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R sometimes makes ordinary tasks difficult. Virtually every data analysis project starts with
describing data. The first thing to do will often be calculating summary statistics for all variables
while listing the occurrence of nonresponse and missing data and producing some kind of
graphics. This is a three-click process in SPSS, but regardless of the normality of this task, base R
does not contain higher level functions for quickly describing huge datasets (meant regarding
the number of variables, not records) adequately in an automated way. Sure, there are facilities
like summary (base), describe (Hmisc), stat.desc (library pastecs), but all of them are lacking
some functionality or flexibility we would have expected. What we in particular had missed ever
since was a combination of numerical and graphical description of data.

R comes with a considerable collection of basic functions for computing summary statistics,
including mean, var, median, range and others. But then there are quite a few commonly used
functions, which curiously are missing in the stats package, think of e.g. skewness, kurtosis but
also the Gini-coefficent, Cohen’s Kappa or Somers’ delta. This led to a rank growth of libraries
implementing just one specific missing thing. There are plenty of “misc”-libraries out there,
containing versions of such functions and tests. We often would end up using a dozen libraries,
each time using just one single function out of it and suffering huge variety concerning
NA-handling, recycling rules and so on.

R has been developed in a university environment. This will be clear at the latest when you find
yourself working in a corporate environment, where Word document format is ubiquitous, and
you realize that only MS-Office (and no LATEX) is installed on your system (and the IT guys
won'’t give you admin rights). We were forced in this situation to write code for creating our
reports in MS-Word. (This works quite well for Windows, but not for Mac unfortunately.)

The origins of “DescTools” go back to a project in which we had to describe a huge dataset under
time pressure. Time ran out and we wanted to be faster next time. We then started to gather our
newly created functions and put them together. This collection has meanwhile grown to a
considerably versatile toolset for descriptive statistics, providing rich univariate and bivariate
descriptions of data without expecting the user to say much. There are numerous basic statistic
functions and tests included, possibly flexible and enriched with different approaches (if
existing). Special attention was paid to providing confidence intervals for all key figures as far as
possible.

Recognizing that most problems can be satisfactorily visualized with bar-, scatter- and dotplots,
still some more specific plot types are used in special cases and thus included in the package.
Some of them are rather new, and some of them are based on types found scattered in the
myriads of R packages found out there (partly rewritten to meet the design goals of the
package).

This document shows how data description can be accomplished with DescTools.
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Users, even expert statisticians, do not always screen the data.
B. D. Ripley, Robust statistics (2004)

1 Introduction

The analyst’s sacred duty before beginning any sort of statistical analysis is to take a preliminary
look at the data with three main goals in mind: first, to check for errors and anomalies; second,
to understand the distribution of each of the variables on its own; and third, to begin to
understand the nature and strength of relationships among variables.

Errors should, of course, be corrected, since even a small percentage of erroneous data values
can drastically influence the results and might completely invalidate the analysis. Understanding
the distribution of the variables, especially the outcomes, is crucial to choosing the appropriate
multipredictor regression method. Finally, understanding the nature and strength of
relationships is the first step in building a more formal statistical model from which to draw
conclusions.

To prevent the analyst to bypass these steps the describing process must be quick and simple.
So the principal goal of DescTools is to make data description easier, less costly, less time
consuming and less error-prone. One outstanding feature of the package is the combination of
numerical results and graphical representation which can mostly be automated and reported to
the console, but as well quite easily be exported to a Word Document.

The proper description of data depends on the nature of the measurement. The key distinction
for statistical analysis is between numerical and categorical variables. The temperature of the
pizza is a numerical variable, while the driver delivering it is categorical. The delivery time is
numerical, whereas the area of the customer is categorical.

A secondary but sometimes important distinction within numerical variables is whether the
variable can take on a whole continuum or just a discrete set of values. So the temperature
would be continuous, while number of pizzas ordered (count) would be discrete.

Categorical variables can be divided in two groups depending on whether the categories are
ordered or unordered. So, for example, categories of quality (low, medium, high) would be
ordered, while the operator would be unordered. A categorical variable is ordinal if the
categories can be logically ordered from smallest to largest in a meaningful; otherwise it is
unordered or nominal. Some overlap between types is possible. For example, we may break a
numerical variable (such as exact total amount) into ranges or categories. Conversely, we may
treat a categorical variable as a numerical score, for example, by assigning values one to three to
the ordinal responses Low, Medium, High. Most of the basic analysis methods for numerical
scores (e.g., linear regression or t-tests) have interpretations based on average scores. So

assigning scores to a categorical variable is effective if average scores are readily interpretable.
[3]

A describing procedure must take all these types and properties into account. The function Desc
has been designed to describe variables depending on their type with some reasonable statistic
measures and an adequate graphic representation. It includes code for describing logical
variables, factors (ordered and unordered), integer variables (typically counts), numeric
variables, dates and tables and matrices.

Data frames will be split into their variables and the single variable will be described. A formula
interface is implemented to easily describe variables in dependence of others.

The output can either be sent to the R-console or as well directly redirected to a MS-Word

document. The latter works only in Windows with MS-Office installed, but Mac users can leave
the wrd argument away and add a plotit = TRUE argument to have the full results in the console.
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Note: For all the following examples in this document, library(DescTools) must be declared.

2 Categorical Variables

The first variable to be described is an unordered factor. Factors are typically best detailed by a
frequency table of their levels. It's not clear how the level order should be set. Especially the
given order of levels is rarely helpful in practice. So we choose a pareto rule, the most frequent
levels first as the default order for the output table.

Ordered factors would be sorted after their natural order by default. The default order can
always be changed by setting the ord argument to either "desc" (for descending frequency
order), "asc" (ascending order), "name" (alphabetical order) or "level" (order of the
levels).

Desc(d.pizza$driver, plotit=TRUE)

length n NAs levels unique dupes
1'209 1'204 5 7 7 y
Carpenter
Carter
level freq perc cumfreq cumperc Taylor
1 Carpenter 272 .226 272 .226 Hunter
2 Carter 234 .194 506 .420 Miller
3 Taylor 204 .169 710 .590
4 Hunter 156 .130 866 .719 Farmer
5 Miller 125 .104 991 .823 Butcher
6 Farmer 117 .097 1'le8 .920 f LI IR R L T ! = )
7 Butcher 96 .080 1'204 1.000 50 100 200 300 00 02 04 06 08 1.0

frequency percent

Figure 10.2 Frequency plot of a categorical variable

The argument plotit can be set to produce a plot in the same step. It is possible to define this
value as an option to save the hassle of having to specify it explicitly each time.

If there are missing values, they will be listed in the first row, together with the length of the
vector and the number of levels.

Synopsis
length total number of elements in the vector, NAs are included here
n number of valid cases, NAs, NaNs, Inf etc. are not counted here
NAs number of missing values
levels number of levels
unique number of unique (observed) values.

Note: This is not necessarily the same number as levels, as there might
be empty levels. Thus, the number of levels might be higher than the
number of unique values (but not conversely).

dupes y(es) or n(o), reporting if there are any duplicate values in the vector. If
“n” (for no) is reported then there are only unique values in the
variable. This might typically be the case for identifiers. Factors usually
contain duplicates.

freq the number of observations (absolute frequency) of a specific level. The
order of a factors frequency table is by default chosen as “absolute
frequency-decreasing”.

perc the relative frequency of the specific level
cumfreq the cumulative frequencies of the levels
cumperc the same for the percentage values

Desc



If the labels of the factor exceed a certain length, they will be truncated. The length where this
happens can be controlled with the argument maxlablen. The cumulative bars can be blown off
with ecdf=FALSE. The other arguments follow the meaning of those in the function barplot.

Factors sometimes tend to have lots of levels. Listing all of them might not be informative. Thus
the frequency table is by default truncated in the case that there are more than a dozen values.
This can be avoided by setting the argument maxrows=Inf. The same argument can also be used
to list either only a defined number of levels. Say we wanted only to have 4 levels included we
can set maxrows=4. We can also restrict the maximum number of levels by defining the
maximum cumulative percentage. If we set e.g. maxrows=0.7, then as much levels will be
displayed as are needed to just exceed the cumulative percentage of 70%.

The number formats can be controlled by the DescToolsOptions "fmt.abs" and "fmt.perc".
These formats define the representation of the counts and of the percentages. (See Chapter
DescToolsOptions and the helpfile ?Desc.factor for more details)

The graphical representation consists of two horizontal barplots. The left one is displaying the
absolute frequencies with truncated x-axis. The left plot will always display the percentages
with fixed x-axis limits set to 0 and 1. The cumulative frequencies can be displayed or be left
away. The plot width is adapted to the length of the labels. If the labels get too long, they will be
truncated and displayed with ellipsis (...).

The plot can be customized with several arguments:

NULL, maxlablen c("bar", "dot"),

NULL, ecdf

25, type =
TRUE))

plot(Desc(d.pizza$driver), main =
col = NULL, border = NULL, xlim =

We can e.g. change colors and omit the cumulative distribution as in A):

plot(Desc(d.pizza$driver), main=NULL, maxlablen = 5,
type="bar", col=SetAlpha(hecru, ©.6), border=hecru,
x1lim=c (@, 300), ecdf=FALSE)

A) B)
d.pizza$driver (factor) d.pizza$driver (factor)

Carpe.. Came & —

Carte Catte.. = —

Taylo.. Taylo... * -

Hunte Hule [————= —a

Mille... Mille... * *
Farme Farma ———* —

Butch, Bulch., ———* T

T T T T T 1 r T T T T 1 T T T T T T T T T T i
(1} 50 100 180 200 250 300 OO a4 'F]

50 100 150 200 250 300 00 04 08

fraquency pearcent

Irequency percent

Or we can choose a “hist”-type plot as in B).

plot(Desc(d.pizza$driver), main=NULL, maxlablen = 5,
type="dot", col=hred, pch=16, xlim=c(@, 300))



3 Numerical Variables

3.1 Numeric

The temperature of the delivered pizza is a numeric variable. Numeric variables contain the
most information of all variable types and are typically described by a selection of statistical
measures for location, variation and shape.

Several features of the output are worth some consideration. The largest and smallest values
should be scanned for outlying or incorrect values. In real world erroneous (or awkwardly
coded) values are often found at the ends of a variable. Think of e.g. 999 or -256 for NA etc. So
the values and their frequencies (numbers in brackets) are reported. 0 plays a special role and is
therefore reported individually. In the example below “(2)” means that the value 20.2 can be
found twice in the variable.

The mean (or median) and standard deviation (or interquartile range IQR, resp. the median
absolute deviation mad) should be assessed as general measures of the location and spread of
the data. The quantiles deliver a good overall impression of the distribution. In the current
example we note that 90% of the data lie between 26 and 60 degrees and the inner 50%
between 42 and 55.

The skewness and kurtosis are usually more easily assessed by graphical means, though their
numerical values are included in the output. A large difference between the mean and median is
another cue for the skewness. In right-skewed data with a positive value of the skewness, the
mean is larger than the median, while in left-skewed data (skewness < 0), the mean is smaller
than the median.

Desc(d.pizza$temperature, main="", plotit=TRUE)

length n NAs unique @s  mean meanSE 0.05
1'209 1'170 39 375 0 47.937 0.291 004
0.03
.05 .10 .25 median .75 .90 .95 0.02
26.700 33.290 42.225 50 55.300 58.800 60.500 0.01
0.00
range sd vcoef mad IQR skew kurt oo T b 4
45.500 9.938 0.207 9.192 13.075 -0.842 0.051 100 EE -
,50%
lowest : 19.3, 19.4, 20, 20.2 (2), 20.35 00 : : : : ‘ :
highest: 63.8, 64.1, 64.6, 64.7, 64.8 10 20 30 40 50 60 70

Figure 3.1 Distribution of a numeric variable.

The plot in figure 3.1 as produced by the function PlotFdist combines a histogram with a
density plot, a boxplot and the plot of the empirical distribution function (ECDF). The scale for
the x-axis is synchronized over all plots. The median can thus be found on the boxplot as also in
the ecdf-plot.

The maximum and the minimum value are tagged with a tiny vertical dash upon the ecdf-line.
The mean is shown in the boxplot as grey cross, the grey bar is its confidence interval.

Let’s enumerate the features in detail. The first measures length, n, NAs, unique have again the
same meaning as above. NAs are silently removed from all subsequently calculations.

0s total number of zero values.
mean the arithmetic mean of the vector.
meanSE standard error of the mean, sd(x) / sqrt(n). (See also: function MeanCI(...))

This can be used to construct the confidence intervals for the mean,
defined as qt(p = 0.025, df = n-1) * sd(x) / sqrt(n).

.05, .., .95 quantiles of x, starting with 5%, 10%, 1. quartile, median etc.

rng range of x, max(x) - min(x)

-7-
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sd standard deviation

vcoef variation coefficient, defined as sd(x) / mean(x)

mad median absolute deviation

IQR inter quartiles range

skew skewness of x

kurt kurtosis of x

lowest the smallest 5 values. If there are bindings, the frequency of each
value will be reported in brackets.

highest same as lowest, but on the other end

Transformations can easily be entered in place.

Desc(1/d.pizza$temperature, digits=3, main="")
title(expression(frac(1,x)))

-
s
o
> |

length n NAs unique @s  mean meanSE 120 -
1'209 1'170 39 375 @ 0.022 0.000 100
80 4
. 60 4
.05 .10 .25 median .75 .90 .95 b
0.017 0.017 0.018 0.020 0.024 0.030 0.037 a0
[+]
range sd vcoef mad IQR skew kurt b 2 freemeer P S e R
0.036 0.006 ©.289 0.004 0.006 2.027 4.244 1.00 -
54
.50 1
lowest : ©.015, 0.015, 0.015, 0.016, 0.016 25 _
highest: ©.049, 0.050 (2), ©.050, 0.052, 0.052 W e e s g o
Andri2016-06-08
Figure 3.2 Distribution of a numeric variable.
There are several approaches commonly used for graphical comparing the variable’s
distribution to a reference distribution. The two most seen are firstly superposing the reference
density curve over the variable’s histogram and the second using a Q-Q-plot. A Q-Q-plot is used
to compare the shapes of distributions, providing a graphical view of how properties such as
location, scale, and skewness are similar or different in the two distributions.
z <- LinScale(z, newlow=0, newhigh = 32)[,1] )
LinScale

PlotFdist(z, args.curve = list(expr="dchisq(x, df=5)", col="darkgreen"),
args.boxplot=NA, args.ecdf=NA)

legend(x="topright", legend=c("kernel density", expression(chi["df=5"]*2-distribution)),
fill=c(getOption("coll", hred), "darkgreen"), text.width = 5)

We get
0.20 —
m kernel density
B 72 - distribution
0.15
0.10 |
0.05 |
0.00 - —
[ ] T T T T T |
0 5 10 15 20 25 30 35

Figure 3.3 Overlay of fitted y2-function.

This makes it clear, that this is not the best way to decide, whether the red curve follows our
hypothesized distribution or not. Where does randomness begin and where does it end?

-8-



The better approach is to use a QQ-plot, which by the way solves the x-axis scaling problem we

had in the overlay solution. The function P1otQQ is a wrapper for plotting QQ-plots with other PlotQQ
than normal distributions.

A ggline is inserted on which the points are likely to lie (approximately) if the two distributions

being compared are similar.

It sometimes might be hard to judge, if the points are (too) far away from the ggqline or not.

An idea to check the general variability is to use simulated sets with the desired distribution. If

our points exceed the confidence intervals, something is likely to be wrong.

In our example everything’s fine, of course, as we sampled from the tested distribution.

Q-Q plot for xz\=3

Sample Quantiles

T T T T
0 5 10 15

Theoretical Quantiles

Andri/20168-06-01

Figure 3.4 QQ plot for a y2-distributed variable.

set.seed(159)
z <- rchisq(100, df=5)

PlotQQ(z, function(p) qchisq(p, df=5), type="n", main=NA, args.qqline = NA)

X <- qchisq(ppoints(z), df=5)

y <- replicate(1000, sort(rchisq(10e, df=5)))

ci <- apply(y, 1, quantile, c(0.025,0.975))

DrawBand(x = c(x, rev(x)), y = c(ci[1,], rev(ci[2,])), col=SetAlpha(hblue, 0.3))

PlotQQ(z, function(p) qchisq(p, df=5), add=TRUE,
args.qqline=1list(col=hred,lwd=2, probs=c(0.1, 0.6)))

title(main=expression("Q-Q plot for" ~~ {chi”2}[nu == 5]))

What do the tests say about ozone being gamma distributed?

AndersonDarlingTest(na.omit(ozone), "pgamma", shape = m"2/v, scale = v/m)

#it Anderson-Darling test of goodness-of-fit

#it Null hypothesis: Gamma distribution

#it with parameters shape = 1.6310, scale = 25.8300
##

## data: na.omit(ozone)
## An = 0.66365, p-value = 0.5896

The observation seems compatible with the hypothesis.
Let’s superpose the model distribution curve to both, the histogram and the cumulative
distribution function.

ozone <- airquality$0zone; m <- mean(ozone, na.rm = TRUE); v <- var(ozone, na.rm = TRUE)

PlotFdist(ozone, args.hist = list(breaks=15),
-9._



args.curve = list(expr="dgamma(x, shape = m*2/v, scale = v/m)", col=hecru),
args.curve.ecdf = list(expr="pgamma(x, shape = m*2/v, scale = v/m)", col=hecru),
na.rm = TRUE, main = "Airquality - Ozone")

legend(x="topright",
legend=c(expression(plain(“"gamma: ") * Gamma * " " * bgroup("(", k * " =" *
over(bar(x)”2, s”2) * " , " * theta * plain(" = ") * over(s”2, bar(x)), ")") ),
"kernel density"),
fill=c(hecru, getOption("coll", hred)), text.width = 0.25)

Airquality - Ozone

0.025 5

2\
]

0.020 [ % |
O gamma: T'lk=—,6=—|
L& X}

0.015 |
0.010 \_’ B kernel density
oo _/. ,—\\

0.000 - ST —

1.00 §
75
50
25
.00 -

0 50 100 150 200

andri/2018-08-22

Figure 3.5 Compare empirical distribution with a gamma distribution.

3.2 Count data (discrete) or numeric data with few unique values

The next variable is a discrete variable, whose nature is somewhat between numeric and factors
as far as descriptive measures are concerned. In fact, if there are only just a few unique values,
then the factor representation (frequencies) might be more appropriate than the numeric
description (with densities etc.). We draw the line between factor and numeric representation
at a dozen of unique values in x. Beyond that number, the numeric description will be reported
and for fewer values the factor representation will be used.

In the numerical results scheme the extreme values will be replaced by a full frequency

representation with absolute values and percentages. The number of rows can be controlled via
maxrows in the same manner as with factor levels (see above).

Desc(d.pizza$weekday, plotit=TRUE)

length n NAs unique @s mean meanSE
1'209 1'177 32 7 0 4.44 0.06
.05 .10 .25 median .75 .90 .95 020
1.00 1.00 3.00 5.00 6.00 7.00 7.00 S
L1
range sd vcoef mad IQR skew kurt 0.10
6.00 2.02 0.45 2.97 3.00 -0.34 -1.17 N
0,00 -
level freq perc cumfreq cumperc Fennane it it ke it |
1 1 144 12.2% 144 12.2% ‘-?g:
2 2 117 9.9% 261 22.2% 50
3 3 134 11.4% 395 33.6% ;5.3: I ! i 1
4 4 147 12.5% 542 46.0% 1 2 3 4 5 6
5 5 171 14.5% 713 60.6%
6 6 244 20.7% 957 81.3%
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7 7 220 18.7% 1'177 100.0% Figure 3.6 Distribution of a discrete variable.

The above assessment also applies to numeric variables that contain only a few different values.
If there are only a handful of unique values, then a description by means of a histogram and a
density curve is not adequate. The density curve would start oscillating and the bins in the
histograms would lose their continuous nature.

Therefore, we change the graphic representation in such cases from a histogram to a histogram
like h-type plot leaving the density curve off.

set.seed(1984)
X <- sample(runif(10), 100, replace = TRUE)
PlotFdist(x, args.hist=1list(type="mass"))

X Probability mass function

020 o] Q <
00
015 E|) | ‘
0.05
0.10 |
| | | | i ) [ f
000 0.05 ‘ [ [ | | foi
| [ I ] 006 -1 | | | 1 oo
1.00 i
75 F i | 1
ot [ 1 l T ]
240 |
00~ : 0 2 4 6 ]

The same representation also makes sense for displaying some Poisson distributed values:

X <- sample(runif(10), 100, replace = TRUE)
PlotFdist(x, args.hist=1list(type="mass"))

pp <- rpois(n = 100, lambda = 3)
PlotFdist(pp, args.hist = list(type="mass", pch=21, col=horange,
cex.pch=2.5, col.pch=hred, lwd=3, bg.pch="white"),
args.boxplot = NULL, args.ecdf = NA, main="Probability mass function")

4 Logical values

Dichotomous variables do not have real dense (univariate) information. The variable
wine_ordered for example contains only two values, 0 and 1. Still it is usually interesting to
know, how many NAs there are, besides the frequencies. In DescTools the individual frequencies
are reported together with a confidence interval, calculated by BinomCI using the option
"Wilson", which provides a good default in most cases.

Desc(d.pizza$wine_ordered, plotit=TRUE)

-11 -



length n NAs unique 0 1
1'209 1'197 12 2

freq perc 1ci.95 uci.952 [ il_

0 1010 .844 .822 .863
1 187 .156 .137 .178

0¢i99 B ¢i.95 8¢i90
1 95%-CI Wilson

0.0 0.2 04 0.6 0.8 1.0

Figure 4.1 Distribution of a numeric variable.

This is basically a univariate horizontal stacked barplot, with confidence intervals on the
confidence levels of 0.90, 0.95 and 0.99. The vertical line denominates the point estimator.

5 Time variables

5.1 Dates

A date variable is rarely described in a univariate context regarding its calendar properties.
Nevertheless, the distribution of weekdays or months can sometimes provide us with surprising
insights into seasonal structures of the variables. We would normally choose a description
similar to numeric values, supplemented by an analysis of the weekday and month for grasping
anomalies concerning extreme, invalid or missing values.

Desc(d.pizza$date, plotit=TRUE)

length n NAs unique
1'209 1'177 32 31
97.4%  2.6%

lowest : 2014-03-01 (42), 2014-03-02 (46), 2014-03-03 (26), 2014-03-04 (19)
highest: 2014-03-28 (46), 2014-03-29 (53), 2014-03-30 (43), 2014-03-31 (34)

Weekday:

Pearson's Chi-squared test (1-dim uniform):
X-squared = 78.879, df = 6, p-value = 6.09e-15

level freq perc cumfreq cumperc Monday e o
1 Monday 144 .122 144 .122 Tuesday - o
2 Tuesday 117 .099 261 .222
3 Wednesday 134 .114 395 .336 Wednesday *°
4  Thursday 147 .125 542 .460 Thursday *—0
5 Friday 171 .145 713 .606 Friday -
6  Saturday 244 .207 957 .813
7 Sunday 220 .187 1'177  1.000 Saturday 3 .
Sunday o .
Months: i . i
100 150 200 250

Pearson's Chi-squared test (1-dim uniform):
X-squared = 12947, df = 11, p-value < 2.2e-16

level freq perc cumfreq cumperc

1 January 0 .000 0 .000
2 February (%] .000 (%] .000
3 March 1'177 1.000 1'177 1.000
4 April 0 .000 1'177 1.000
5 May 0 .000 1'177 1.000
6 June 0 .000 1'177 1.000
7 July 0 .000 1'177 1.000
8 August 0 .000 1'177 1.000
9  September 0 .000 1'177 1.000
10 October 0 .000 1'177 1.000
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11 November (%] .000 1'177 1.000

12 December 0 .000 1'177 1.000
By days : January |e ©
February * 0
level freq perc cumfreq cumperc March °© *
1 2014-03-01 42 .036 42 .036 April |e o
2 2014-03-02 46 .039 88 .075 May |e ©
3 2014-03-03 26 .022 114 .097 June |e ©
4  2014-03-04 19 .016 133 .113 July |e o
5  2014-03-05 33 .28 166 .141 August | #o
6 2014-03-06 39 .033 205 .174 Geilebar [wd
7  2014-03-07 44  .037 249 .212
October |® ©
8 2014-03-08 55 .047 304 .258 S i |we
9  2014-03-09 42 .036 346 .294
10 2014-03-10 26 .022 372 .316 Recember: oo
11 2014-03-11 34 .029 406 .345 T b e e e Aol o
12 2014-03-12 36 .031 442 .376
13 2014-03-13 35 .030 477 .405
14 2014-03-14 38 .032 515 .438
15 2014-03-15 48 .041 563 .478
16 2014-03-16 47 .040 610 .518 50
17 2014-03-17 30 .025 640 .544 w04 d
18 2014-03-18 32 .027 672 .571 11 1
19 2014-03-19 31 .026 703 .597 %0 '
20 2014-03-20 36 .031 739 .628 20 - -
21 2014-03-21 43,037 782 .664 10
22 2014-03-22 46 .039 828 .703 oS GLLLLLLLL LU L L P L P
23 2014-03-23 42 .036 870 .739 1 4 7 11 15 19 23 27 31
24 2014-03-24 28 .024 898 .763 Mar
25 2014-03-25 32 .027 930 .790
26 2014-03-26 34 .029 964 .819
27 2014-03-27 37 .e31 1'001 .850
28 2014-03-28 46 .039 1'047 .890
29 2014-03-29 53 .045 1'100 .935
30 2014-03-30 43,037 1'143 .971

31 2014-03-31 34 .029 1'177 1.000

5.2 Timeseries ACF-plot

For a serious time series analysis, we need the representation of the temporal course to be able
to recognize the internal structures and the autocorrelative connections. For this task base R
already contains a comprehensive set of tools for this purpose. We here contribute a more
condensed variation of basic plots. The function PlotACF() produces a combined plot of a time
series and its autocorrelation and partial autocorrelation, which is often used in introductory
course for time-series.

PlotACF (AirPassengers)
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6 data.frames

6.1 Overview

For a data frame we would normally like to have a quick overview over the contained variables.
Desc(d.pizza)

This will produce the following table containing the types of the variables, as well as the levels
for the factors and potential labels. Missing values are reported for each variable in absolute and
relative frequencies. The overview alone can be produced with Abstract(d.pizza).

data.frame: 1209 obs. of 16 variables

Nr ColName Class NAs Levels Label

1 index integer . -

2 date Date 32 (2.6%) -

3 week numeric 32 (2.6%) -

4  weekday numeric 32 (2.6%) -

5 area factor 10 (0.8%) (3): 1-Brent, 2- -
Camden, 3-
Westminster

6  count integer 12 (1.0%) -

7  rabate logical 12 (1.0%) -

8  price numeric 12 (1.0%) -

9 operator factor 8 (0.7%) (3): 1-Allanah, 2- -
Maria, 3-Rhonda

10 driver factor 5 (0.4%) (7): 1-Butcher, 2- -

Carpenter, 3-Carter,
4-Farmer, 5-Hunter,

11 delivery_min numeric . -

12 temperature numeric 39 (3.2%) This is the
temperature in
degrees Celsius
measured at the
time when the pizza
is delivered to the
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client.

13 wine_ordered integer 12 (1.0%) -
14 wine_delivered integer 12 (1.0%) -
15 wrongpizza logical 4 (0.3%) -
16 quality ordered, factor 201 (16.6%) (3): 1-low, 2- -

medium, 3-high

Then each variable is described according to the type of its class.

6.2 Missing data

An interesting idea for creating a visual representation of missing data was brought to my
attention by Henk Harmsen. The following plot symbolizes each missing value with a vertical
line. The x-axis represents the index of the record. On the right side are the numbers of missings
noted.

Missing pizza data

index 0
aate || ][ |l [ | | 22
week | | L [l [ -
weekday | \ [ [l [ -~
area | | | | 10
count ‘ ‘ | ‘ | 12
rabate ‘ ‘ | ‘ | 12
price \ \ | \ | 12
operator | ‘ 8
driver | ‘ ‘ 5
delivery_min 0
temperature | R R T
wine_ordered \ \ | \ | 12
wine_delivered ‘ ‘ | ‘ | 12
wrongpizza ‘ ‘ | | 4
auality [ [T T I0EE 1 WO OE IO TE AT e e 200

T T T T T T 1

0 200 400 600 800 1000 1200

The missing values can be clustered such as to display several areas of missing values. This can
be helpful for detecting dependencies or patterns within the missings.

PlotMiss(d.pizza, main="Missing pizza data", clust = TRUE)
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Missing pizza data

index 0
date [l 32
week . 32
weekday i 32
area | 10
count I 12
rabate I 12
price | 12
operator | 8
driver | 5
delivery_min 0
temperature | | B 3o
wine_ordered || 12
wine_delivered || 12
wrongpizza | 4
ity || |

\ T T T T T 1

0 200 400 600 800 1000 1200

Andri/2018-08-15

7 Pairwise Numeric ~ Categorical

Desc implements a formula interface allowing to define bivariate descriptions straight forward.
The formula supports the ., meaning all remaining variables in the given data frame. This allows
in particular the description of a response variable by a freely definable set of further
explanatory variables. So we could describe temperature pairwise by all remaining variables
defined in the data argument.

Desc(temperature ~ ., data=d.pizza[, c("area","driver","delivery_min","temperature")])

This can as well be reversed in the sense that the dot is defined as response variable and so all
the variables will be plotted against one predictor variable.

Desc(. ~ temperature, data=d.pizza[, c("area","driver","delivery min","temperature")])

7.1 Boxplot and Designplot

A numeric variable vs. a categorical is best described by group wise measures. Here the valid
pairs are reported first. Missing values in the single groups are documented in the results table
and missing values on the grouping factor are mentioned with a warning at the end of the table,
if existing at all.

Desc(temperature ~ driver, d.pizza, digits=1, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'166 (96%), missings: 43 (4%), groups: 7

Butcher Carpenter Carter Farmer Hunter Miller Taylor
mean 49.6 43,51 50.4 50.9 52.12 47.5 45.1
median 51.4 44 .8* 51.8 54.1 55.12 49.6 48.5
sd 8.8 9.4 8.5 9.0 8.9 8.9 11.4
IQR 12.0 12.5 11.3 11.2 11.6 8.8 18.4
n 96 253 226 117 156 121 197
np 0.082 0.217 0.194 0.100 0.134 0.104 0.169
NAs 0 19 8 (2] 0 4 7
0s 0 (2] 0 (2] (2] 0 (2]
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* min, 2 max

Kruskal-Wallis rank sum test:

Kruskal-Wallis chi-squared = 141.9349, df =

Warning:
Grouping variable contains 5

NAs (0.414%).

6, p-value < 2.2e-16

n=96 n=253 n=226 n=117 n=156 n=121 n=197 means
e ; e : (> Hunter -+
=2 : = :
= : ; Farmer +
: Carter -+
— 2
= | Butcher +
w —
T ; @ |
] ' ! : : < ——1
g 5 : ; ; : Miller -+
! ! o |
g - : H o 8 ! ¥
1 —— i
' ' Taylor +
o [+] -
: 1 T
& — i e Carpenter —
T T T T T T T driver
Butcher  Carpenter Carter Farmer Hunter Miller Taylor

As default graphical representation a boxplot is chosen combined with a means-plot as it is often
used in ANOVA analysis.

In case where we have only a few levels in the explanatory variable, we might prefer a
presentation by a density plot, combined with a boxplot. The density allows a better insight in
the internal distribution of the variable.

Here we also change the test being used to compare the response between the two levels
(t.test() instead of kruskal.test()).

(z <- Desc(temperature ~ rabate, d.pizza, test=t.test, digits=1, plotit=FALSE))
plot(z, type="dens")

temperature ~ rabate

Summary :

n pairs: 1'209, valid: 1'158 (95.8%), missings: 51 (4.2%), groups: 2

FALSE  TRUE temperature ~ rabate
mean 46.9 49.0
median 49.4 50.7 0.05
sd 10.2 9.5 ’ : ?étEE
IQR 13.6 12.5 0.04
n 580 578
0.03

np 50.1% 49.9%
NAs 21 18 0.02
0s ] 0 0.01 4
Welch Two Sample t-test: 0.00

t = -3.7159, df = 1149.2,

p-value = 0.0002122 TRUE OO === === == === T - ---- 4
Warning: FALSE L aRaRE - ------ 4

Grouping variable contains T T T I T T I ]

12 NAs (0.993%). 10 20 30 40 50 60 70 80

andri/2018-06-22

So we learn that pizzas given a rebate are also significantly warmer, when delivered to the
client.
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8 Pairwise Categorical ~ Numeric

No, it’s not the same as numeric ~ categorical. The design is such, that the response variable is
categorical and the predictor numeric. With a model one would set up a multinomial regression
(or logistic in the case of 2 categories).

Desc(area ~ temperature, data=d.pizza, digits=1, wrd=wrd)

Summary:
n pairs:

mean
median
sd

IQR

n

np

NAs

0s

1 min, 2 max

1'209, valid: 1'161 (96%), missings: 48 (4%), groups: 3

Brent
51.1

2

53.42

8.7
10.5
467
0.402
7

]

47.4
50.3
10.1
12.2
335
0.289
9

(<]

Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 115.83, df = 2, p-value < 2.2e-16

Warning:

Camden Westminster

44 .31
45.91
9.8
13.2
359
0.309
22
(]

Grouping variable contains 10 NAs (0.827%).

Proportions of area in the quantiles of temperature:

Brent

Camden

=457

Q1

Q2

Q3

Q4

0.244 0.345 0.405 0.618
0.289 0.266 0.363 0.236
Westminster 0.467 0.389 0.232 0.146

40
L

- oaa}mm}---..........

|
il e

Camden

Westminster

Brent

Camden

‘Westminster

(o] Qz Q3 04

9 Pairwise Categorical ~ Categorical

Two categorical variables are described by a contingency table and a mosaicplot.
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Summary:

n: 1'191, rows: 3, columns:

Pearson's Chi-squared test:

X-squared = 17.905, df = 4, p-value =
Likelihood Ratio:
X-squared = 18.099, df = 4, p-value =
Mantel-Haenszel Chi-squared:
X-squared = 8.6654, df = 1, p-value =
Phi-Coefficient 0.123
Contingency Coeff. 0.122
Cramer's V 0.087
operator Allanah Maria
area
Brent freq 153 153
perc 12.8% 12.8%
p.row 32.3% 32.3%
p.col 41.9%  39.9%
Camden freq 123 108
perc 10.3% 9.1%
p.row 36.2% 31.8%
p.col 33.7% 28.2%
Westminster  freq 89 122
perc 7.5% 10.2%
p.row 23.5% 32.3%
p.col 24.4%  31.9%
Sum freq 365 383
perc 30.6% 32.2%
p.row
p.col

0.001288
0.001181
0.003243
Rhonda Sum
167 473
14.0% 39.7%
35.3%
37.7%
109 340
9.2% 28.5%
32.1%
24.6%
167 378
14.0% 31.7%
44.2%
37.7%
443 1'191
37.2% 100.0%

area

Brent

Camden

Westmninster

Brent

Camden

Westminster

Further information about tables are shown in the vignette Tables.

10 Pairwise Numeric ® Numeric

10.1 Scatterplot

. - i

Maria

Maria

. - o

operator

. . - .

Two numerical variables have no obvious standard description as their relationship can have
manifold forms. Thus, we're going to report only the simple correlation coefficients (Pearson,

Spearman and Kendall) and a hopefully helpful scatterplot.

The variables are plotted as xy-scatterplots with interchanging mutual dependency,

supplemented with either a LOESS or a spline smoother.

Desc(temperature ~ delivery_min,

Summary:
n pairs:

Pearson corr. -0.575
Spearman corr.: -0.573
Kendall corr. -0.422

1'209, valid: 1'170 (97%), missings:

d.pizza, plotit=TRUE)

Scatterplots for two numeric variables:
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temperature ~ delivery_min

50
1

temperature

T T T T T T
10 20 30 40 50 60

delivery_min

Figure 10.2 Scatterplot of temperature and delivery time.

10.2 Boxplot in 2 dimensions: PlotBag

If we would want to have more information on the distribution of the two values, we can
alternatively try a bagplot. This function transposes the boxplot idea in the 2-dimensional space.
The points are outliers, the lightblue area is the area within the fences in a normal boxplot and
the darkblue area is the inner quartile range.

The median is plotted as orange point in the middle.

This code is taken verbatim from Peter Wolf’s aplpack package.

d.frm <- d.pizza[complete.cases(d.pizza[,c(""temperature”,"delivery_min")]),]

PlotBag(x=d.frm$delivery_min, y=d.frm$temperature, xlab="delivery_min",
ylab="temperature', main="Two-dimensional Boxplot')

Two-dimensional Boxplot

60

temperature
40

30

20
1

delivery_min

10.3 PlotMarDens

This plot shows a scatterplot of two numerical variables temperature and delivery_time, by area.
On the margins the density curves of the specific variable are plotted, also stratified by area.

PlotMarDens(y=d.pizza$temperature, x=d.pizza$delivery min, grp=d.pizza$area,
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xlab="delivery_min", ylab="temperature",

col=c("brown","orange","lightsteelblue"), panel.first=grid(),
main="temperature ~ delivery min | area" )

temperature ~ delivery_min | area

o Brent
Camden
Westminster

temperature

10 20 30 40 50 60

delivery_min

11 Table One

Create a table summarizing continuous, categorical and dichotomous variables, optionally
stratified by one or more variables, while performing adequate statistical tests. The function will
make use of the format definitions in the DescToolsOptions().

ToWrd(TOne(x=d.pizza[, c("temperature","delivery min","driver","
grp=d.pizza$quality),

wrd=GetNewWrd())

wine_ordered")],

will produce the following table:

var total low medium high
h 1'008 156 (15.5%) 356 (35.3%) 496 (49.2%)
temperature 47.9 (9.9) 32.9(7.8) 45.6 (7.4) 53.6(6.5) ***1
delivery_min 25.7(10.8)  33.9(11.7)  26.5(10.1) 22.6(9.5) ***1
driver *Hk 3

Butcher 79 (8.0%) 10 (6.5%) 36 (10.1%) 33 (6.7%)

Carpenter 225(22.6%)  59(38.1%)  90(25.4%) 76 (15.4%)

Carter 196 (19.4%) 11(7.1%)  72(20.3%) 113 (22.9%)

Farmer 94 (9.7%) 10 (6.5%) 26 (7.3%) 58 (11.7%)

Hunter 130 (13.0%) 8(5.2%) 43 (12.1%) 79 (16.0%)

Miller 109 (10.4%) 16 (10.3%) 35(9.9%) 58 (11.7%)

Taylor 171(16.9%)  41(26.5%) 53 (14.9%) 77 (15.6%)
wine_ordered (=1) 161 (16.1%)  32(20.8%) 63 (17.9%) 66 (13.4%) . 3

1) Kruskal-Wallis test, 2) Fisher exact test, 3) Chi-Square test
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12 Concentration

Lorenz-curves can be found in other libraries. This implementation starts with that from the
library ineq, adding some value by calculating confidence intervals for the Gini coefficient.

X <- c(10, 1@, 20, 20, 500, 560)

lc <- Lc(x)

plot(lc)

points(lc$p, lc$L, cex=1.5, pch=21, bg="white", col="black", xpd=TRUE)

Gini(x)
Gini(x, unbiased = FALSE)

Gini(x, conf.level = 0.95)

Lorenz curve

08

06

04

0.2

0.0 F T T T T

Gini(x)
[1] ©.7535714

Gini(x, unbiased = FALSE)
[1] ©.6279762

Gini(x, conf.level=0.95)
gini Iwr.ci upr.ci
0.7535714 0.2000000 0.8967742

13 Multivariate graphical description

13.1 Correlation plot

These functions produce a graphical display of a correlation matrix. In the classic matrix
representation, the cells of the matrix can be shaded or coloured to show the correlation value.
In the right circular representation, the correlations are coded in the line width of the
connecting lines. Red means a negative correlation, blue a positive one.

par(mfrow=c(1,2))
m <- cor(d.pizza[,which(sapply(d.pizza, is.numeric))], use="pairwise.complete.obs")

PlotCorr(m, col=PalDescTools(''RedWhiteBluel™, 100), border="grey",
args.colorlegend=list(labels=Format(seq(1,-1,-.25), 2), frame="grey'))
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PlotWeb(m, col=c(hred, hblue))

wine_ordered

weekday
count

price
delivery_min
temperature
wine_delivered

1.00
index

0.75
week

0.50
weekday .

025

- index
- Week

count

price ..

0.00

delivery_min

-0.25
-0.50 ©

-1.00

temperature

wine_ordered

wine_delivered

We can combine some features and produce a plot which displays only the significant
correlations, includes the correlation coefficient for significant correlations and groups variables
with similar results together.

m <- cor(mtcars)

idx <- order.dendrogram(as.dendrogram(
hclust(dist(m), method = "mcquitty")
))

# now let's get rid of all non significant correlations

p <- PairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)
# ok, got all the p-values, now replace > 0.05 with NAs

m[p > ©.05] <- NA

PlotCorr(m[idx, idx], main="mtcars - correlation")

x <- matrix(rep(1:ncol(m),each=ncol(m)), ncol=ncol(m))

y <- matrix(rep(ncol(m):1,ncol(m)), ncol=ncol(m))

txt <- Format(m[idx, idx], d=3, leading = "drop", na.form = "n.s.")
idx <- upper.tri(matrix(x, ncol=ncol(m)), diag=FALSE)
text(x=x[1idx], y=y[idx], label=txt[idx], cex=0.8, xpd=TRUE)
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13.2 PlotPolar (Radarplot)
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This function produces a polar plot but can also be used to draw radarplots or spiderplots.

A)

d.car <- scale(mtcars[1:6,1:7], center=FALSE)

# let's have a palette with thransparent colors

cols <- SetAlpha(colorRampPalette(c("red","yellow","blue"), space = "rgb")(6), 0.25)

PlotPolar(d.car, type="1", fill=cols, main="Cars in radar")

PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")
legend(x=2, y=2, legend=rownames(d.car), fill=SetAlpha(cols, NA))

Cars in radar

disp

hp

drat

Mazda RX4
Mazda RX4

oyl Datsun 710

EEOOENR

Valiant

Hormnet 4 Drive
Hornet Sportabout

Wag

mpg

gsec

A)

Summer
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B)

m <- matrix(UKgas, ncol=4, byrow=TRUE)

cols <- c(SetAlpha(rep(“green", 10), seq(0,1,0.1)),
SetAlpha(rep("blue", 10), seq(0,1,0.1)),

SetAlpha(rep(“"orange", 10), seq(0,1,0.1)))

PlotPolar(r=m, type="1", col=cols, lwd=2 )
PolarGrid(ntheta=4, alabels=c("Winter","Spring","Summer","Autumn"), lty="solid")

legend(x="topright", legend=c(1960,1970,1980), fill=c("green","blue","orange"))

A barplot in polar coordinates can be produced by means of the function DrawAnnulusSector.

Some data

Andri/2016-08-01

X <- c(4,8,2,8,2,6,5,7,3,3,5,3)
theta <- (0:12) * pi / 6
PlotPolar(x, type = "n", main="Some data")
PolarGrid(nr = 0:9, ntheta = 24, col="grey", lty=1, rlabels = NA, alabels = NA)
DrawAnnulusSector(x=0, y=0, radius.in=@, radius.out=x,
angle.beg = theta[-length(theta)], angle.end = theta[-1],
col=SetAlpha(rainbow(12), ©.7), border=NA)

segments(x0 = -10:10, y0 = -.2, yl1l=0.2)
segments(x0=-10, x1=10, y0 = 0)
segments(y® = -10:10, x0 = -.2, x1=0.2)
segments(y0=-10, yl1=10, x0 = 0)

BoxedText(x=0, y=c(0,3,6,9), labels = c(0,3,6,9), xpad = .3, ypad=.3, border="grey35")
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13.3 PlotFaces

A nice idea for the concrete representation of your customer’s profile is to produce a Chernoff
faces plot. The rows of a data matrix represent cases and the columns the variables.

m <- data.frame( lapply(

d.pizza[,c("temperature","price"”,"delivery _min","wine_ordered", "weekday")]
, tapply, d.pizza$driver, mean, na.rm=TRUE))

PlotFaces(m, ncol=7, nrow=1, main="Driver's characteristics")

Driver's characteristics

Butcher Carpenter Carter Farmer Hunter Miller Taylor
® ® g @ ‘ @, @ l

L N 470 p | 1 ()
¥ '!‘ L=

13.4 PlotTreemap
This function produces a treemap.

# get some data

data(GNI2010, package="treemap")

gn <- GNI2@10[,c("iso3","population","continent","GNI")]
gn <- gn[gn$GNI!=0, ]

# define a color
gn$coll <- SetAlpha("steelblue", LinScale(gn$GNI, newlow=0.1, newhigh=0.6))

b <- PlotTreemap(x=gn$population, grp=gn$continent, col=gn$coll, labels=gn$iso3,
main="Gross national income (per capita) in $ per country in 2010",
labels.grp=NA, cex=0.7)

# get the midpoints
mid <- do.call(rbind, lapply(lapply(b, "[", 1), data.frame))

# and write the continents’ text

DrawBoxedText(x=mid$grp.x, y=mid$grp.y, labels=rownames(mid), cex=1.5, bold=TRUE,
border=NA, col=SetAlpha("white",0.7) )
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14 Supplements to base R plots

14.1 Lineplots

There are many flavours of line plots, most (all?) of which can be handled by the function
matplot(). We would generally desist from defining own functions, that only set suitable
arguments for another already existing function, as we fear we would run into a forest of new
functions, loosing overview. And yet, the parametrization of matplot() can be such a traumatic
experience that we moved away from the principle and devised our own procedure, extended by
a nifty and well readable legend at the right side.

PlotLinesA(t(ms), col=PalTibco(), lwd=2)

20 = Butcher

1.5

1.0

0.3 7 Miller

= -

0.0 4 Carpenter
= Taylor

05 7 Hunter
= Farmer

10 — = Carter

-1.5

T T T T T
temperature price delivery_min wine_ordered weekday

Andri/2016-04-27
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14.2 PlotPyramid

A special kind of horizontal barplot is a “pyramid plot”, where the bars are plotted back to back.
This is sometimes needed, when your boss has specific and strict ideas how his presentation
should look like.

d.sda <- data.frame(
kKt x = c("NW","TG","UR","AI","OW","GR","BE","SH", "AG", "BS", "FR"),
apon=c( 8 11, 9, 7, 9, 24, 19, 19, 20, 43, 27 ),
sda_n = c(127, 125, 121, 121, 118, 48, 34, 33, ©, 0, ©0))

PlotPyramid(1lx=d.sda[,c("apo_n","sda_n")], ylab=d.sda$kt x,
col=c("lightslategray", "orange2"), border = NA, ylab.x=0, xlim=c(-110,250),
gapwidth = NULL, cex.lab = 0.8, cex.axis=0.8, xaxt = TRUE,
1xlab="Drugstores", rxlab="General practitioners"”,
main="Density of general practitioners and drugstores”,
space=0.5, args.grid=list(lty=1))

Density of general practitioners and drugstores
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14.3 PlotDot

The base function dotchart has been improved but still has some potential for extensions.
Especially an add argument is sometimes useful and returning the y-coordinates for the points
would allow to add elements.

PlotDot implements these extensions and allows adding error bars. This is interesting, as the
calculation of the x-limits should be done with respect to the bars and not only to the points.

# add some error bars

PlotDot (VADeaths, main="Death Rates in Virginia - 1940", col="red", pch=NA,
args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,
pch=21, cex=1.4))

# add some other values
PlotDot (VADeaths+3, pch=15, col="blue", add=TRUE, labels=NA)
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14.4 PlotBubble

Bubbles can actually easily be produced with the standard plot function. This function here
helps you defining appropriate axis limits.

PlotBubble(d.world$x, d.world$y, area=d.world$pop/90, col=SetAlpha("deeppink4",0.4),
border="darkblue",

xlab="", ylab="", panel.first=grid(), main="World population")
text(d.world$x, d.world$y, labels=d.world$country, cex=0.7, adj=0.5)
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14.5 Venn plots

Now and then one might want to plot a Venn diagram. This function does this for up to 5
datasets using the simple proposed geometric representations.

(For more than 5 datasets the Venn representation loses its simplicity and other plot types
become more adequate.)

example(PlotVenn)

PlotVenn(x=x[1:3], col=SetAlpha(c(PalHelsana()[c(1,3,6)]), 0.4))
PlotVenn(x=x[1:4], col=SetAlpha(c(PalHelsana()[c(1,3,6,4)]), 0.4))
PlotVenn(x=x[1:5], col=SetAlpha(c(PalHelsana()[c(1,3,6,4,7)]), 0.4))
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14.6 Areaplot

Areaplots have a high “ink factor”?, say they use much ink to display the information and are
therefore rarely the best way of representing data. But again, when your boss wants it this way,
here’s a function to produce it easily.

t.o0il <- t(matrix(c(13.3,11.4, 9.7,10.6,12.7,11.0,10.6,13.5,
5.3, 3.6, 5.8, 8.4, 9.1,14.8,10.6, 9.6,
4.9, 3.1, 3.0, 6.0,12.2, 7.1, 7.3,10.0,
2.1, 2.6, 2.7, 3.5, 4.7, 5.0, 4.4, 4.3), nrow=4, byrow=TRUE,
dimnames = list(c("ExxonMobil","BP","Shell","Eni"),

c("1998","1999","2000","2001","2002","2003", "2004","2005"))))
t(t.oil)

par(mfrow=c(1,2), mar=c(5,4,5,5))
col <- SetAlpha(PalHelsana(), 90.7)
PlotArea(t.oil, col = col, las = 1, frame.plot=FALSE)
mtext(side=4, text=colnames(t.oil), las=1,
at=Midx(tail(t.oil, 1)[,], incl.zero=TRUE, cumulate=TRUE))

PlotArea(prop.table(t.oil, 1), col = col, las = 1, frame.plot=FALSE)

tab (absolute values)
> t(t.oil)
1998 1999 2000 2001 2002 2003 2004 2005

ExxonMobil 13.3 11.4 9.7 10.6 12.7 11.0 10.6 13.5
BP 5.3 3.6 5.8 8.4 9.1 14.8 106.6 9.6
Shell 4.9 3.1 3.0 6.012.2 7.1 7.3 10.0
Eni 2.1 2.6 2.7 3.5 4.7 5.0 4.4 4.3

ptab (relative values)

1998 1999 2000
ExxonMobil ©.520 0.551 0.458

BP 0.207 0.174 0.274
Shell 0.191 0.150 0.142
Eni 0.082 0.126 0.127

2001 2002 2003 2004 2005
0.372 0.328 0.290 0.322 0.361
0.295 0.235 0.391 0.322 0.257
0.211 0.315 0.187 0.222 0.267
0.123 0.121 0.132 0.134 0.115

! Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.), Cheshire, CT: Graphics Press,

ISBN 0-9613921-4-2.
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14.7 PlotTernary
This produces a ternary or triangular plot.
data(Skye, package="MASS")
PlotTernary(Skye[c(1,3,2)], pch=15, col=hred, main="Skye",
1bl=c("A Sodium", "F Iron", "M Magnesium"))
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14.8 Polar plots

testlen <- c(sin(seq(®, 1.98*pi, length=100)) + 2 + rnorm(100)/10)
testpos <- seq(@, 1.98*pi, length=100)
# start at 12 o'clock and plot clockwise

PlotPolar(testlen, -(testpos - pi/2), type="p", main="Test Polygon", col="green", pch=16)

PolarGrid(ntheta = rev(seq(@, 2*pi, by=2*pi/9) + pi/2),
alabels=Format(seq(@, 2*pi, by=2*pi/9),2)[-10], col="grey",
lty="solid", 1lblradians=TRUE)

# just because of its beauty
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t <- seq(9,2*pi,0.01)

PlotPolar(r=sin(2*t)*cos(2*t), theta=t, type="1", lty="dashed", col="red")
PolarGrid()
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14.9 Plot Functions

Functions can be plotted a bit more comfortable by means of the function PlotFun. The idea
behind it is to make use of the formula interface, for example x*2 ~ x, and let the function
choose appropriate defaults for the rest. (This would be the best case scenario...;-).

There can as well be further parameters defined for plotting more than one function at once.
Arguments as type="n"" or add=TRUE are supported.

The function returns the calculated xy-coordinates as list. This can be used to modify the
coordinates afterwards, e.g. rotate or translate them.

# get some data
par(mfrow=c(2,2))
PlotFun(sin(2*t) ~ sin(t), from=0, to=2*pi, by=0.01, col="blue", lwd=2)

PlotFun(1+ 1/10 * sin(1@*x) ~ x, polar=TRUE, from=0, to=2*pi, by=0.001, col=hred)
# add a second curve with add=TRUE
PlotFun(sin(x) ~ cos(x), polar=FALSE, from=0, to=2*pi, by=0.01, add=TRUE, col="blue")

# lemniscate of Bernoulli

PlotFun((2*a”2*cos(2*t))”2 ~ t, args=list(a=1), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
col="darkblue", lwd=2)

# add the second curve in red

PlotFun((2*a”2*cos(2*t))"2 ~ t, args=1list(a=0.9), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
col="red", lwd=2, add=TRUE)

# calculate points for a third curve, but do not yet plot it

z <- PlotFun((2*a”2*cos(2*t))”2 ~ t, args=1list(a=0.9), polar=TRUE, from=0, to=2*pi+0.1,

by=0.01, add=TRUE, type="n")

# rotate the structure by pi/4

zz <- Rotate(z$x, z$y, theta=pi/4)

# add a polygon for being able to fill it

polygon(x = zz$x, y=zz$y, col=SetAlpha("yellow", 0.4))

# evolving circle

PlotFun(a*(sin(t) - t*cos(t)) ~ a*(cos(t) + t*sin(t)), args=1list(a=0.2), from=0, to=50,
by=0.01, col="brown")
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14.10 Legends and colour strips

The function ColorLegend produces colour strips, which often are needed for colour coded
maps.

plot(1:15,, xlim=c(0,10), type="n", xlab="", ylab="", main="Colorstrips")

# A
ColorLegend(x="right", inset=0.1, labels=c(1:10))

# B: Center the labels
ColorLegend(x=1, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(5), labels=1:5, cntrlbl = TRUE)

# C: Outer frame
ColorLegend(x=3, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(5), labels=1:4, frame="grey")

#D
ColorLegend(x=5, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(10), labels=sprintf("%.1f",seq(9,1,0.1)), cex=0.8)

# E: horizontal shape
ColorLegend(x=1, y=2, width=6, height=0.2, col=rainbow(500), labels=1:5,horiz=TRUE)

# F
ColorLegend(x=1, y=14, width=6, height=0.5, col=colorRampPalette(
c("red","yellow","green","blue", "black"), space = "rgb")(100), horiz=TRUE)

#G
ColorLegend(x=1, y=12, width=6, height=1, col=colorRampPalette(c("red","yellow",

"green","blue","black"), space = "rgb")(10), horiz=TRUE, border="black")
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15 Format, Strings and Date functions

15.1 Formatting numbers and dates

Number formatting can sometimes be a nightmare in base R. The function Format tries to
concentrate as much as possible form the functionality of formatC, format, symbol, pval etc. into
one simple interface.

The following example will use a space as big mark, align the numbers on the position of the “e”,
flip to scientific notation for numbers < 10-2 and for such > 104 and use 3 fixed digits for all
numbers.

X <- pi * 107(-5:7)
cbind(Format(x, big.mark=" ", align="e", sci=c(5,2), digits=3))

it [,1]

#[1,] " 3.142e-05"
#o[2,] " 3.142e-04"
## [3,] " 3.142e-03"
## o [4,] " 0.031 "
## [5,] " 0.314 "
## [6,] " 3.142 "
# [7,] "  31.416 "
## [8,] " 314.159 "

## [9,] " 3 141.593 "
## [10,] "31 415.927 "

## [11,] " 3.142e+05"
## [12,] " 3.142e+06"
## [13,] " 3.142e+07"

Engineering format, set with fmt = “eng”, will snap to powers of multiples of 3 when using
scientific notation.

Format(x, fmt="eng", leading="00", digits=2)

## [1] "31.42e-06" "314.16e-06" "03.14e-03" "31.42e-03" "314.16e-03" "03.14e+00"

## [7] "31.42e+00" "314.16e+00" "03.14e+03" "31.42e+03" "314.16e+03" "03.14e+06"
## [13] "31.42e+06"

Formatting dates use format codes “d” for days, “m” for months etc.

Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy")
## [1] "Fri, 28 November 2014" "Thu, 2 January 2014"

Format(Today(), fmt="dddd, dd.mm.yyyy")
## [1] "Thursday, 26.05.2016"

Format(Today(), fmt="dddd, yy/mm/dd")
## [1] "Thursday, 16/05/26"

Format(Today(), fmt="dddd, yy/mm/dd", lang="loc") # with local language
## [1] "Donnerstag, 16/05/26"

“«,_n

The format code “p” will produce formatted p-values and is a simple wrapper for format.pval.

Format(c(0.442, 0.02125, 4e-21), fmt="p")
## [1] "0.44200" "0.02125" "< 2.2e-16"

Significance stars mimics the function symnum.

Format(c(@.4, 0.02, 0.0004), fmt="*")
#E[L1] " U ke
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When formatting percentages the function Format will multiply the numbers with 100, round
them to the given number of fixed digits and append a “%”sign.
A sometimes suitable alternative format could be to drop the leading zeros.

Format(c(@.24534, 0.4512345, 1.347), fmt="%", digits=2)
## [1] "24.53%" "45.12%" "134.70%"

Format(c(@.24534, 0.4512345, 1.347), leading="drop", digits=2)
## [1] ".25" ".45" "1.35"

NAs and zeros must sometimes be formatted specially. Think eg. of sparse matrices, where one

«n

would like the Os being displayed as “.” or maybe even not at all “”.

Format(c(3.45, 451.2345, @, NA), digits=2, na.form="<NULL>", zero.form="-")
## [1] "3.45" "451.23" "-" "<NULL>"

Alignment can be done directly within the function. There are 3 special codes supported, left
alignment with “\\1”, centered with “\\c” and right with “\\r”.

cbind(Format(cumsum(107(0:6)), align="\\c", digits=e))

[,1]
(1,1 " 1
[2,] " 11
[3,] " 111
[4,] " 1111
[5,] " 11111 "

[6,] "111111 "
[7,] "1111111"

15.2 Date functions

Many date functions are presumably thought to be reached via format and some subsequent
cast in base R. However in the analyst’s daily life it’s often convenient to be able to directly
extract parts of a date. So DescTools contains the following ones:

day.name, day.abb Defined names of the days

AddMonths, AddMonthsYM Add a number of months to a given date

IsDate Check whether x is a date object

IsWeekend Check whether x falls on a weekend

IsLeapYear Check whether x is a leap year

LastDayOfMonth Return the last day of the month of the date x

DiffDays360 Calculate the difference of two dates using the 360-days system
Date Create a date from numeric representation of year, month, day
Day, Month, Year Extract part of a date

Hour, Minute, Second Extract part of time

Week, Weekday Returns ISO week and weekday of a date

Quarter Quarter of a date

YearDay, YearMonth The day in the year of a date

Now, Today Get current date or date-time

HmsToSec, SecToHms Convert h:m:s times to seconds and vice versa

Zodiac The zodiac sign of a date :-)
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15.3 Strings

String functions are scattered in base R and the solution for some daily tasks are sometimes
hard to find. Experts will solve most of their daily life string manipulation with regular
expressions. But beginners and a big part of advanced users are supposed to profit by a set of
basic string functions.

StrCap capitalize the first letter of a string

StrAbbr abbreviates a string

StrTrunc truncate string on a given length and add ellipses if it really was truncated
StrTrim delete white spaces from a string

StrPad fill a string with defined characters to fit a given length

StrRev reverse a string

StrChop split a string by a fixed number of characters.

StrCountW count the words in a string

Strval extract numeric values from a string

StrPos find position of first occurrence of a string in another one

StrIsNumeric  check whether a string does only contain numeric data

FixToTab create table out of a running text, by using columns of spaces as delimiter
StrDist compute Levenshtein or Hamming distance between strings

StrExtract extracts found matches

16 Financial functions

DescTools also contains a handful financial functions in order to be able to do the homework for
a beginner’s course in financial maths.

NPV Net present value for several cashflows

PMT Computes the periodic payment of an annuity.

IPMT Computes the interest payment for an investment for a specified period.

PPMT Computes the payment on the principal for an investment for a specified period.
IRR  Computes the internal rate of return for a series of cash flows.

YTM Computes the annual yield of a security that pays interest at maturity.

SLN Computes the straight-line depreciation of an asset for one period.

Computes the depreciation of an asset for a specified period by using the fixed-declining

DB balance method.

SYD Computes the sum-of-years digits depreciation of an asset for a specified period.

PlotCashFlow. A cash flow plotis a plot used in finance and allows you to graphically depict
the timing of the cash flows as well as their nature as either inflows or outflows. An "up" arrow
represents money received and a "down" arrow money paid out.

PlotCashFlow(x=c(6:9, 13:15), y=-c(rep(40, 4), rep(59,3)),
x1lim=c(6,17), labels=c(rep(49, 4), rep(50,3)))
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17 Additional tests

R has a kind of restricted view on what statistical tests are supposed to be useful in practice. The
selection of the implemented procedures undoubtedly also corresponds to the application
recommendation of the creators of R. Although we are aware that they have probably thought a
lot about it, here we put together a series of tests that are often quoted in the statistical
literature and should therefore at least be able to be re-enacted and discussed in their
advantages and disadvantages.

Name Purpose

ZTest One-sample z-test. Tests if a sample comes from a normal distribution
with known variance and specified mean, against the alternative that
it does not have that mean.

SignTest One-sample or paired-sample sign test. Tests if a sample comes from
an arbitrary continuous distribution with a specified median, against
the alternative that it does not have that median.

TTestA Student's t-test based on sample statistics

YuenTTest Yuen's robust t-Test with trimmed means and winsorized variances

MosesTest Moses Test of extreme reactions

JonckheereTerpstraTest Jonckheere-Terpstra trend test for medians

PageTest Page test for ordered alternatives

HotellingsT2Test Hotelling's T2 test for the one and two sample case

VarTest ChiSquare test for one variance and F test for two variances

SiegelTukeyTest Non-parametric Siegel-Tukey test for equality in variability.

LeveneTest Computes Levene's test for homogeneity of variance across groups.

PostHocTest Wrapper for several post hoc tests (Scheffe, LSD, Tukey) following an
ANOVA based on the resulting aov-object

ScheffeTest Scheffe test following an ANOVA as post-hoc test

DunnTest Dunn's test of multiple comparisons (following a Kruskal-Wallis test)

ConoverTest Conover's test of multiple comparisons (following a Kruskal-Wallis
test)

NemenyiTest Nemenyi's test of multiple comparisons (following a Kruskal-Wallis
test)

DunnettTest Dunnett's test of multiple comparisons

PearsonTest Chi-square goodness-of-fit test. Tests if a sample comes from a
specified distribution, against the alternative that it does not come
from that distribution.

AndersonDarlingTest Anderson-Darling test for normality

CramerVonMisesTest Cramer-von Mises test for normality

LillieTest Tests if a sample comes from a distribution in the normal family,
against the alternative that it does not come from a normal
distribution.

ShapiroFranciaTest Shapiro-Francia test for normality

JarqueBeraTest Tests if a sample comes from a normal distribution with unknown
mean and variance, against the alternative that it does not come from
a normal distribution.

CochranQTest Cochran's Q-test to find differences in matched sets of three or more
frequencies or proportions.

RunsTest Runs test for detecting non-randomness
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VonNeumannTest Von Neumann's successive difference test

DurbinWatsonTest Durbin-Watson test for autocorrelation
BreuschGodfreyTest Breusch-Godfrey test for higher-order serial correlation.
BartelsRankTest Bartels rank test for randomness

CochranArmitageTest Cochran-Armitage test for trend in binomial proportions
MHChisqTest Mantel-Haenszel Chisquare test

BarnardTest Barnard's test for 2x2 tables

GTest Chi-squared contingency table test and goodness-of-fit test
StuartMaxwellTest Stuart-Maxwell marginal homogeneity test
LehmacherTest Lehmacher marginal homogeneity test

BreslowDayTest Test for homogeneity on 2x2xk tables over strata
WoolfTest Test for homogeneity on 2x2xk tables over strata

HosmerLemeshowTest = Hosmer-Lemeshow goodness of fit tests

Tab. 1) Additional Tests in DescTools

18 Import — Export

18.1 Import data via Excel

The function XLGetRange allows a quick import of data from an Excel-Sheet. The user can either
specify a number of cell-references (including a path- and filename) or just select the regions
which are to be imported.

The following command will return a list with the contents of the selected cell ranges.

(G e icrosoft b.. szl s [ ) rsruio =B X
m Stai| Einf | Seit | Fon | Dat | Ube Ans| Ao & 0 o = _ | \ ) s 3 i
i & A = o, A ] - B B2 d &) project: [Nong) =
Ein i Schriftart Ausrichtung Zahl | Formatvorlagen| Zellen  |* Console =
| ran e = remesraaen ) Yl

Iwischena... >

B13 - _ £ :'1=__1?.s ) '_v 2
A | e | c D E >

1 |year weight ‘ : i <-¥LGetRange()

2 2013 166.6 = $°Al:BL"

3 2013 176 x1 X2

2 2013 170.9 1 year weight

5 2013 165.3 § AG:ALD

&l 2013 177.5 X1

[ 2013 159.7 % %gig

R 2013 165.9 2 20132

) 2013 163.7 4 2013

10 2013 162.4 2013

ik 2013 168.1 $°B13:B16°

12 2013 169.7 _,Xl

13 2013 147.9 ol

(14 2013 168.7 2 164.7

15 2013 164.7 4 164.6

|16 | 2013 164.6 5

17 2013 150.2

W4 979] Tabellel Tabaled 7 Tab e o] » mv

abel abelle abe i
Mittelwert: 1190088389 Anza’hl: 11 S:mme:lﬂ?lﬂ;ﬁ@ﬁl@ 7 L el m\rnewer. J:-':

XLView(d.frm) can be used to view a data.frame d.frm in Excel.
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18.2 Import SAS datalines
The function ParseSASDatalines can be used to import the SAS data like the following:

sas <-
data FatComp;
input Exposure Response Count;
label Response='Heart Disease';
datalines;
00 6

(SN
PO R
P AN

o
El

(FatComp <- ParseSASDatalines(sas))

Exposure Response Count

1 (] 0 6
2 0 1 2
3 1 0 4
4 1 1 11

19 DescToolsOptions

There are a few options for the graphical or textual output that can be set. DescToolsOptions()
displays the currently defined options.

$col
hblue hred hgreen
"#8296C4" "#9A0941" "#B3BA12"

$digits
[1] 3

$fixedfont
$name
[1] "Consolas"

$size

[1] 7

attr(,"class")

[1] "font"

$fmt

$fmt$abs

Format name: abs

Description: Number format for counts
Definition: digits=0, big.mark="""
Example: 314'159

$fmt$num

Format name: num

Description: Number format for floats
Definition: digits=3, big.mark="""
Example: 314'159.265

$footnote

[1] "ar nar vae

$lang
[1] "engl™

$plotit
[1] TRUE
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$stamp
expression(gettextf("%s/%s", Sys.getenv("USERNAME"), Format(Today(),
fmt = "yyyy-mm-dd")))

$lastWrd
NULL

$lastXL
NULL

$lastPP
NULL

Invoking DescToolsOptions() with no arguments returns a list with the current values of the
options. Note that not all options listed below are set initially. To access the value of a single
option, one can simply use DescToolsOptions("plotit").

To set a new value use the same rationale as with the R options:
DescToolsOptions(plotit=FALSE)

col:
a vector of colours, defined as names or as RGB-longs ("#RRGGBB"). By now three
colors are used in several plots as defaults. By default they're set to hred, hblue and
horange. Change the values by defining DescToolsOptions(col=c("pink", "blue",
"yellow")). Any color definition can be used here.
digits:
the number of FIXED digits, used throughout the print functions.
fixedfont:
this font will be used by default, when Desc writes to a Word document. Must be defined
as a font object, say enumerating name, face and size of the font and setting the class
font, e.g. structure(list(name="Courier New", size=7), class="font").
fmt:
Three number format definitions are currently used in the Desc routines. The format
used for integer values is named "abs", for percentages "perc" and for floating point
numeric values "num". The format definitions must be of class "fmt" and may contain
any argument used in the function Format.
Use Fmt to access and update formats (as they are organised in a nested list). See the
current definitions with:
Format(pi*1000, fmt=Fmt(*'abs'))
# [1] "3"142"
Format(pi*.1l, fmt=Fmt('per'))
# [1] "31.4%"
Format(pi*1000, fmt=Fmt("'num'))
# [1] ""3"141.593"
footnote:
a character vector, containing characters to be used as footnote signs. Any character can
be defined here. This is currently used by Tone.
The author’s favorites: DescToolsOptions("footnote"=c("2","2","3"))
lang:
either "engl" or "local", defining the language to be used for the names of weekdays
and months when using Format.
plotit:
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logical, defining whether the Desc-procedures should produce plots by default. This is
usually a good thing, but it may clutter up your desktop, if you're not using RStudio.

Therefore it can be turned off.

stamp:

text or expression to be placed in the right bottom corner of the DescTools plots. This
can be useful, if some author or date information should be inserted by default. The
default would use an expression as <username>/<date>. See defaults below.

Calling DescToolsOptions(reset=TRUE) will reset the options to these defaults:

options(DescTools = list(

col = c(hblue="#8296C4", hred="#9A0941", hgreen="#B3BA12"),
digits = 3,
fixedfont = structure(list(name = "Consolas", size = 7), class = "font"),
fmt = list(abs = structure(list(digits = @, big.mark = "'"),
name = "abs", label = "Number format for counts", default

class = "fmt"),
per = structure(list(digits = 1, big.mark = "%"),

name = "per", label = "Percentage number format", default
class = "fmt"),

num = structure(list(digits = 3, big.mark = "'"),
name = "num", label = "Number format for floats", default

class = "fmt")

)
footnote = c("'", "\"", "\"\""),

lang = "engl",
plotit = TRUE,
stamp = expression(gettextf("%s/%s", Sys.getenv("USERNAME"),
Format(Today(), fmt = "yyyy-mm-dd")))
))

TRUE,

TRUE,

TRUE,

This code can as well be copied and pasted to the users' RProfile file, in order to have the

options permanently available.
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