
Package ‘DstarM’
April 1, 2025

Type Package

Title Analyze Two Choice Reaction Time Data with the D*M Method

Version 0.5.0

Maintainer Don van den Bergh <donvdbergh@hotmail.com>

Description A collection of functions to estimate parameters of a diffusion model via a D*M analy-
sis. Build in models are: the Ratcliff diffusion model, the RWiener diffusion model, and Lin-
ear Ballistic Accumulator models. Custom models functions can be speci-
fied as long as they have a density function.

License GPL (>= 2)

Imports DEoptim, RWiener, rtdists, stats, ggplot2, Rcpp

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

ByteCompile TRUE

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/vandenman/DstarM

BugReports https://github.com/vandenman/DstarM/issues

Suggests testthat

Author Don van den Bergh [aut, cre] (<https://orcid.org/0000-0002-9838-7308>),
Stijn Verdonck [aut] (<https://orcid.org/0000-0002-2199-1072>),
Francis Tuerlinckx [aut] (<https://orcid.org/0000-0002-1775-7654>)

Repository CRAN

Date/Publication 2025-04-01 09:00:02 UTC

Contents
chisq . 2
chisqFit . 3
Density . 5

1

https://github.com/vandenman/DstarM
https://github.com/vandenman/DstarM/issues
https://orcid.org/0000-0002-9838-7308
https://orcid.org/0000-0002-2199-1072
https://orcid.org/0000-0002-1775-7654

2 chisq

estCdf . 5
estDstarM . 6
estND . 10
estObserved . 12
estQdf . 14
getPdfs . 15
getSter . 16
getTer . 16
normalize . 17
obsQuantiles . 17
plotObserved . 18
rtDescriptives . 20
rtHist . 21
simData . 22
testFun . 23
upgradeDstarM . 24
Voss.density . 25

Index 27

chisq Calculates the distance between two probability densities.

Description

Calculates the distance between two probability densities.

Usage

chisq(tt, a, b)

battacharyya(tt, a, b)

hellinger(tt, a, b)

Arguments

tt the time grid on which the densities are evaluated.

a a vector with values of the first density.

b a vector with values of the second density.

Value

The distance between densities a and b.

chisqFit 3

Examples

Lets simulate a bunch of parameters and compare the three distance measures.

tt = seq(0, 5, .001)
parsMatV = cbind(.8, seq(0, 5, .5), .5, .5, .5) # differ only in drift speed
parsMatA = cbind(seq(.5, 2, .15), 2, .5, .5, .5)# differ only in boundary
calculate densities for all these parameters
dV = apply(parsMatV, 1, function(x, tt) Voss.density(tt, x, boundary = 'upper'), tt = tt)
dA = apply(parsMatA, 1, function(x, tt) Voss.density(tt, x, boundary = 'upper'), tt = tt)
make plots of the densities
matplot(tt, dA, xlim = c(0, .6), main = 'Densities with different Boundary',

col = rainbow(ncol(dA)),type = 'l', lty = 1, las = 1, bty = 'n',
xlab = 'Time', ylab = 'Density')

legend('topright', lty = 1, bty = 'n', col = rainbow(ncol(dA)),
legend = paste('a = ', parsMatA[, 1]))

matplot(tt, dV, xlim = c(0, .6), main = 'Densities with different Drift Speed',
col = rainbow(ncol(dV)), type = 'l', lty = 1, las = 1, bty = 'n',
xlab = 'Time', ylab = 'Density')

legend('topright', lty = 1, bty = 'n', col = rainbow(ncol(dV)),
legend = paste('v = ',parsMatV[, 2]))

empty matrices for data storage
distMatV = matrix(NA, nrow = ncol(dV) - 1, ncol = 3,

dimnames = list(NULL, c('Chisq', 'Bhattacharyya', 'Hellinger')))
distMatA = matrix(NA, nrow = ncol(dA) - 1, ncol = 3,

dimnames = list(NULL, c('Chisq', 'Bhattacharyya', 'Hellinger')))
calculate distances between densities in column i and i + 1.
this is done using three different distance measures
for (i in 1:(ncol(dA) - 1)) {

distMatV[i,] = c(chisq(tt, dV[, i], dV[, i + 1]),
battacharyya(tt, dV[, i], dV[, i + 1]),
hellinger(tt, dV[, i], dV[, i + 1]))

distMatA[i,] = c(chisq(tt, dA[, i], dA[, i + 1]),
battacharyya(tt, dA[, i], dA[, i + 1]),
hellinger(tt, dA[, i], dA[, i + 1]))

}
The three distance measures correlate highly for differences in Boundary
cor(distMatA)
The battacharyya distance measures does not correlate with the others
when calculating differences in drift speed
cor(distMatV)

chisqFit Calculate model fit

Description

Calculate model fit

Usage

chisqFit(resObserved, data, DstarM = FALSE, tt = NULL, formula = NULL)

4 chisqFit

Arguments

resObserved either output from estObserved or a matrix containing custom densities to cal-
culate the fitness for.

data A dataframe containing data.

DstarM Logical. Should the DstarM fit measure be calculated or the traditional fit mea-
sure?

tt time grid custom densities where calculated on. Should only be supplied if
resOberved is a matrix containing custom densities

formula Optional formula argument, for when columns names in the data are different
from those used to obtain the results.

Details

This function allows a user to manually calculate a chi-square goodness of fit measure for model
densities. This is useful for comparing a traditional analysis and a D*M analysis. For completion,
this function can also calculate a D*M fit measure. We do not recommend usage of the D*M
measure. While the chi-square fit measure is identical to the value of the optimizer when fitting,
the DstarM fit measure is not equal to that of a DstarM analysis. This is because this function
calculates the DstarM fit measure on the complete distribution, not on the model distributions, as is
done during the optimization.

Examples

tt = seq(0, 5, .1)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)

simulate data
allDat = simData(n = 3e3, pars = pars, tt = tt, pdfND = pdfND, return.pdf = TRUE)
truePdf = allDat$pdfUnnormalized
dat = allDat$dat
chisqFit(resObserved = truePdf, data = dat, tt = tt)
Not run:
estimate it
define restriction matrix
restr = matrix(1:5, 5, 3)
restr[2, 2:3] = 6:7 # allow drift rates to differ
fix parameters for speed up
fixed = matrix(c('z1', 'a1 / 2', 'sz1', .5, 'sv1', .5), 2, 3)
resD = estDstarM(data = dat, tt = tt, restr = restr, fixed = fixed,

Optim = list(parallelType = 1))
resN = estND(resD, Optim = list(parallelType = 1))

resO = estObserved(resD, resN, data = dat)
resO$fit # proper fit

End(Not run)

Density 5

Density Density function

Description

Density function

Usage

Density(rt, tt)

Arguments

rt vector of reaction times

tt grid to evaluate the density on

Details

Can be passed to the argument densityMethod of estDstarM. This function is a minimal example
to use as custom smoothing function.

Value

a vector of length(tt)

Examples

x <- rgamma(1e5, 1, 1)
tt <- seq(0, 5, .01)
d <- Density(x, tt)
hist(x, freq = FALSE)
lines(tt, DstarM:::Density(x, tt))

estCdf Estimate cumulative distribution for D*M models

Description

Estimate cumulative distribution for D*M models

Usage

estCdf(x)

6 estDstarM

Arguments

x Any density function to calculate a cumulative distribution for. The code is de-
signed for input of class DstarM but other input is also accepted. Other input
can be either a matrix where columns represent densities or a single vector rep-
resenting a density.

Details

Cumulative distributions functions are calculated by: cumsum(x) / sum(x). This method works
well enough for our purposes. The example below shows that the ecdf functions seems to work
slightly better. However, this estimates a cdf from raw data and does not transform a pdf into a cdf
and is therefore not useful for D*M models.

Value

Cumulative density function(s). If the input was a matrix, a matrix of cumulative density functions
is returned.

Examples

x = rnorm(1000)
xx = seq(-5, 5, .1)
approx1 = stats::ecdf(x)(xx)
approx2 = estCdf(dnorm(xx, mean(x), sd(x)))
trueCdf = pnorm(xx)
matplot(xx, cbind(trueCdf, approx1, approx2), type = c('l', 'p', 'p'),

lty = 1, col = 1:3, pch = 1, bty = 'n', las = 1, ylab = 'Prob')
legend('topleft', legend = c('True Cdf', 'Stats Estatimation', 'DstarM Estimation'),

col = 1:3, lty = c(1, NA, NA), pch = c(NA, 1, 1), bty = 'n')

estDstarM Do a D*M analysis

Description

Do a D*M analysis

Usage

estDstarM(
formula = NULL,
data,
tt,
restr = NULL,
fixed = list(),
lower,
upper,

estDstarM 7

Optim = list(),
DstarM = TRUE,
SE = 0,
oscPdf = TRUE,
splits = rep(0L, (ncondition)),
forceRestriction = TRUE,
mg = NULL,
h = 1,
pars,
fun.density = Voss.density,
args.density = list(),
fun.dist = chisq,
args.dist = list(tt = tt),
verbose = 1L,
useRcpp = TRUE

)

Arguments

formula A formula object of the form: binary response ~ reaction time + condition1
* condition2 * ... conditionN.

data A dataframe for looking up data specified in formula. For backwards compat-
ibility this can also be with: a column named rt containing response times in
ms, a column named response containing at most 2 response options, and an
optional column named condition containing a numeric index as to which con-
ditions observations belong.

tt A time grid on which the density function will be evaluated. Should be larger
than the highest observed reaction time.

restr A restriction matrix where each column depicts one condition. The number of
rows should match the number of parameters (and be equal to the length of
lower). The contents of restr should be numbers, identical numbers means
that these parameters (either within or between condition) will be constrained.
Different numbers means parameters will not be constrained.

fixed A matrix that allows for fixing parameters to certain values.

lower Should be a vector containing lower bounds for each parameter. Has a default if
fun.density == Voss.density.

upper Should be a vector containing upper bounds for each parameter. Has a default if
fun.density == Voss.density.

Optim a named list with identical arguments to DEoptim.control. In addition, if
verbose == TRUE Optim$steptol can be a vector, i.e. c(200, 50, 10) means:
Do 200 iterations then check for convergence, do 50 iterations then check for
convergence, check every 10 iterations for convergence until itermax is reached.
Defaults to Optim = list(reltol = 1e-6, itermax = 1e3,steptol = 50, CR =
.9, trace = 0, parallelType = 0).

DstarM If TRUE a D*M analysis is done, otherwise the Chi square distance between
data and model is minimized.

8 estDstarM

SE positive value, how many standard error to add to the variance to relax the vari-
ance restriction a bit.

oscPdf Logical, if TRUE check for oscillations in calculated densities and remove den-
sities with oscillations.

splits Numeric vector determining which conditions have an equal nondecision den-
sity. Identical values in two positions indicate that the conditions corresponding
to the indices of those values have an identical nondecision distribution.

forceRestriction

if TRUE the variance restriction is enforced.

mg Supply a data density, useful if a uniform kernel approximation does not suffice.
Take care that densities of response categories within conditions are degenerate
and therefore integrate to the proportion a category was observed (and not to 1).

h bandwidth of a uniform kernel used to generate data based densities.

pars Optional parameter vector to supply if one wishes to evaluate the objective func-
tion in a given parameter vector. Only used if itermax equal zero.

fun.density Function used to calculate densities. See details.

args.density A names list containing additional arguments to be send to fun.density.

fun.dist Function used to calculate distances between densities. Defaults to a chi-square
distance.

args.dist A named list containing additional arguments to be send to fun.dist.

verbose Numeric, should intermediate output be printed? Defaults to 1, higher values
result in more progress output. Estimation will speed up if set to 0. If set to
TRUE, Optim$trace will be forced to 0, hereby disabling the build in printing
of DEoptim. To enable the printing of DEoptim, set verbose to 0 and specify
Optim$trace. Optim. If set to 1, ETA refers to the expected maximum time
until completion (when the iterations limit is reached).

useRcpp Logical, setting this to true will make the objective function use an Rcpp imple-
mentation of Voss.density with the distance function chisq. This gains speed
at the cost of flexibility.

Details

Response options will be alphabetically sorted and the first response option will be treated as the
’lower’ option. This means that if the observed proportion of the first response options is higher,
the drift speed will most likely be negative.

fun.density allows a user to specify a custom density function. This function must (at least)
take the following arguments: t: a vector specifying at which time points to calculate the density
pars: a parameter vector boundary: character ’upper’ or ’lower’ specifying for which response
option the density will be calculated. DstarM: Logical, if TRUE the density should not describe the
nondecision density, if FALSE it should describe the nondecision density. Any additional arguments
can be passed to fun.density via the argument args.density. If one intends to use a custom
density function it is recommended to test the function first with testFun. When specifying a
custom density function it is probably also necessary to change the lower and upper bounds of the
parameter space.

estDstarM 9

For purposes of speed, the function can be run in parallel by providing the argument Optim =
list(parallelType = 1). See DEoptim.control for details. Also, for Ratcliff models the ob-
jective function has been rewritten in Rcpp. This limits some functionality but does result in a
faster estimation. Usage of Rcpp can be enabled via useRcpp = TRUE.

When verbose is set to 1, the ETA is an estimated of the time it takes to execute ALL iterations.
Convergence can (and is usually) reached before then.

Value

Returns a list of class DstarM.fitD that contains:

Bestvals Named numeric vector. Contains the best parameter estimates.

fixed Numeric vector. Contains the best parameter estimates.

GlobalOptimizer

List. All output from the call to DEoptim

Debug List. contains the number of DEoptim iterations, the number of function evalu-
ation of the objective function, and the maximum number of iterations.

note String. A possible note that is used for summary purposes

tt Numeric vector. Contains the time grid used.

g.hat Numeric matrix. Named columns represent the (possibly smoothed) densities of
the data distribution of each condition-response pair.

modelDist Numeric matrix. Named columns represent the densities of the model evaluated
at grid tt with parameters Bestvals.

ncondition Numeric scalar. The number of conditions

var.data Numeric vector. The variance of each condition-response pair. There are as
many values as hypothesized nondecision densities.

var.m Numeric vector. The variance of the model distributions. There are as many
values as hypothesized nondecision densities.

restr.mat Numeric matrix. Contains the restrictions used.

splits Numeric vector. Equal to the input argument with the same name.

n Numeric scalar. The total number of observations.

DstarM Logical. Equal to the input argument with the same name.

fun.density Function. Equal to the input argument with the same name.

fun.dist Function. Equal to the input argument with the same name.

h Scalar. Equal to the input argument with the same name.

args.density Named list. Equal to the input argument with the same name.

args.dist Named list. Equal to the input argument with the same name.

10 estND

Examples

simulate data with three stimuli of different difficulty.
this implies different drift rates across conditions.
define a time grid. A more reasonable stepsize is .01; this is just for speed.
tt = seq(0, 5, .1)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)
simulate data
data = simData(n = 3e3, pars = pars, tt = tt, pdfND = pdfND)
define restriction matrix
restr = matrix(1:5, 5, 3)
restr[2, 2:3] = 6:7 # allow drift rates to differ
fix variance parameters
fixed = matrix(c('sz1', .5, 'sv1', .5), 2, 2)
Not run:
Run D*M analysis
res = estDstarM(data = data, tt = tt, restr = restr, fixed = fixed)
coef(res)
summary(res)

End(Not run)

estND Estimate nondecision density

Description

Estimate nondecision density

Usage

estND(
res,
tt = NULL,
data = NULL,
h = res$h,
zp = 5,
upper.bound = 1,
lower.bound = 0,
Optim = list(),
verbose = TRUE,
dist = NULL,
NDindex,
max = 100,
useRcpp = TRUE

)

estND 11

Arguments

res an object of class D*M.

tt optional timegrid if the nondecision density is to be estimated at a different grid
than the model density.

data if tt is specified then the original dataset must be supplied too.

h Optional smoothing parameter to be used when estimating the nondecision model
on a different time grid than the decision model. If omitted, the smoothing pa-
rameter of the decision model is used.

zp Zero padding the estimated nondecision density by this amount to avoid numer-
ical artefacts.

upper.bound An upper bound for the nondecision density. Defaults to one. Lowering this
bound can increase estimation speed, at the cost of assuming that the density of
the nondecision distribution is zero past this value.

lower.bound A lower bound for the nondecision density. Defaults to zero. Increasing this
bound can increase estimation speed, at the cost of assuming that the density of
the nondecision distribution is zero past this value.

Optim a named list with identical arguments to DEoptim.control. In addition, if
verbose == TRUE Optim$steptol can be a vector, i.e. c(200, 50, 10) means:
Do 200 iterations then check for convergence, do 50 iterations then check for
convergence, check every 10 iterations for convergence until itermax is reached.
If there are multiple nondecision distributions to estimate, one can supply dif-
ferent estimation parameters for every nondecision distribution by supplying
Optim as a list of lists. Every sublists then corresponds to parameters for one
nondecision distribution and should consist of arguments for DEoptim.control.
Defaults to Optim = list(reltol = 1e-6, itermax = 1e4, steptol = 200, CR
= .9, trace = 0).

verbose Numeric, should intermediate output be printed? Defaults to 1, higher val-
ues result in more progress output. Estimation will speed up if set to 0. If
nonzero, Optim$trace will be forced to 0, hereby disabling the build in printing
of DEoptim. To enable the printing of DEoptim, set verbose to 0 and specify
Optim$trace.

dist A matrix where columns represent nondecision distributions. If this argument is
supplied then the objective function will be evaluated in these values.

NDindex A vector containing indices of which nondecision distributions to estimate. If
omitted, all nondecision distributions that complement the results in res are
estimated.

max A positive float which indicates the maximum height of the nondecision distri-
bution. If estimated nondecision distributions appear chopped of or have a lot of
values at this max value it is recommended to re-estimate the nondecision distri-
butions with a higher max value. Increasing the max value without reason will
increase the size of the parameter space and slow the estimation procedure.

useRcpp Logical, setting this to true will make use of an Rcpp implementation of the
objective function. This gains speed at the cost of flexibility.

12 estObserved

Details

When verbose is set to 1, the ETA is an estimated of the time it takes to execute ALL iterations.
Convergence can (and is usually) reached before then.

Examples

simulate data with three stimuli of different difficulty.
this implies different drift rates across conditions.
define a time grid. A more reasonable stepsize is .01; this is just for speed.
tt = seq(0, 5, .1)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)
simulate data
dat = simData(n = 3e5, pars = pars, tt = tt, pdfND = pdfND)
define restriction matrix
restr = matrix(1:5, 5, 3)
restr[2, 2:3] = 6:7 # allow drift rates to differ
fix variance parameters
fixed = matrix(c('sz1', .5, 'sv1', .5), 2, 2)
Not run:
Run D*M analysis
res = estDstarM(data = dat, tt = tt, restr = restr, fixed = fixed)
Estimate nondecision density
resND = estND(res)
plot(resND)
lines(tt, pdfND, type = 'b', col = 2)

End(Not run)

estObserved Estimate observed data density

Description

Estimates the density of the observed data by convoluting the estimated decision distributions with
the estimated nondecision distributions. If a traditional analysis was run the argument resND can
be omitted.

Usage

estObserved(
resDecision,
resND = NULL,
data = NULL,
interpolateND = FALSE,
tt = NULL

)

estObserved 13

Arguments

resDecision output of estDstarM.

resND output of estND.

data Optional. If the data used to estimate the decision model is supplied additional
fitmeasures are calculated.

interpolateND Logical. If the decision model and nondecision model have been estimated on
different time grids, should the rougher time grid be interpolated to match the
smaller grid? If FALSE (the default) the decision model will be recalculated on
the grid of the nondecision model. This tends to produce better fit values.

tt Optional time grid to recalculate the model densities on. Unused in case of a
DstarM analysis.

Value

Returns a list of class DstarM.fitObs that contains:

obsNorm A matrix containing normalized densities of each condition response pair.

obs A matrix containing unnormalized densities of each condition response pair.

tt The time grid used.

fit A list containing the values of the objective function for the total model ($to-
tal), for the decision model ($Decision) and for the nondecision distribution(s)
($ND).

npar The number of parameters used in the decision model.

obsIdx A numeric vector containing indices of any not observed condition-response
pairs.

Examples

simulate data with three stimuli of different difficulty.
this implies different drift rates across conditions.
define a time grid. A more reasonable stepsize is .01; this is just for speed.
tt = seq(0, 5, .1)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)
simulate data
lst = simData(n = 3e5, pars = pars, tt = tt, pdfND = pdfND, return.pdf = TRUE)
dat = lst$dat
define restriction matrix
restr = matrix(1:5, 5, 3)
restr[2, 2:3] = 6:7 # allow drift rates to differ
fix variance parameters
fixed = matrix(c('sz1', .5, 'sv1', .5), 2, 2)
Not run:
Run D*M analysis
resD = estDstarM(dat = dat, tt = tt, restr = restr, fixed = fixed)

14 estQdf

Estimate nondecision density
resND = estND(resD)
Estimate observed density
resObs = estObserved(resD, resND)
plot histograms with overlayed
densities per condition-response pair
plotObserved(resObserved = resObs, data = dat,

xlim = c(0, 1))
plot estimated and true densities
plot(resObs, col = rep(1:3, each = 2), xlim = 0:1)
matlines(tt, lst$pdfNormalized, col = rep(1:3, each = 2), lty = 2)

End(Not run)

estQdf Estimate quantiles of distribution

Description

Estimate quantiles of distribution

Usage

estQdf(p, x, cdf)

Arguments

p A vector of probabilities.

x The x-axis values corresponding to the cumulative distribution function.

cdf A cumulative distributions function, i.e. output of estCdf.

Details

Quantiles are obtained in the following manner. For p = 0 and p = 1, the minimum and maxi-
mum of x is used. For other probabilities the quantiles are obtained via q[i] = uniroot(x, cdf -
p[i])$root. Y values are interpolated via approxfun.

Value

Quantiles of cumulative distribution function(s). If the input was a matrix of cumulative distribu-
tions functions, a matrix of quantiles is returned.

getPdfs 15

Examples

x = seq(-9, 9, .1) # x-grid
d = dnorm(x) # density functions
p = seq(0, 1, .2) # probabilities of interest
cEst = estCdf(d) # estimate cumulative distribution functions
qEst = estQdf(p = p, x = x, cdf = cEst) # estimate quantiles
plot(x, cEst, bty = 'n', las = 1, type = 'l', ylab = 'Probability') # plot cdf
abline(h = p, v = qEst, col = 1:6, lty = 2) # add lines for p and for obtained quantiles
points(x = qEst, y = p, pch = 18, col = 1:6, cex = 1.75) # add points for intersections

getPdfs (Re)Calculate model densities with given parameters and time grid

Description

This function is a convenience function for calculating model pdfs for multiple sets of parameters at
a specified timegrid. If resDecision is supplied, the density function and any additional arguments
for the density function will be extracted from that object. If pars is missing these will also be
extracted from this object. This function is intended to recalculate model densities at a new timegrid.

Usage

getPdfs(
resDecision,
tt,
pars,
DstarM = TRUE,
fun.density = Voss.density,
args.density = list()

)

Arguments

resDecision output of estDstarM.

tt Time grid to calculate the model densities on.

pars Model parameters, can be a matrix where every column is a set of parameters.

DstarM Logical. Do the model pdfs also describe the nondecision distribution?

fun.density density function to calculate pdfs from.

args.density Additional arguments for fun.density

Value

A matrix containing model pdfs.

16 getTer

getSter Estimate variance of nondecision density

Description

Estimate variance of nondecision density

Usage

getSter(res)

Arguments

res An object of class D*M.

Details

The object res can either be output from estDstarM or output from estND. if the former is sup-
plied, getSter attempts to calculate the variance of the nondecision distribution by subtracting the
variance of the model distribution from the variance of the data distribution. If the latter is supplied,
the variance is calculated by integrating the nondecision distribution.

getTer Calculate Mean of the nondecision distribution.

Description

Calculate Mean of the nondecision distribution.

Usage

getTer(res, data, formula = NULL)

Arguments

res An object of class D*M.
data The data object used to create res.
formula Optional formula argument, for when columns names in the data are different

from those used to obtain the results.

Details

The object res can either be output from estDstarM or output from estND. If the former is supplied
it is also necessary to supply the data used for the estimation. The mean will then be estimated
by subtracting the mean of the model densities from the mean of the data density. If the latter
is supplied than this is not required; the mean will be calculated by integrating the nondecision
distribution.

normalize 17

Value

A vector containing estimates for the mean of the nondecision densities.

normalize Normalize two pdfs

Description

Normalize two pdfs

Usage

normalize(x, tt, props = NULL)

Arguments

x Probability density function(s) evaluated at grid x. Input should be either a
vector or matrix. If input is a matrix, each column represents a single pdf.

tt a numeric grid defined in x.

props the value each density should integrate to.

Examples

tt <- seq(0, 9, length.out = 1e4)
2 poper densities
x1 <- cbind(dexp(tt, .5), dexp(tt, 2))
still 2 poper densities
x2 <- normalize(10*x1, tt)
2 densities that integrate to .5
x3 <- normalize(x1, tt, props = c(.5, .5))
plot the results
matplot(tt, cbind(x1, x2, x3), type = "l", ylab = "density",

col = rep(1:3, each = 2), lty = rep(1:2, 3), las = 1, bty = "n")
legend("topright", legend = rep(paste0("x", 1:3), each = 2),

col = rep(1:3, each = 2), lty = rep(1:2, 3), bty = "n")

obsQuantiles Calculate model fit

Description

This function is nothing but a wrapper for quantile.

Usage

obsQuantiles(data, probs = seq(0, 1, 0.01), what = "cr")

18 plotObserved

Arguments

data A dataframe with: a column named rt containing response times in ms, a col-
umn named response containing at most 2 response options, and an optional
column named condition containing a numeric index as to which conditions
observations belong.

probs vector of probabilities for which the corresponding values should be called

what Character. 'cr' if the quantiles are to be calculated per condition-response pair,
'c' if the quantiles are to be calculated per condition, and 'r' if the quantiles
are to be calculated per response.

Examples

tt = seq(0, 5, .01)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)
simulate data
data = simData(n = 3e3, pars = pars, tt = tt, pdfND = pdfND)
probs = seq(0, 1, .01)
q = obsQuantiles(data, probs = probs)
matplot(probs, q, type = 'l', las = 1, bty = 'n')

plotObserved Plot quantiles of data against model implied quantiles.

Description

Plots histograms for each condition-response pair/ condition/ response with overlayed estimated
densities.

Usage

plotObserved(
resObserved,
data,
what = c("cr", "c", "r"),
layout = NULL,
main = NULL,
linesArgs = list(),
ggplot = FALSE,
prob = seq(0, 1, 0.01),
probType = 3,
...

)

plotObserved 19

Arguments

resObserved output of estObserved.

data The dataset used to estimate the model.

what What to plot. Can be ’cr’ for ’condition-response pairs, ’c’ for condition, and ’r’
for response.

layout An optional layout matrix.

main an optional vector containing names for each plot.

linesArgs A list containing named arguments to be passed to lines.

ggplot Deprecated and ignored.

prob Should a qqplot of observed vs model implied quantiles be plotted? By default,
it is seq(0, 1, .01), the probabilities between 0 and 1 to compare the model
implied quantiles to the observed quantiles. If this argument is NULL, then a
histogram overlayed with model implied densities will be plotted. Internally,
estQdf is used for generating quantiles.

probType A numeric value defining several plotting options. 0 does nothing, 1 removes
the 0% quantile, 2 removes the 100% quantile and 3 removes both the 0% and
100% quantile.

... Further arguments to be passed to hist.

Details

Keep in mind when using what = 'c' or what = 'r' pdfs are simply averaged, not weighted to the
number of observed responses.

Value

if ggplot is FALSE invisible(), otherwise a list

Examples

simulate data with three stimuli of different difficulty.
this implies different drift rates across conditions.
define a time grid. A more reasonable stepsize is .01; this is just for speed.
tt = seq(0, 5, .1)
pars = c(.8, 2, .5, .5, .5, # condition 1

.8, 3, .5, .5, .5, # condition 2

.8, 4, .5, .5, .5) # condition 3
pdfND = dbeta(tt, 10, 30)
simulate data
lst = simData(n = 3e5, pars = pars, tt = tt, pdfND = pdfND, return.pdf = TRUE)
dat = lst$dat
define restriction matrix
restr = matrix(1:5, 5, 3)
restr[2, 2:3] = 6:7 # allow drift rates to differ
fix variance parameters
fixed = matrix(c('sz1', .5, 'sv1', .5), 2, 2)
Not run:

20 rtDescriptives

Run D*M analysis
resD = estDstarM(dat = dat, tt = tt, restr = restr, fixed = fixed)
Estimate nondecision density
resND = estND(resD)
Estimate observed density
resObs = estObserved(resD, resND)
plot histograms with overlayed
densities per condition-response pair
plotObserved(resObserved = resObs, data = dat,

xlim = c(0, 1))
plot estimated and true densities
plot(resObs, col = rep(1:3, each = 2), xlim = 0:1)
matlines(tt, lst$pdfNormalized, col = rep(1:3, each = 2), lty = 2)
other uses of plotObserved
plotObserved(resObserved = resObs, data = dat, what = 'cr', xlim = c(0, 1))
plotObserved(resObserved = resObs, data = dat, what = 'c', xlim = c(0, 1))
plotObserved(resObserved = resObs, data = dat, what = 'r', xlim = c(0, 1))

End(Not run)

rtDescriptives Descriptives of reaction time data

Description

Descriptives of reaction time data

Usage

rtDescriptives(formula = NULL, data, plot = TRUE, verbose = TRUE)

Arguments

formula A formula object of the form: binary response ~ reaction time + condition1
* condition2

data A dataframe for looking up data specified in formula. For backwards compat-
ibility this can also be with: a column named rt containing response times in
ms, a column named response containing at most 2 response options, and an
optional column named condition containing a numeric index as to which con-
ditions observations belong.

plot Logical, should a density plot of all condition-response pairs be made?

verbose Logical, should a table of counts and proportions be printed?

Details

This function and rtHist are helper functions to inspect raw data.

rtHist 21

Value

Invisibly returns an object of class ’D*M’. It’s first element is table and contains raw counts
and proportions for condition response pairs, conditions, and responses. It’s second element plot
contains a ggplot object.

Examples

tt <- seq(0, 5, .01)
pars <- matrix(.5, 5, 2)
pars[1,] <- 1
pars[2,] <- c(0, 2)
dat <- simData(n = 3e3, pars = pars, tt = tt, pdfND = dbeta(tt, 10, 30))
x <- rtDescriptives(data = dat)

print(x$table, what = 'cr')
print(x$table, what = 'c')
print(x$table, what = 'r')

rtHist Make histograms of reaction time data

Description

Make histograms of reaction time data

Usage

rtHist(data, what = "cr", layout = NULL, nms = NULL, ggplot = FALSE, ...)

Arguments

data A reaction time dataset. Must be a dataframe with $rt, $condition and $response.

what @param what What to plot. Can be ’cr’ for ’condition-response pairs, ’c’ for
condition, and ’r’ for response.

layout An optional layout.

nms An optional vector of names for each plot. If omitted the names will be based
on the contents of data$condition and/or data$response.

ggplot ggplot Logical, should ggplot2 be used instead of base R graphics? If set to
TRUE, some arguments from linesArgs and ... will be ignored (but can be
added to plots manually).

... Arguments to be passed to hist

Details

This function and rtDescriptives are helper functions to inspect raw data.

22 simData

Value

invisible()

Examples

tt = seq(0, 5, .01)
dat = simData(n = 3e4, pars = rep(.5, 5), tt = tt, pdfND = dbeta(tt, 10, 30))
rtHist(dat, breaks = tt, xlim = c(0, 1))

simData Simulate data from a given density function via multinomial sampling

Description

Simulate data from a given density function via multinomial sampling

Usage

simData(
n,
pars,
tt,
pdfND,
fun.density = Voss.density,
args.density = list(prec = 3),
npars = 5,
return.pdf = FALSE,
normalizePdfs = TRUE

)

Arguments

n Number of observations to be sampled

pars Parameter values for the density function to be evaluated with. length(pars)
must be a multiple of npars.

tt time grid on which the density function will be evaluated. Responses not in this
time grid cannot appear.

pdfND either a vector of length tt specifying the nondecision density for all condition-
response pairs, or a matrix where columns corresponds to the nondecision den-
sities of condition-response pairs. Supplying NULL implies no nondecision dis-
tribution.

fun.density Density function to use.

args.density Additional arguments to be passed to fun.density, aside from tt, pars, and a
boundary argument (’upper’ or ’lower’)

testFun 23

npars Number of parameters fun.density must be evaluated with. If length(pars)
> npars each npars values in pars will be seen as the parameter values of a
condition.

return.pdf Logical, if TRUE genData returns a list containing the probability density func-
tion used and the data, if FALSE genData returns a dataframe with simulated
data.

normalizePdfs Logical, should the pdf of the nondecision distribution be normalized?

Details

Simulate data via multinomial sampling. The response options to sample from should be provided
in tt. The number of conditions is defined as length(pars) / npars.

Value

A sorted dataframe where rows represent trials. It contains: a column named rt containing reaction
times in seconds, a column named response containing either response option lower or upper, and a
column named condition indicating which condition a trials belongs to. If return.pdf is TRUE it
returns a list where the first element is the sorted dataframe, the second through the fifth elements
are lists that contain densities used for simulating data.

Examples

tt = seq(0, 5, .01)
pdfND = dbeta(tt, 10, 30)
n = 100
pars = c(1, 2, .5, .5, .5)
dat = simData(n, pars, tt, pdfND)
head(dat)

testFun Test fun.density with lower and upper bounds

Description

Test fun.density with lower and upper bounds

Usage

testFun(fun.density, lower, upper, args = list())

Arguments

fun.density A density function to be evaluated.
lower Lower bounds of the parameter space with which fun.density can be evalu-

ated.
upper Upper bounds of the parameter space with which fun.density can be evalu-

ated.
args Additional arguments for fun.density.

24 upgradeDstarM

Details

A function that is called whenever a nondefault density function is passed to DstarM. It does some
rough error checking.

Value

Returns TRUE if no errors occurred, otherwise returns an error message

Examples

lower = c(.5, -6, .1, 0, 0)
upper = c(2, 6, .99, .99, 10)
args = list(t = seq(0, 5, .01), pars = lower, boundary = 'lower',
DstarM = TRUE)
testFun(fun.density = Voss.density, lower = lower, upper = upper,
args = args)
TRUE

upgradeDstarM Upgrade a DstarM object for backwards compatibility

Description

Upgrade a DstarM object for backwards compatibility

Usage

upgradeDstarM(x)

Arguments

x an object of class D*M or DstarM.

Value

An object of class DstarM.fitD, DstarM.fitND, or DstarM.fitObs.

Voss.density 25

Voss.density Calculate model density for a given set of parameters

Description

Calculate model density for a given set of parameters

Usage

Voss.density(t, pars, boundary, DstarM = TRUE, prec = 3)

LBA.density(t, pars, boundary, DstarM = TRUE, ...)

Wiener.density(t, pars, boundary, DstarM)

Arguments

t Time grid for density to be calculated on.

pars Parameter vector where (if DstarM == TRUE) the first index contains the bound-
ary parameter, the second contains the drift speed, the third contains the relative
starting point, the fourth contains a proportion of the maximum size of the vari-
ance on the relative starting point, the fifth contains the standard deviation of the
drift speed. if DstarM == FALSE then third index of pars contains the Ter, the
fifth the drift speed, the the sixth contains a proportion of the maximum size of
the variance on the relative starting point, the fifth contains the standard devia-
tion of the drift speed, and the seventh contains a proportion of the maximum
variance of the Ter.

boundary For which response option will the density be calculated? Either ’upper’ or
’lower’.

DstarM Logical, see pars.

prec Precision with which the density is calculated. Corresponds roughly to the num-
ber of decimals accurately calculated.

... Other arguments, see dLBA

Details

These functions are examples of what fun.density should look like. Voss.density is an adap-
tation of ddiffusion, LBA.density is an adaptation of dLBA, and wiener.density is an adapta-
tion of dwiener. To improve speed one can remove error handling. Normally error handling is
useful, however because differential evolution can result in an incredible number of function eval-
uations (more than 10.000) it is recommended to omit error handling in custom density functions.
estDstarM will apply some internal error checks (see testFun) on the density functions before
starting differential evolution. A version of ddifusion without error handling can be found in the
source code (commented out to pass R check). Note that for in Voss.density if DstarM == FALSE
nondecision parameters are implemented manually and might differ from from how they are imple-
mented in other packages. The parameter t0 specifies the mean of a uniform distribution and st0

26 Voss.density

specifies the relative size of this uniform distribution. To obtain the lower and upper range of the
uniform distribution calculate a = t0 - t0*st0, and b = t0 + t0*st0.

Value

A numeric vector of length length(t) containing a density.

Examples

t = seq(0, .75, .01)
V.pars = c(1, 2, .5, .5, .5)
L.pars = c(1, .5, 2, 1, 1, 1)
W.pars = V.pars[1:3]
V1 = Voss.density(t = t, pars = V.pars, boundary = 'upper', DstarM = TRUE)
V2 = Voss.density(t = t, pars = V.pars, boundary = 'lower', DstarM = TRUE)
L1 = LBA.density(t = t, pars = L.pars, boundary = 'upper', DstarM = TRUE)
L2 = LBA.density(t = t, pars = L.pars, boundary = 'lower', DstarM = TRUE)
W1 = Wiener.density(t = t, pars = W.pars, boundary = 'upper', DstarM = TRUE)
W2 = Wiener.density(t = t, pars = W.pars, boundary = 'lower', DstarM = TRUE)
densities = cbind(V1, V2, L1, L2, W1, W2)
matplot(t, densities, type = 'b', ylab = 'Density', lty = 1, las = 1, bty = 'n',

col = rep(1:3, each = 2), pch = c(0, 15, 1, 16, 2, 17), cex = .8,
main = 'Model densities')

legend('topright', legend = c('Voss', 'LBA', 'RWiener'), lty = 1,
pch = 15:17, col = 1:3, bty = 'n')

Index

approxfun, 14

battacharyya (chisq), 2

chisq, 2
chisqFit, 3

ddiffusion, 25
Density, 5
DEoptim, 9
DEoptim.control, 7, 9, 11
dLBA, 25
dwiener, 25

ecdf, 6
estCdf, 5, 14
estDstarM, 5, 6, 13, 15
estND, 10, 13
estObserved, 4, 12, 19
estQdf, 14, 19

getPdfs, 15
getSter, 16
getTer, 16

hellinger (chisq), 2

LBA.density (Voss.density), 25
lines, 19

normalize, 17

obsQuantiles, 17

plotObserved, 18

quantile, 17

rtDescriptives, 20, 21
rtHist, 20, 21

simData, 22

testFun, 8, 23, 25

upgradeDstarM, 24

Voss.density, 25

Wiener.density (Voss.density), 25

27

	chisq
	chisqFit
	Density
	estCdf
	estDstarM
	estND
	estObserved
	estQdf
	getPdfs
	getSter
	getTer
	normalize
	obsQuantiles
	plotObserved
	rtDescriptives
	rtHist
	simData
	testFun
	upgradeDstarM
	Voss.density
	Index

