- 4
Stirling2_constraints(n,k,size_min,size_max)

Index

∗ datasets
outcomeObjects, 35

Bell_constraints, 3

calculate_denominator_Dirichlet_restricted,
4

calculate_proba_Dirichlet_restricted,
4

check_sizes, 5
compute_averagesize, 7
compute_numgroups_denominator, 8
computeStatistics, 6
computeStatistics_multiple, 6
correlation_between, 8
correlation_with_size, 10
correlation_within, 9
count_classes, 10
CUP, 11

draw_Metropolis_multiple, 12
draw_Metropolis_single, 14

estimate_ERPM, 17
estimate_ERPM(), 35
estimate_logL, 20
estimate_multipleERPM, 22
estimation (outcomeObjects), 35
exactestimates_numgroups, 25

find_all_partitions, 26

gridsearch_burnin_single, 29
gridsearch_burninthining_multiple, 27
gridsearch_burninthining_single, 28
gridsearch_thining_single, 31
group_size, 32

icc, 33

number_categories, 33

number_ties, 34

order_groupids, 35
outcomeObjects, 35

phase1, 36
plot_averagesizes, 37
plot_numgroups_likelihood, 37
plot_partition, 38
print.results.bayesian.erpm, 39
print.results.list.erpm, 39
print.results.p3.erpm, 40
proportion_isolate, 40

range_attribute, 41
run_phase1_multiple, 41
run_phase1_single, 43
run_phase2_multiple, 45
run_phase2_single, 47
run_phase3_multiple, 49
run_phase3_single, 50

same_pairs, 52
similar_pairs, 52
simulate_burnin_single, 56
simulate_burninthining_multiple, 53
simulate_burninthining_single, 54
simulate_thining_single, 57
Stirling2_constraints, 58

60

	Bell_constraints
	calculate_denominator_Dirichlet_restricted
	calculate_proba_Dirichlet_restricted
	check_sizes
	computeStatistics
	computeStatistics_multiple
	compute_averagesize
	compute_numgroups_denominator
	correlation_between
	correlation_within
	correlation_with_size
	count_classes
	CUP
	draw_Metropolis_multiple
	draw_Metropolis_single
	estimate_ERPM
	estimate_logL
	estimate_multipleERPM
	exactestimates_numgroups
	find_all_partitions
	gridsearch_burninthining_multiple
	gridsearch_burninthining_single
	gridsearch_burnin_single
	gridsearch_thining_single
	group_size
	icc
	number_categories
	number_ties
	order_groupids
	outcomeObjects
	phase1
	plot_averagesizes
	plot_numgroups_likelihood
	plot_partition
	print.results.bayesian.erpm
	print.results.list.erpm
	print.results.p3.erpm
	proportion_isolate
	range_attribute
	run_phase1_multiple
	run_phase1_single
	run_phase2_multiple
	run_phase2_single
	run_phase3_multiple
	run_phase3_single
	same_pairs
	similar_pairs
	simulate_burninthining_multiple
	simulate_burninthining_single
	simulate_burnin_single
	simulate_thining_single
	Stirling2_constraints
	Index

