Machine Learning Solutions for Integrating Partially Overlapped Genetic Datasets.
If you use DataFusion-GDM, please cite:
Author ORCID: https://orcid.org/0000-0002-9916-9732
In R:
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
remotes::install_github("jiashuaiz/DataFusion-GDM")library(DataFusionGDM)
# Simulate a GDM in memory and visualize
res <- run_genetic_scenario("island", n_pops = 40)
res$plots$heatmap()
res$plots$mds()
# Optionally export to CSV if needed (defaults to tempdir)
tmp <- export_simulated_gdm(scenario = "default", n_pops = 40, verbose = FALSE)
# unlink(tmp) # clean up when finished
# Simulate and visualize
source(system.file("examples/simulate_gdm_quick.R", package = "DataFusionGDM"), echo = TRUE)
# MDS + Procrustes
source(system.file("examples/mds_procrustes_demo.R", package = "DataFusionGDM"), echo = TRUE)
# BESMI batch (small demo)
source(system.file("examples/besmi_batch_quick.R", package = "DataFusionGDM"), echo = TRUE)See the package vignettes for end-to-end guides: - Getting started - MDS + Procrustes sensitivity - BESMI batch imputation
Open vignettes in R:
browseVignettes("DataFusionGDM")
vignette("getting-started", package = "DataFusionGDM")R/simulate_gdm.RR/mds_procrustes.RR/besmi*.Rvignettes/ (no bundled data; examples
use in-memory/temp files)GPL-3.0