Package 'ERPM'

January 20, 2025

Type Package

Title Exponential Random Partition Models

Version 0.2.0

Date 2024-05-03

Description Simulates and estimates the Exponential Random Partition Model presented in the paper Hoffman, Block, and Snijders (2023) <doi:10.1177/00811750221145166>. It can also be used to estimate longitudinal partitions, following the model proposed in Hoffman and Chabot (2023) <doi:10.1016/j.socnet.2023.04.002>. The model is an exponential family distribution on the space of partitions (sets of non-overlapping groups) and is called in reference to the Exponential Random Graph Models (ERGM) for networks.

License GPL (>= 3)

Depends R (>= 4.2)

Imports numbers, utils, stats, igraph, RColorBrewer, snowfall

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Collate 'erpm-package.R' 'functions_utility.R' 'functions_Metropolis.R' 'functions_burninthining.R' 'functions_change_statistics.R' 'functions_estimate.R' 'functions_exactcalculations.R' 'functions_exchange_algorithm.R' 'functions_loglikelihood.R' 'functions_output.R' 'functions_phase1.R' 'functions_phase2.R' 'functions_phase3.R' 'functions_statistics.R' 'functions_visualisation.R' 'outcomeObjects.R'

URL https://github.com/stocnet/ERPM

BugReports https://github.com/stocnet/ERPM/issues

NeedsCompilation no

Contents

Author Marion Hoffman [cre, aut, cph] (<https://orcid.org/0000-0002-0741-7760>), Alexandra Amani [aut], Nico Keiser [aut]

Maintainer Marion Hoffman <marion.hoffman.31@gmail.com>

Repository CRAN

Date/Publication 2024-05-10 17:53:16 UTC

Contents

Bell_constraints
calculate_denominator_Dirichlet_restricted 4
calculate_proba_Dirichlet_restricted
check_sizes
computeStatistics
computeStatistics_multiple
compute_averagesize
compute_numgroups_denominator
correlation_between
correlation_within
correlation_with_size
count_classes
CUP
draw_Metropolis_multiple
draw_Metropolis_single 14
estimate_ERPM
estimate_logL
estimate_multipleERPM 22
exactestimates_numgroups
find_all_partitions
gridsearch_burninthining_multiple
gridsearch_burninthining_single
gridsearch_burnin_single
gridsearch_thining_single
group_size
icc
number_categories
number_ties
order_groupids
outcomeObjects
phase1
plot_averagesizes
plot_numgroups_likelihood
plot_partition
print.results.bayesian.erpm
print.results.list.erpm
print.results.p3.erpm

Bell_constraints

proportion_isolate	40
range_attribute	41
run_phase1_multiple	41
run_phase1_single	43
run_phase2_multiple	45
run_phase2_single	47
run_phase3_multiple	49
run_phase3_single	50
same_pairs	52
similar_pairs	52
simulate_burninthining_multiple	53
simulate_burninthining_single	54
simulate_burnin_single	56
simulate_thining_single	57
Stirling2_constraints	58
	60

Index

Bell_constraints	Function to calculate the number of partitions with groups of sizes
	between smin and smax

Description

Function to calculate the number of partitions with groups of sizes between smin and smax

Usage

```
Bell_constraints(n, smin, smax)
```

Arguments

n	number of nodes
smin	minimum group size possible in the partition
smax	minimum group size possible in the partition

Value

a numeric

Examples

```
n <- 6
size_min <- 2
size_max <- 4
Bell_constraints(n,size_min,size_max)</pre>
```

calculate_denominator_Dirichlet_restricted Calculate Dirichlet denominator

Description

Recursive function to calculate the denominator for the model with a single statistic for the number of groups and a given parameter value. The set of possible partitions can be restricted to partitions with groups of a certain size.

Usage

calculate_denominator_Dirichlet_restricted(n, smin, smax, alpha, results)

Arguments

n	number of nodes
smin	minimum size for a group
smax	maximum size for a group
alpha	parameter value
results	a list

Value

a numeric

Description

Calculate the probability of observing a partition with a given number of groups for a model with a single statistic for the number of groups and a given parameter value. The set of possible partitions can be restricted to partitions with groups of a certain size.

Usage

```
calculate_proba_Dirichlet_restricted(alpha, stat, n, smin, smax)
```

check_sizes

Arguments

alpha	parameter value
stat	observed stat (number of groups)
n	number of nodes
smin	minimum size for a group
smax	maximum size for a group

Value

a numeric

check_sizes	Function to determine whether a partition contains the allowed group
	sizes

Description

Function to determine whether a partition contains the allowed group sizes

Usage

check_sizes(partition, sizes.allowed, numgroups.allowed)

Arguments

partition	observed partition	
sizes.allowed	vector containing possible group sizes in the partition	
numgroups.allowed		
	vector containing possible number of groups in the partition	

Value

boolean

computeStatistics Compute Statistics

Description

Function that computes the statistic vector for a given partition and a given model

Usage

computeStatistics(partition, nodes, effects, objects)

Arguments

partition	vector, A partition
nodes	data frame, Node set
effects	list with a vector "names", and a vector "objects", Effects/sufficient statistics
objects	list with a vector "name", and a vector "object", Objects used for statistics cal- culation

Value

the statistics

Description

Function that computes the statistic vector for given (multiple) partitions and a given model

Usage

```
computeStatistics_multiple(
  partitions,
  presence.tables,
  nodes,
  effects,
  objects,
  single.obs = NULL
)
```

compute_averagesize

Arguments

partitions	Observed partitions	
presence.tables		
	to indicate which nodes were present when	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
single.obs	equal NULL by default	

Value

A list

compute_averagesize Compute the average size of a random partition

Description

Recursive function to compute the average size of a random partition for a given number of nodes

Usage

```
compute_averagesize(num.nodes)
```

Arguments

num.nodes number of nodes

Value

a numeric

Examples

```
n <- 6
compute_averagesize(n)</pre>
```

compute_numgroups_denominator

Compute denominator for model with number of groups

Description

Recursive function to compute the value of the denominator for the model with a single statistic which is the number of groups

Usage

```
compute_numgroups_denominator(num.nodes, alpha)
```

Arguments

num.nodes	number of nodes
alpha	parameter value

Value

a numeric

correlation_between *Between groups correlation*

Description

This function computes the correlation between the group averages of the two attributes.

Usage

```
correlation_between(partition, attribute1, attribute2)
```

Arguments

partition	A partition (vector)
attribute1	A vector containing the values of the first attribute
attribute2	A vector containing the values of the second attribute

Value

A number corresponding to the correlation coefficient

correlation_within

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
at2 <- c(3,5,20,2,1,0,0,9,0)
correlation_between(p,at,at2)</pre>

correlation_within Within groups correlation

Description

This function computes the correlation between the two attributes for individuals in the same group.

Usage

```
correlation_within(partition, attribute1, attribute2, group)
```

Arguments

partition	A partition (vector)
attribute1	A vector containing the values of the first attribute
attribute2	A vector containing the values of the second attribute
group	A number indicating the selected group

Value

A number corresponding to the correlation coefficient

Examples

p <- c(1,2,2,3,3,4,4,4,5) at <- c(3,5,23,2,1,0,3,9,2) at2 <- c(3,5,20,2,1,0,0,9,0) correlation_within(p,at,at2,4) correlation_with_size Correlation with size

Description

This function computes the correlation between an attribute and the size of the groups.

Usage

```
correlation_with_size(partition, attribute, categorical)
```

Arguments

partition	A partition (vector)
attribute	A vector containing the values of the attribute
categorical	A Boolean (True or False) indicating if the attribute is categorical

Value

A number corresponding to the correlation coefficient if the attribute is numerical or the correlation ratio if the attribute is categorical.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
correlation_with_size(p,at,categorical=FALSE)</pre>

count_classes	Function to count the number of partitions with a certain group size
	structure, for all possible group size structure. Function to use after
	calling the "find_all_partitions" function.

Description

Function to count the number of partitions with a certain group size structure, for all possible group size structure. Function to use after calling the "find_all_partitions" function.

Usage

```
count_classes(allpartitions)
```

Arguments

allpartitions matrix containing all possible partitions for a nodeset

CUP

Value

integer(number of partitions with different group structures)

Examples

```
#find partitions first
n <- 6
all_partitions <- find_all_partitions(n)
# count classes
counts_partition_classes <- count_classes(all_partitions)</pre>
```

CUP

CUP

Description

This function tests a partition statistic against a "conditional uniform partition null hypothesi: It compares a statistic computed on an observed partition and the same statistic computed on a set of permuted partition (partitions with the same group structure as the observed partition, with nodes being permuted).

Usage

```
CUP(observation, fun, permutations = NULL, num.permutations = 1000)
```

Arguments

observation	A vector giving the observed partition
fun	A function used to compute a given partition statistic to be computed
permutations	A matrix, whose lines contain partitions which are permutations of the observed partition. This argument is NULL by default (in that case, the permutations are created automatically).
num.permutations	
	An integer indicating the number of permutations to generate, if they are not

already given. 1000 permutations are generated by default.

Details

This test is similar to Conditional Uniform Graph tests in networks (we translate this into Condtional Uniform Partition tests).

Value

The value of the statistic calculated for the observed partition, the mean value of the statistic among permuted partitions, the standard deviation of the statistic among permuted partitions, the proportion of permutation below the observed statistic, the proportion of permutation above the observed statistic, the lower boundary of the 95% CI, the upper boundary of the 95% CI

Examples

```
p <- c(1,2,2,3,3,4,4,4,5)
at <- c(0,1,1,1,1,0,0,0,0)
CUP(p,fun=function(x){same_pairs(x,at,'avg_pergroup')})</pre>
```

draw_Metropolis_multiple

Draw Metropolis multiple

Description

Function to sample the model with a Markov chain (single partition procedure).

Usage

```
draw_Metropolis_multiple(
  theta,
  first.partitions,
  presence.tables,
  nodes,
  effects,
  objects,
 burnin,
  thining,
  num.steps,
  neighborhood = c(0.7, 0.3, 0),
 numgroups.allowed,
 numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
  return.all.partitions = FALSE,
  verbose = FALSE
)
```

Arguments

theta	model parameters	
first.partition	S	
	starting partition for the Markov chain	
presence.tables		
	matrix indicating which actors were present for each observations (mandatory)	
nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	

burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
num.steps	number of samples	
neighborhood	= $c(0.7,0.3,0)$, way of choosing partitions: probability vector (2 actors swap, merge/division, single actor move, single pair move, 2 pairs swap, 2 groups reshuffle)	
numgroups.allo	wed	
	= NULL, # vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	= NULL, # vector containing the number of groups simulated	
sizes.allowed	= NULL, vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulate	d	
	= NULL, vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
return.all.partitions		
	= FALSE, option to return the sampled partitions on top of their statistics (for GOF)	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

Value

A list

Examples

```
# define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A", "B", "C", "D", "E", "F"),</pre>
                     gender = c(1,1,2,1,2,2),
                     age = c(20,22,25,30,30,31))
friendship <- matrix(c(0, 1, 1, 1, 0, 0,</pre>
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 0, 0,
                        0, 1, 1, 0, 0, 1,
                        0, 0, 0, 0, 1, 0), 6, 6, TRUE)
# specify whether nodes are present at different points of time
presence.tables <- matrix(c(1, 1, 1, 1, 1, 1, 1,</pre>
                             0, 1, 1, 1, 1, 1,
                             1, 0, 1, 1, 1, 1), 6, 3)
# choose effects to be included in the estimated model
effects_multiple <- list(names = c("num_groups","same","diff","tie","inertia_1"),</pre>
                 objects = c("partitions","gender","age","friendship","partitions"),
```

```
objects2 = c("","","","",""))
objects_multiple <- list()</pre>
objects_multiple[[1]] <- list(name = "friendship", object = friendship)</pre>
# set parameter values for each of these effects
parameters <- c(-0.2,0.2,-0.1,0.5,1)
# set a starting point for the simulation
first.partitions <- matrix(c(1, 1, 2, 2, 2, 3,</pre>
                              NA, 1, 1, 2, 2, 2,
                              1, NA, 2, 3, 3, 1), 6, 3)
# generate the simulated sample
nsteps <- 50
sample <- draw_Metropolis_multiple(theta = parameters,</pre>
                                    first.partitions = first.partitions,
                                    nodes = nodes,
                                    presence.tables = presence.tables,
                                    effects = effects_multiple,
                                    objects = objects_multiple,
                                    burnin = 100,
                                    thining = 100,
                                    num.steps = nsteps,
                                    neighborhood = c(0,1,0),
                                    numgroups.allowed = 1:n,
                                    numgroups.simulated = 1:n,
                                    sizes.allowed = 1:n,
                                    sizes.simulated = 1:n,
                                    return.all.partitions = TRUE)
```

draw_Metropolis_single

Draw Metropolis single

Description

Function to sample the model with a Markov chain (single partition procedure).

Usage

```
draw_Metropolis_single(
   theta,
   first.partition,
   nodes,
   effects,
   objects,
```

draw_Metropolis_single

```
burnin,
thining,
num.steps,
neighborhood = c(0.7, 0.3, 0),
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
return.all.partitions = FALSE
)
```

Arguments

theta	model parameters	
first.partitio	n	
	starting partition for the Markov chain	
nodes	nodeset (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
num.steps	number of samples	
neighborhood	= $c(0.7,0.3,0)$, way of choosing partitions: probability vector (2 actors swap, merge/division, single actor move, single pair move, 2 pairs swap, 2 groups reshuffle)	
numgroups.allowed		
	= NULL, # vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simu	lated	
	= NULL, # vector containing the number of groups simulated	
sizes.allowed	= NULL, vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	= NULL, vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
return.all.partitions		
	= FALSE option to return the sampled partitions on top of their statistics (for GOF)	

Value

A list

Examples

```
# define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A", "B", "C", "D", "E", "F"),</pre>
                     gender = c(1,1,2,1,2,2),
                     age = c(20, 22, 25, 30, 30, 31))
friendship <- matrix(c(0, 1, 1, 1, 0, 0,</pre>
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 0, 0,
                        0, 1, 1, 0, 0, 1,
                        0, 0, 0, 0, 1, 0), 6, 6, TRUE)
# choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups", "same", "diff", "tie"),</pre>
objects = c("partition","gender","age","friendship"))
objects <- list()</pre>
objects[[1]] <- list(name = "friendship", object = friendship)</pre>
# set parameter values for each of these effects
parameters <- c(-0.2, 0.2, -0.1, 0.5)
# generate simulated sample, by setting the desired additional parameters for the
# Metropolis sampler and choosing a starting point for the chain (first.partition)
nsteps <- 100
sample <- draw_Metropolis_single(theta = parameters,</pre>
                                  first.partition = c(1,1,2,2,3,3),
                                  nodes = nodes.
                                  effects = effects,
                                  objects = objects,
                                  burnin = 100,
                                  thining = 10,
                                  num.steps = nsteps,
                                  neighborhood = c(0,1,0),
                                  numgroups.allowed = 1:n,
                                  numgroups.simulated = 1:n,
                                  sizes.allowed = 1:n,
                                  sizes.simulated = 1:n,
                                  return.all.partitions = TRUE)
# or: simulate an estimated model
partition <- c(1,1,2,2,2,3) # the partition already defined for the (previous) estimation
nsimulations <- 1000
simulations <- draw_Metropolis_single(theta = estimation$results$est,</pre>
                                       first.partition = partition,
                                       nodes = nodes,
                                       effects = effects,
                                       objects = objects,
                                       burnin = 100,
                                       thining = 20,
```

```
num.steps = nsimulations,
neighborhood = c(0,1,0),
sizes.allowed = 1:n,
sizes.simulated = 1:n,
return.all.partitions = TRUE)
```

estimate_ERPM

Estimate ERPM

Description

Function to estimate a given model for a given observed partition. All options of the algorithm can be specified here.

Usage

```
estimate_ERPM(
  partition,
  nodes,
  objects,
  effects,
  startingestimates,
  gainfactor = 0.1,
  a.scaling = 0.8,
  r.truncation.p1 = -1,
  r.truncation.p2 = -1,
  burnin = 30,
  thining = 10,
  length.p1 = 100,
 min.iter.p2 = NULL,
 max.iter.p2 = NULL,
 multiplication.iter.p2 = 100,
  num.steps.p2 = 6,
  length.p3 = 1000,
  neighborhood = c(0.7, 0.3, 0),
  fixed.estimates = NULL,
  numgroups.allowed = NULL,
  numgroups.simulated = NULL,
  sizes.allowed = NULL,
  sizes.simulated = NULL,
  double.averaging = FALSE,
  inv.zcov = NULL,
  inv.scaling = NULL,
  parallel = FALSE,
  parallel2 = FALSE,
  cpus = 1,
```

```
verbose = FALSE
)
```

Arguments

partition	observed partition
nodes	nodeset (data frame)
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")
startingestimat	es
	first guess for the model parameters
gainfactor	numeric used to decrease the size of steps made in the Newton optimization
a.scaling	numeric used to reduce the influence of non-diagonal elements in the scaling matrix (for stability)
r.truncation.p1	
	numeric used to limit extreme values in the covariance matrix (for stability)
r.truncation.p2	
	numeric used to limit extreme values in the covariance matrix (for stability)
burnin	integer for the number of burn-in steps before sampling
thining	integer for the number of thining steps between sampling
length.p1	number of samples in phase 1
min.iter.p2	minimum number of sub-steps in phase 2
max.iter.p2	maximum number of sub-steps in phase 2
multiplication.	iter.p2
	value for the lengths of sub-steps in phase 2 (multiplied by 2.52 ^k)
num.steps.p2	number of optimisation steps in phase 2
length.p3	number of samples in phase 3
neighborhood	way of choosing partitions: probability vector (actors swap, merge/division, sin- gle actor move)
fixed.estimates	5
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated
numgroups.allow	
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)
numgroups.simul	
	vector containing the number of groups simulated
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)
sizes.simulated	
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)

double.averaging

	option to average the statistics sampled in each sub-step of phase 2
inv.zcov	initial value of the inverted covariance matrix (if a phase 3 was run before) to bypass the phase 1
inv.scaling	initial value of the inverted scaling matrix (if a phase 3 was run before) to bypass the phase 1
parallel	whether the phase 1 and 3 should be parallelized
parallel2	whether there should be several phases 2 run in parallel
cpus	how many cores can be used
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.

Value

A list with the outputs of the three different phases of the algorithm

Examples

```
# define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A", "B", "C", "D", "E", "F"),</pre>
                     gender = c(1,1,2,1,2,2),
                     age = c(20,22,25,30,30,31))
friendship <- matrix(c(0, 1, 1, 1, 0, 0,</pre>
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 1, 0,
                        1, 0, 0, 0, 0, 0,
                        0, 1, 1, 0, 0, 1,
                        0, 0, 0, 0, 1, 0), 6, 6, TRUE)
# choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups","same","diff","tie"),</pre>
                 objects = c("partition","gender","age","friendship"))
objects <- list()</pre>
objects[[1]] <- list(name = "friendship", object = friendship)</pre>
# define observed partition
partition <- c(1,1,2,2,2,3)
# estimate
startingestimates <- c(-2,0,0,0)</pre>
estimation <- estimate_ERPM(partition,</pre>
                              nodes,
                              objects,
                              effects,
                              startingestimates = startingestimates,
                              burnin = 100,
                              thining = 20,
                              length.p1 = 500, # number of samples in phase 1
```

```
multiplication.iter.p2 = 20, # iterations in phase 2
num.steps.p2 = 4, # number of phase 2 subphases
length.p3 = 1000) # number of samples in phase 3
```

get results table
estimation

estimate_logL

Estimate log likelihood

Description

Function to estimate the log likelihood of a model for an observed partition

Usage

```
estimate_logL(
 partition,
  nodes,
  effects,
  objects,
  theta,
  theta_0,
 Μ,
  num.steps,
 burnin,
  thining,
  neighborhoods = c(0.7, 0.3, 0),
  numgroups.allowed = NULL,
  numgroups.simulated = NULL,
  sizes.allowed = NULL,
  sizes.simulated = NULL,
  logL_0 = NULL,
  parallel = FALSE,
  cpus = 1,
  verbose = FALSE
)
```

Arguments

partition	observed partition
nodes	node set (data frame)
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")

theta	estimated model parameters	
theta_0	model parameters if all other effects than "num-groups" are fixed to 0 (basic Dirichlet partition model)	
М	number of steps in the path-sampling algorithm	
num.steps	number of samples in each step	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
neighborhoods	= c(0.7,0.3,0) way of choosing partitions	
numgroups.allo	wed	
	= NULL, # vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	= NULL, # vector containing the number of groups simulated	
sizes.allowed	= NULL, vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulate	d	
	= NULL, vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
logL_0	= NULL, if known, the value of the log likelihood of the basic dirichlet model	
parallel	= FALSE, indicating whether the code should be run in parallel	
cpus	= 1, number of cpus required for the parallelization	
verbose	= FALSE, to print the current step the algorithm is in	

Value

List with the log likelihood, AIC, lambda and the draws

Examples

estimate the log-likelihood and AIC of an estimated model (e.g. useful to compare two models)

```
# choose the effects to be included (see manual for all effect names)
effects <- list(names = c("num_groups","same","diff","tie"),
objects = c("partition","gender","age","friendship"))</pre>
```

```
effects,
objects,
theta = estimation$results$est,
theta_0 = parameters_basemodel,
M = 3,
num.steps = 200,
burnin = 100,
thining = 20)
logL_AIC$logL
logL_AIC$AIC
```

estimate_multipleERPM Estimate ERPM for multiple observations

Description

Function to estimate a given model for given observed (multiple) partitions. All options of the algorithm can be specified here.

Usage

```
estimate_multipleERPM(
   partitions,
   presence.tables,
   nodes,
   objects,
   effects,
   startingestimates,
   gainfactor = 0.1,
```

```
a.scaling = 0.8,
r.truncation.p1 = -1,
r.truncation.p2 = -1,
burnin = 30,
thining = 10,
length.p1 = 100,
min.iter.p2 = NULL,
max.iter.p2 = NULL,
multiplication.iter.p2 = 200,
num.steps.p2 = 6,
length.p3 = 1000,
neighborhood = c(0.7, 0.3, 0),
fixed.estimates = NULL,
numgroups.allowed = NULL,
numgroups.simulated = NULL,
sizes.allowed = NULL,
sizes.simulated = NULL,
double.averaging = FALSE,
inv.zcov = NULL,
inv.scaling = NULL,
parallel = FALSE,
parallel2 = FALSE,
cpus = 1,
verbose = FALSE
```

Arguments

)

observed partitions		
presence.tables		
XXX		
nodeset (data frame)		
objects used for statistics calculation (list with a vector "name", and a vector "object")		
effects/sufficient statistics (list with a vector "names", and a vector "objects")		
es		
first guess for the model parameters		
numeric used to decrease the size of steps made in the Newton optimization		
numeric used to reduce the influence of non-diagonal elements in the scaling matrix (for stability)		
r.truncation.p1		
numeric used to limit extreme values in the covariance matrix (for stability)		
r.truncation.p2		
numeric used to limit extreme values in the covariance matrix (for stability)		
integer for the number of burn-in steps before sampling		
integer for the number of thining steps between sampling		

length.p1	number of samples in phase 1	
min.iter.p2	minimum number of sub-steps in phase 2	
max.iter.p2	maximum number of sub-steps in phase 2	
multiplication	.iter.p2	
	value for the lengths of sub-steps in phase 2 (multiplied by 2.52 ^k)	
num.steps.p2	number of optimisation steps in phase 2	
length.p3	number of samples in phase 3	
neighborhood	way of choosing partitions: probability vector (actors swap, merge/division, sin- gle actor move)	
fixed.estimates	5	
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
numgroups.allow		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simu]		
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated	-	
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
double.averagin	ng	
	option to average the statistics sampled in each sub-step of phase 2	
inv.zcov	initial value of the inverted covariance matrix (if a phase 3 was run before) to bypass the phase 1	
inv.scaling	initial value of the inverted scaling matrix (if a phase 3 was run before) to bypass the phase 1	
parallel	whether the phase 1 and 3 should be parallelized	
parallel2	whether there should be several phases 2 run in parallel	
cpus	how many cores can be used	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

Value

A list with the outputs of the three different phases of the algorithm

Examples

```
# define an arbitrary set of n = 6 nodes with attributes, and an arbitrary covariate matrix
n <- 6
nodes <- data.frame(label = c("A", "B", "C", "D", "E", "F"),
gender = c(1,1,2,1,2,2),
```

```
age = c(20, 22, 25, 30, 30, 31))
friendship <- matrix(c(0, 1, 1, 1, 0, 0,</pre>
                         1, 0, 0, 0, 1, 0,
                         1, 0, 0, 0, 1, 0,
                         1, 0, 0, 0, 0, 0,
                         0, 1, 1, 0, 0, 1,
                         0, 0, 0, 0, 1, 0), 6, 6, TRUE)
# specify whether nodes are present at different points of time
presence.tables <- matrix(c(1, 1, 1, 1, 1, 1, 1,</pre>
                              0, 1, 1, 1, 1, 1,
                              1, 0, 1, 1, 1, 1), 6, 3)
# choose effects to be included in the estimated model
effects_multiple <- list(names = c("num_groups","same","diff","tie","inertia_1"),</pre>
                 objects = c("partitions","gender","age","friendship","partitions"),
objects2 = c("","","","",""))
objects_multiple <- list()</pre>
objects_multiple[[1]] <- list(name = "friendship", object = friendship)</pre>
# define the observation
partitions <- matrix(c(1, 1, 2, 2, 2, 3,</pre>
                         NA, 1, 1, 2, 2, 2,
                         1, NA, 2, 3, 3, 1), 6, 3)
# estimate
startingestimates <- c(-2,0,0,0,0)</pre>
estimation <- estimate_multipleERPM(partitions,</pre>
                                       presence.tables,
                                       nodes,
                                       objects_multiple,
                                       effects_multiple,
                                       startingestimates = startingestimates,
                                       burnin = 100,
                                       thining = 50,
                                       gainfactor = 0.6,
                                       length.p1 = 200,
                                       multiplication.iter.p2 = 20,
                                       num.steps.p2 = 4,
                                       length.p3 = 1000)
# get results table
estimation
```

exactestimates_numgroups

Exact estimates number of groups

Description

This function finds the best estimate for a model only including the statistics of number of groups. It does a grid search for a vector of potential parameters, for all numbers of groups.

Usage

exactestimates_numgroups(num.nodes, pmin, pmax, pinc)

Arguments

num.nodes	number of nodes
pmin	lowest parameter value
pmax	highest parameter value
pinc	increment between different parameter values

Value

a list

find_all_partitions Function to enumerate all possible partitions for a given n

Description

Function to enumerate all possible partitions for a given n

Usage

```
find_all_partitions(n)
```

Arguments

n number of nodes

Value

matrix where each line corresponds to a possible partition

Examples

```
n <- 6
all_partitions <- find_all_partitions(n)</pre>
```

gridsearch_burninthining_multiple Grid - search burnin thining multiple

Description

Function that simulates the Markov chain for a given model and several sets of transitions (the neighborhoods), for multiple partitions. For each neighborhood, it calculates the autocorrelation of statistics for different thinings and the average statistics for different burn-ins. Then the best neighborhood can be selected along with good values for burn-in and thining

Usage

```
gridsearch_burninthining_multiple(
 partitions,
 presence.tables,
  theta,
  nodes,
 effects,
 objects,
  num.steps,
  neighborhoods,
  numgroups.allowed,
 numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
 max.thining,
 parallel = FALSE,
  cpus = 1
)
```

Arguments

partitions	Observed partitions	
presence.tables		
	Presence of nodes	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhoods	List of probability vectors (proba actors swap, proba merge/division, proba sin- gle actor move)	

numgroups.allow	ved	
	vector containing the number of groups allowed in the partition (now, it only	
	works with vectors like num_min:num_max)	
numgroups.simu]	ated	
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
max.thining	Where to stop adding thining	
parallel	False, to run different neighborhoods in parallel	
cpus	Equal to 1	

Value

list

gridsearch_burninthining_single Grid - search burnin thining single

Description

Function that simulates the Markov chain for a given model and several sets of transitions (the neighborhoods), for a single partition. For each neighborhood, it calculates the autocorrelation of statistics for different thinings and the average statistics for different burn-ins. Then the best neighborhood can be selected along with good values for burn-in and thining

Usage

```
gridsearch_burninthining_single(
 partition,
  theta,
 nodes,
 effects,
 objects,
  num.steps,
 neighborhoods,
 numgroups.allowed,
 numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
 max.thining,
 parallel = FALSE,
  cpus = 1
)
```

Arguments

partition	A partition (vector)	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhoods	List of probability vectors (proba actors swap, proba merge/division, proba sin- gle actor move)	
numgroups.allowed		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated	t de la constante de	
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
max.thining	Where to stop adding thining	
parallel	False, to run different neighborhoods in parallel	
cpus	Equal to 1	

Value

list

gridsearch_burnin_single

Grid - search burnin single

Description

Function that can be used to find a good length for the burn-in of the Markov chain for a given model and differents sets of transitions in the chain (the neighborhoods). For each neighborhood, it draws a chain and calculates the mean statistics for different burn-ins.

Usage

```
gridsearch_burnin_single(
  partition,
  theta,
  nodes,
  effects,
  objects,
  num.steps,
  neighborhoods,
  numgroups.allowed,
  numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
  parallel = FALSE,
  cpus = 1
```

)

Arguments

partition	A partition (vector)	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhoods	List of probability vectors (proba actors swap, proba merge/division, proba single actor move)	
numgroups.allowed		
	= NULL, # vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
parallel	False, to run different neighborhoods in parallel	
cpus	Equal to 1	

Value

all simulations

gridsearch_thining_single

Grid - search thining single

Description

Function that can be used to find a good length for the thining of the Markov chain for a given model and differents sets of transitions in the chain (the neighborhoods). For each neighborhood, it draws a chain and calculates the autocorrelation of statistics for different thinings.

Usage

```
gridsearch_thining_single(
  partition,
  theta,
  nodes,
 effects,
  objects,
 num.steps,
  neighborhoods,
  numgroups.allowed,
  numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
  burnin,
 max.thining,
 parallel = FALSE,
  cpus = 1
)
```

Arguments

partition	A partition (vector)	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhoods	List of probability vectors (proba actors swap, proba merge/division, proba single actor move)	
numgroups.allowed		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	

numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
burnin	length of the burn-in period	
max.thining	maximal value for the thining to be tested	
parallel	False, to run different neighborhoods in parallel	
cpus	Equal to 1	

Value

all simulations

group_size	Statistics on the size of groups in a partition
------------	---

Description

This function computes the average or the standard deviation of the size of groups in a partition.

Usage

group_size(partition, stat)

Arguments

partition	A partition (vector)
stat	The statistic to compute : 'avg' for average and 'sd' for standard deviation

Value

A number corresponding to the correlation coefficient if the attribute is numerical or the correlation ratio if the attribute is categorical.

Examples

```
p <- c(1,2,2,3,3,4,4,4,5)
group_size(p,'avg')
group_size(p,'sd')</pre>
```

icc

Description

This function computes the intra class correlation correlation of attributes for 2 randomly drawn individuals in the same group.

Usage

```
icc(partition, attribute)
```

Arguments

partition	A partition
attribute	A vector containing the values of the attribute

Value

A number corresponding to the ICC

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
icc(p, at)</pre>

number_categories Number of individuals having an attribute

Description

This function computes the total number of individuals being in a category of an attribute in a partition. It also computes the sum of the proportion in each group of individuals being in a category.

Usage

```
number_categories(partition, attribute, stat, category)
```

Arguments

partition	A partition (vector)
attribute	A vector containing the values of the attribute
stat	The statistic to compute : 'avg' for the sum of proportion per group and 'sum' for the total number
category	The category to consider or category = 'all' if all categories have to be considered

Value

The statisic chosen in stat depending on the value of category. If category = 'all', returns a vector.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(1,0,0,0,1,1,0,0,1)
number_categories(p,at,'avg','all')</pre>

number_ties

Same pairs of individuals in a partition

Description

This function computes the number of ties.

Usage

number_ties(partition, dyadic_attribute, stat)

Arguments

partition	A partition (vector)
dyadic_attribute	
	A matrix containing the values of the attribute
stat	The statistic to compute : 'avg_pergroup' for the average per group, 'sum_pergroup' for the sum, 'sum_perind' and 'avg_perind' for the number of ties per individual als each individual has in its group.

Value

The statisic chosen in stat

Examples

order_groupids Function to replace the ids of the group without forgetting an id and put in the first appearance order for example: [2 1 1 4 2] becomes [1 2 2 3 1]

Description

Function to replace the ids of the group without forgetting an id and put in the first appearance order for example: [2 1 1 4 2] becomes [1 2 2 3 1]

Usage

order_groupids(partition)

Arguments

partition observed partition

Value

a vector (partition)

outcomeObjects

Exemplary outcome objects for the ERPM Package

Description

These are exemplary outcome objects for the ERPM package and can be used in order not to run all precedent functions and thus save time. The following products are provided:

Format

estimation An results object created by the function estimate_ERPM().

phase1

Description

Core function for Phase 1

Usage

```
phase1(
   startingestimates,
   inv.zcov,
   inv.scaling,
   z.phase1,
   z.obs,
   nodes,
   effects,
   objects,
   r.truncation.p1,
   length.p1,
   fixed.estimates,
   verbose = FALSE
)
```

Arguments

startingestimates

vector containing initial parameter values	
inverted covariance matrix	
scaling matrix	
statistics retrieved from phase 1	
observed statistics	
node set (data frame)	
effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects used for statistics calculation (list with a vector "name", and a vector "object")	
r.truncation.p1	
numeric used to limit extreme values in the covariance matrix (for stability)	
number of samples in phase 1	
fixed.estimates	
if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	
plot_averagesizes

Value

estimated parameters after phase 1

plot_averagesizes Plot average sizes

Description

Function to plot the average size of a random partition depending on the number of nodes

Usage

plot_averagesizes(nmin, nmax, ninc)

Arguments

nmin	minimum number of nodes
nmax	maximum number of nodes
ninc	increment between the different number of nodes

Value

a vector

```
plot_numgroups_likelihood
```

Plot likelihood of number groups

Description

Function to plot the log-likelihood of the model with a single statistic (number of groups) depending on the parameter value for this statistic

Usage

```
plot_numgroups_likelihood(m.obs, num.nodes, pmin, pmax, pinc)
```

m.obs	observed number of groups
num.nodes	number of nodes
pmin	lowest parameter value
pmax	highest parameter value
pinc	increment between different parameter values

a vector

plot_partition Visualization of partition

Description

This function plot the groups of a partition

Usage

```
plot_partition(
   partition,
   title = NULL,
   group.color = NULL,
   attribute.color = NULL,
   attribute.shape = NULL
)
```

Arguments

pai	rtition	A partition (vector)
ti	tle	Character, the title of the plot (default=NULL)
gro	oup.color	A vector with the colors of the groups (default=NULL)
at	tribute.colo	r
		A vector, attribute to represent with colors (default=NULL)
at	tribute.shape	2
		A vector, attribute to represent with shapes (default=NULL)

Value

A plot of the partition

Examples

```
p <- c(1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,4)
attr1 <- c(1,0,0,1,0,0,1,0,1,0,1,1,1,1,1,2)
attr2 <- c(1,1,1,1,0,0,3,0,1,0,1,1,1,1,1,2)
plot_partition(p,attribute.color = attr1, attribute.shape = attr2)</pre>
```

38

print.results.bayesian.erpm

Print results of bayesian estimation (beta version)

Description

Print results of bayesian estimation (beta version)

Usage

```
## S3 method for class 'results.bayesian.erpm'
print(x, ...)
```

Arguments

х	output of the bayesian estimate function
	For internal use only.

Value

a data frame

print.results.list.erpm

Print estimation results

Description

Print estimation results

Usage

```
## S3 method for class 'results.list.erpm'
print(x, ...)
```

Arguments

х	output of the estimate function
	For internal use only.

Value

a data frame

print.results.p3.erpm Print results of estimation of phase 3

Description

Print results of estimation of phase 3

Usage

```
## S3 method for class 'results.p3.erpm'
print(x, ...)
```

Arguments

Х	output of the estimate function
	For internal use only.

Value

a data frame

proportion_isolate Proportion of isolates

Description

This function computes the proportion of individuals not joining others.

Usage

```
proportion_isolate(partition)
```

Arguments

partition A partition (vector)

Value

A number corresponding to proportion of individuals alone.

Examples

p <- c(1,2,2,3,3,4,4,4,5)
proportion_isolate(p)</pre>

range_attribute Range of attribute in groups

Description

This function computes the sum or the average range of an attribute for groups in a partition.

Usage

range_attribute(partition, attribute, stat)

Arguments

partition	A partition (vector)
attribute	A vector containing the values of the attribute
stat	The statistic to compute : 'avg_pergroup' for the average per group and 'sum_pergroup' for the sum of the ranges

Value

The statisic chosen in stat

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
range_attribute(p,at,'avg_pergroup')</pre>

run_phase1_multiple Phase 1 wrapper for multiple observations

Description

Phase 1 wrapper for multiple observations

```
run_phase1_multiple(
   partitions,
   startingestimates,
   z.obs,
   presence.tables,
   nodes,
   effects,
   objects,
```

```
burnin,
thining,
gainfactor,
a.scaling,
r.truncation.p1,
length.p1,
neighborhood,
fixed.estimates,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
parallel = FALSE,
cpus = 1,
verbose = FALSE
```

)

partitions	observed partitions	
startingestimates		
	vector containing initial parameter values	
z.obs	observed statistics	
presence.table		
	data frame to indicate which times nodes are present in the partition	
nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
gainfactor	gain factor (useless now)	
a.scaling	scaling factor	
r.truncation.p1		
	truncation factor (for stability)	
length.p1	number of samples for phase 1	
neighborhood	vector for the probability of choosing a particular transition in the chain	
fixed.estimates		
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
numgroups.allowed		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simu	lated	
	vector containing the number of groups simulated	

42

vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)
vector of group sizes allowed in the Markov chain but not necessarily sampled (now, it only works for vectors like size_min:size_max)
boolean to indicate whether the code should be run in parallel
number of cpus if parallel = TRUE
logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.

a list

run_phase1_single Phase 1 wrapper for single observation

Description

Phase 1 wrapper for single observation

```
run_phase1_single(
  partition,
  startingestimates,
 z.obs,
 nodes,
 effects,
 objects,
 burnin,
  thining,
  gainfactor,
 a.scaling,
  r.truncation.p1,
  length.p1,
  neighborhood,
  fixed.estimates,
  numgroups.allowed,
  numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
 parallel = TRUE,
 cpus = 1,
  verbose = FALSE
)
```

partition	observed partition	
startingestima	tes	
	vector containing initial parameter values	
z.obs	observed statistics	
nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
gainfactor	gain factor (useless now)	
a.scaling	scaling factor	
r.truncation.p	1	
	truncation factor (for stability)	
length.p1	number of samples for phase 1	
neighborhood	vector for the probability of choosing a particular transition in the chain	
fixed.estimate	S	
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
numgroups.allo	wed	
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	vector of group sizes allowed in the Markov chain but not necessarily sampled (now, it only works for vectors like size_min:size_max)	
parallel	boolean to indicate whether the code should be run in parallel	
cpus	number of cpus if parallel = TRUE	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

Value

a list

run_phase2_multiple Phase 2 wrapper for multiple observation

Description

Phase 2 wrapper for multiple observation

Usage

```
run_phase2_multiple(
  partitions,
 estimates.phase1,
  inv.zcov,
  inv.scaling,
  z.obs,
 presence.tables,
 nodes,
 effects,
 objects,
 burnin,
  thining,
 num.steps,
 gainfactors,
 r.truncation.p2,
 min.iter,
 max.iter,
 multiplication.iter,
 neighborhood,
  fixed.estimates,
  numgroups.allowed,
  numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
  double.averaging,
 parallel = FALSE,
  cpus = 1,
  verbose = FALSE
)
```

partitions	observed partitions	
estimates.phase1		
	vector containing parameter values after phase 1	
inv.zcov	inverted covariance matrix	
inv.scaling	scaling matrix	

<pre>z.obs presence.tables</pre>	observed statistics les	
	data frame to indicate which times nodes are present in the partition	
nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
num.steps	number of sub-phases in phase 2	
gainfactors	vector of gain factors	
r.truncation.p2		
	truncation factor	
min.iter	minimum numbers of steps in each subphase	
max.iter	maximum numbers of steps in each subphase	
multiplication.		
	used to calculate min.iter and max.iter if not specified	
neighborhood	vector for the probability of choosing a particular transition in the chain	
fixed.estimates		
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
numgroups.allow		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simul		
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
double.averagin	-	
	boolean to indicate whether we follow the double-averaging procedure (often leads to better convergence)	
parallel	boolean to indicate whether the code should be run in parallel	
cpus	number of cpus if parallel = TRUE	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

a list

Description

Phase 2 wrapper for single observation

Usage

```
run_phase2_single(
  partition,
 estimates.phase1,
  inv.zcov,
  inv.scaling,
  z.obs,
 nodes,
 effects,
 objects,
 burnin,
  thining,
 num.steps,
 gainfactors,
  r.truncation.p2,
 min.iter,
 max.iter,
 multiplication.iter,
 neighborhood,
  fixed.estimates,
  numgroups.allowed,
 numgroups.simulated,
 sizes.allowed,
  sizes.simulated,
 double.averaging,
 parallel = FALSE,
 cpus = 1,
  verbose = FALSE
)
```

partition	observed partition
estimates.phase	21
	vector containing parameter values after phase 1
inv.zcov	inverted covariance matrix
inv.scaling	scaling matrix
z.obs	observed statistics

nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
num.steps	number of sub-phases in phase 2	
gainfactors	vector of gain factors	
r.truncation.p	2	
	truncation factor	
min.iter	minimum numbers of steps in each subphase	
max.iter	maximum numbers of steps in each subphase	
multiplication	.iter	
	used to calculate min.iter and max.iter if not specified	
neighborhood	vector for the probability of choosing a particular transition in the chain	
fixed.estimate	S	
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
numgroups.allo		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simu	lated	
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
double.averagi	ng	
	boolean to indicate whether we follow the double-averaging procedure (often leads to better convergence)	
parallel	boolean to indicate whether the code should be run in parallel	
cpus	number of cpus if parallel = TRUE	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

a list

run_phase3_multiple Phase 3 wrapper for multiple observation

Description

Phase 3 wrapper for multiple observation

Usage

```
run_phase3_multiple(
 partitions,
 estimates.phase2,
 z.obs,
 presence.tables,
 nodes,
 effects,
 objects,
 burnin,
  thining,
  a.scaling,
  length.p3,
  neighborhood,
 numgroups.allowed,
 numgroups.simulated,
 sizes.allowed,
  sizes.simulated,
 fixed.estimates,
 parallel = FALSE,
 cpus = 1,
  verbose = FALSE
)
```

partitions	observed partitions
estimates.phase	2
	vector containing parameter values after phase 2
z.obs	observed statistics
presence.tables	
	data frame to indicate which times nodes are present in the partition
nodes	node set (data frame)
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")
burnin	integer for the number of burn-in steps before sampling

thining	integer for the number of thining steps between sampling	
a.scaling	multiplicative factor for out-of-diagonal elements of the covariance matrix	
length.p3	number of samples in phase 3	
neighborhood	vector for the probability of choosing a particular transition in the chain	
numgroups.allo	wed	
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simu	lated	
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
fixed.estimates		
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
parallel	boolean to indicate whether the code should be run in parallel	
cpus	number of cpus if parallel = TRUE	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

a list

run_phase3_single Phase 3 wrapper for single observation

Description

Phase 3 wrapper for single observation

```
run_phase3_single(
   partition,
   estimates.phase2,
   z.obs,
   nodes,
   effects,
   objects,
   burnin,
   thining,
```

```
a.scaling,
length.p3,
neighborhood,
numgroups.allowed,
numgroups.simulated,
sizes.allowed,
sizes.simulated,
fixed.estimates,
parallel = FALSE,
cpus = 1,
verbose = FALSE
```

partition	observed partition	
estimates.phas	e2	
	vector containing parameter values after phase 2	
z.obs	observed statistics	
nodes	node set (data frame)	
effects	effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	objects used for statistics calculation (list with a vector "name", and a vector "object")	
burnin	integer for the number of burn-in steps before sampling	
thining	integer for the number of thining steps between sampling	
a.scaling	multiplicative factor for out-of-diagonal elements of the covariance matrix	
length.p3	number of sampled partitions in phase 3	
neighborhood	vector for the probability of choosing a particular transition in the chain	
numgroups.allo		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulate	d	
	vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
fixed.estimates		
	if some parameters are fixed, list with as many elements as effects, these ele- ments equal a fixed value if needed, or NULL if they should be estimated	
parallel	boolean to indicate whether the code should be run in parallel	
cpus	number of cpus if parallel = TRUE	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

a list

same_pairs Sam

Same pairs of individuals in a partition

Description

This function computes the total number, the average number having the same value of a categorical variable and the number of individuals a partition.

Usage

```
same_pairs(partition, attribute, stat)
```

Arguments

partition	A partition (vector)
attribute	A vector containing the values of the attribute
stat	The statistic to compute : 'avg_pergroup' for the average, 'sum_pergroup' for the sum, 'sum_perind' and 'avg_perind' for the number of ties per individual each individual has in its group.

Value

The statistic chosen in stat

Examples

```
p <- c(1,2,2,3,3,4,4,4,5)
at <- c(0,1,1,1,1,0,0,0,0)
same_pairs(p,at,'avg_pergroup')</pre>
```

similar_pairs Similar pairs of individuals in a partition

Description

This function computes the total number, the average number having the close values of a numerical variable and the number of individuals a partition.

```
similar_pairs(partition, attribute, stat, threshold)
```

partition	A partition (vector)
attribute	A vector containing the values of the attribute
stat	The statistic to compute : 'avg_pergroup' for the average, 'sum_pergroup' for the sum, 'sum_perind' and 'avg_perind' for individuals
threshold	Threshold to determine if 2 individuals attributes values are close

Value

The statisic chosen in stat

Examples

p <- c(1,2,2,3,3,4,4,4,5)
at <- c(3,5,23,2,1,0,3,9,2)
similar_pairs(p,at,1,'avg_pergroup')</pre>

simulate_burninthining_multiple
 Simulate burnin thining multiple

Description

Function that simulates the Markov chain for a given model and a set of transitions (the neighborhood), for multiple partitions. It calculates the autocorrelation of statistics for different thinings and the average statistics for different burn-ins.

```
simulate_burninthining_multiple(
 partitions,
 presence.tables,
  theta,
 nodes,
 effects,
  objects,
  num.steps,
 neighborhood,
  numgroups.allowed,
 numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
 max.thining,
  verbose = FALSE
)
```

partitions	Observed partitions	
presence.table	s	
	to indicate which nodes were present when	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhood	Way of choosing partitions: probability vector (proba actors swap, proba merge/division, proba single actor move)	
numgroups.allowed		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
max.thining	maximal number of simulated steps in the thining	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

Value

A list

Description

Function that simulates the Markov chain for a given model and a set of transitions (the neighborhood), for a single partition. It calculates the autocorrelation of statistics for different thinings and the average statistics for different burn-ins.

Usage

```
simulate_burninthining_single(
   partition,
   theta,
   nodes,
   effects,
   objects,
   num.steps,
   neighborhood,
   numgroups.allowed,
   numgroups.simulated,
   sizes.allowed,
   sizes.simulated,
   max.thining,
   verbose = FALSE
```

)

Arguments

partition	Observed partition (vector)	
theta	Initial model parameters	
nodes	Node set (data frame)	
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")	
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")	
num.steps	Number of samples wanted	
neighborhood	Way of choosing partitions: probability vector (proba actors swap, proba merge/division, proba single actor move)	
numgroups.allowed		
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simulated		
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
max.thining	maximal number of simulated steps in the thining	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

Value

A list

simulate_burnin_single

Simulate burn in single

Description

Function that can be used to find a good length for the burn-in of the Markov chain for a given model and a given set of transitions in the chain (the neighborhood). It draws a chain and calculates the mean statistics for different burn-ins.

Usage

```
simulate_burnin_single(
   partition,
   theta,
   nodes,
   effects,
   objects,
   num.steps,
   neighborhood,
   numgroups.allowed,
   numgroups.simulated,
   sizes.allowed,
   sizes.simulated
)
```

partition	A partition (vector)
theta	Initial model parameters
nodes	Node set (data frame)
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")
num.steps	Number of samples wanted
neighborhood	Way of choosing partitions: probability vector (proba actors swap, proba merge/division, proba single actor move)
numgroups.allow	ed
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)
numgroups.simul	ated
	vector containing the number of groups simulated
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)

sizes.simulated

Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)

Value

A list with list the draws, the moving means and the moving means smoothed

simulate_thining_single

Simulate thining single

Description

Function that can be used to find a good length for the thining of the Markov chain for a given model and a set of transitions in the chain (the neighborhood). It draws a chain and calculates the autocorrelation of statistics for different thinings.

Usage

```
simulate_thining_single(
  partition,
  theta,
 nodes,
 effects,
 objects,
  num.steps,
 neighborhood,
 numgroups.allowed,
 numgroups.simulated,
  sizes.allowed,
  sizes.simulated,
 burnin,
 max.thining,
  verbose = FALSE
)
```

partition	A partition (vector)
theta	Initial model parameters
nodes	Node set (data frame)
effects	Effects/sufficient statistics (list with a vector "names", and a vector "objects")
objects	Objects used for statistics calculation (list with a vector "name", and a vector "object")
num.steps	Number of samples wanted

neighborhood	Way of choosing partitions: probability vector (proba actors swap, proba merge/division, proba single actor move)	
numgroups.allow	ved	
	vector containing the number of groups allowed in the partition (now, it only works with vectors like num_min:num_max)	
numgroups.simul	ated	
	vector containing the number of groups simulated	
sizes.allowed	Vector of group sizes allowed in sampling (now, it only works for vectors like size_min:size_max)	
sizes.simulated		
	Vector of group sizes allowed in the Markov chain but not necessraily sampled (now, it only works for vectors like size_min:size_max)	
burnin	number of simulated steps for the burn-in	
max.thining	maximal number of simulated steps in the thining	
verbose	logical: should intermediate results during the estimation be printed or not? Defaults to FALSE.	

A list

Stirling2_constraints	Function to calculate the number of partitions with k groups of sizes
	between smin and smax

Description

Function to calculate the number of partitions with k groups of sizes between smin and smax

Usage

```
Stirling2_constraints(n, k, smin, smax)
```

Arguments

n	number of nodes
k	number of groups
smin	minimum group size possible in the partition
smax	maximum group size possible in the partition

Value

a numeric

Stirling2_constraints

Examples

```
n <- 6
k <- 2
size_min <- 2
size_max <- 4
Stirling2_constraints(n,k,size_min,size_max)</pre>
```

Index

* datasets outcomeObjects, 35 Bell_constraints, 3 calculate_denominator_Dirichlet_restricted, calculate_proba_Dirichlet_restricted, 4 check_sizes, 5 compute_averagesize, 7 compute_numgroups_denominator, 8 computeStatistics, 6 computeStatistics_multiple, 6 correlation_between, 8 correlation_with_size, 10 correlation_within,9 count_classes, 10 CUP, 11 draw_Metropolis_multiple, 12 draw_Metropolis_single, 14 estimate_ERPM, 17 estimate_ERPM(), 35 estimate_logL, 20 estimate_multipleERPM, 22 estimation (outcomeObjects), 35 exactestimates_numgroups, 25 find_all_partitions, 26 gridsearch_burnin_single, 29 gridsearch_burninthining_multiple, 27 gridsearch_burninthining_single, 28 gridsearch_thining_single, 31 group_size, 32 icc. 33

number_categories, 33

number_ties, 34
order_groupids, 35
outcomeObjects, 35
phase1, 36
plot_averagesizes, 37
plot_numgroups_likelihood, 37
plot_partition, 38
print.results.bayesian.erpm, 39
print.results.list.erpm, 39
print.results.p3.erpm, 40
proportion_isolate, 40

```
range_attribute, 41
run_phase1_multiple, 41
run_phase1_single, 43
run_phase2_multiple, 45
run_phase2_single, 47
run_phase3_multiple, 49
run_phase3_single, 50
```

```
same_pairs, 52
similar_pairs, 52
simulate_burnin_single, 56
simulate_burninthining_multiple, 53
simulate_burninthining_single, 54
simulate_thining_single, 57
Stirling2_constraints, 58
```