Package ‘DSL’

January 20, 2025
Version 0.1-7
Date 2020-01-12
Title Distributed Storage and List

Description An abstract DList class helps storing large list-type objects in a distributed manner. Cor-
responding high-level functions and methods for handling distributed storage (DStor-
age) and lists allows for processing such DLists on distributed systems efficiently. In do-
ing so it uses a well defined storage backend implemented based on the DStorage class.

License GPL-3

Imports methods, utils

Suggests hive (>= 0.2-2), parallel
NeedsCompilation yes

Author Ingo Feinerer [aut],
Stefan Theussl [aut, cre],
Christian Buchta [ctb]

Maintainer Stefan Theussl <Stefan.Theussl@R-project.org>
Repository CRAN
Date/Publication 2020-01-15 06:40:02 UTC

Contents

DGather
DLISt
DStorage e
KeyValue e
MapReduce e e e

Index

2 DGather

DGather Gather Distributed Data

Description

Retrieves "DList" data distributed as chunks.

Usage

DGather(x, keys = FALSE, n = -1L, names = TRUE)

Arguments
X a "DList" object.
keys logical; should only keys be retrieved from chunks? Default: FALSE, i.e., only
values are retrieved.
n an integer specifying the number of chunks to be read.
names logical; should the return value be a named list? Default: TRUE.
Details

DGather () is similar to an MPI_GATHER (see http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/
node103.htm#Node103) where: “[...] each process (root process included) sends the contents of its

send buffer to the root process. The root process receives the messages and stores them in rank

order.” For "DList" objects DGather () will gather data contained in chunks possibly distributed

on a cluster of workstations and store it in a (possibly named) 1ist. Note that depending of the size

of the data, the resulting list may not fit into memory.

Value

A (named) list.

Examples

dl <- DList(linel = "This is the first line.",
line2 = "Now, the second line."”)

DGather(dl)

retrieve keys

unlist(DGather(dl, keys = TRUE, names = FALSE))

remove DList and garbage collect it

rm(dl)

gcQ

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node103.htm#Node103
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node103.htm#Node103

DList 3

DList Distributed List Class

Description

Functions to construct, coerce, check for, and interact with storage of objects of class "DList".

Usage

DList(...)

as.DList(x, DStorage = NULL, ...)
is.DList(x)

DL_storage(x)

“DL_storage<-"(x, value)

Arguments
objects, possibly named.
X an object.
DStorage an object representing the virtual (distributed) storage for storing data. See class
"DStorage" for details.
value the new storage of class DStorage attached to the "DList".
Value

An object of class "DList" or, in case of DL_storage(), an object of class "DStorage".

Examples

coerce to 'DList' object using a default virtual storage
1 <- list(cow = "girl”, bull = "boy"”)

dl <- as.DList(1)

is.DList(dl)

DL_storage(dl)

remove DList and garbage collect it

rm(dl)

gcO)

4 KeyValue

DStorage Virtual Distributed Storage Class

Description

When using class DList the underlying ‘virtual’ storage plays an important role. It defines how
to use the given storage (read/write methods, etc.), where the data is to be stored (i.e., the base
directory on the file system), and how DMap as well as DReduce have to be applied.

Usage

DStorage(type = c("LFS", "HDFS"), base_dir, chunksize = 1024"2)
is.DStorage(ds)

Arguments
type the type of the storage to be created. Currently only "LFS" and "HDFS" storage
types are supported.
base_dir specifies the base directory where data is to be stored.
chunksize defines the size of each chunk written to the virtual storage.
ds a virtual possibly distributed storage.
Value

An object which inherits from class DStorage, or, in case of is.DStorage() a logical indicating
whether it inherits from "DStorage” or not.

Examples

creating a new virtual storage using 50MB chunks
ds <- DStorage(type = "LFS", base_dir = tempdir(),
chunksize = 50 * 1024*2)

is.DStorage(ds)

KeyValue Key/Value Fairs

Description

Key/value pairs in "DList" objects.

Usage

DKeys(x)

MapReduce 5

Arguments

X a "DList" object.

Value

A character vector representing all keys of the key/value pairs stored in chunks by "DList" objects.

Examples

create a 2 elements DList

dl <- DList(linel = "This is the first line.",
line2 = "Now, the second line."”)

retrieve keys

DKeys(dl)

remove DList and garbage collect it

rm(dl)

gcO

MapReduce MapReduce for "DList" Objects

Description

Interface to apply functions on elements of "DList" objects.

Usage
DLapply(x, FUN, parallel, ..., keep = FALSE)
DMap(x, MAP, parallel, keep = FALSE)
DReduce(x, REDUCE, parallel, ...)
Arguments
X a "DList" object. Other objects (e.g., lists) will be coerced by as.DList.
FUN the function to be applied to each element (i.e., the values) of x.
MAP the function to be applied to each key/value pair in x.
REDUCE the function to be applied to each key/value pair in x.
optional arguments to FUN or REDUCE.
parallel logical; should the provided functions applied in parallel? Default: FALSE.
keep logical; should the current data be kept as a separate revision for further pro-

cessing later? Default: FALSE.

6 MapReduce

Details

The MapReduce programming model as defined by Dean and Ghemawat (2008) is as follows: the
computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The
user expresses the computation as two functions: Map and Reduce. The Map function takes an
input pair and produces a set of intermediate key/value pairs. The Reduce function accepts an
intermediate key and a set of values for that key (possibly grouped by the MapReduce library). It
merges these values together to form a possibly smaller set of values. Typically, just zero or one
output value is produced per reduce invocation. Furthermore, data is usually stored on a (distributed)
file system which is recognized by the MapReduce library. This allows such a framework to handle
lists of values (here objects of class "DList") that are too large to fit in main memory (i.e., RAM).

Value
A "DList".

References

J. Dean and S. Ghemawat (2008). MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, 51, 107-113.

Examples
dl <- DList(linel = "This is the first line.",
line2 = "Now, the second line."”)
res <- DLapply(dl, function(x) unlist(strsplit(x, " ")))

as.list(res)

foo <- function(keypair)
list(key = paste("next_", keypair$key, sep = ""), value =
gsub("first”, "mapped”, keypair$value))

dlm <- DMap(x = dl, MAP
retrieve keys
unlist(DGather(dlm, keys = TRUE, names = FALSE))
retrieve values
as.list(dlm)
simple wordcount based on two files:
dir(system.file("examples”, package = "DSL"))
first force 1 chunk per file (set max chunk size to 1 byte):
ds <- DStorage("LFS", tempdir(), chunksize = 1L)
make "DList” from files, i.e., read contents and store in chunks
dl <- as.DList(system.file("examples"”, package = "DSL"), DStorage = ds)
read files
dl <- DMap(dl, function(keypair){

list(key = keypairs$key, value = tryCatch(readLines(keypair$value),
error = function(x) NA))
»
split into terms
splitwords <- function(keypair){

keys <- unlist(strsplit(keypair$value, " "))

mapply(function(key, value) list(key = key, value = value), keys, rep(1L, length(keys)),

foo)

MapReduce

SIMPLIFY = FALSE, USE.NAMES = FALSE)
3
res <- DMap(dl, splitwords)
as.list(res)
now aggregate by term
res <- DReduce(res, sum)
as.list(res)

Index

as.DList, 5
as.DList (DList), 3

DGather, 2

DKeys (KeyValue), 4
DL_storage (DList), 3
DL_storage<- (DList), 3
DLapply (MapReduce), 5
DList, 2, 3,5, 6
DMap, 4

DMap (MapReduce), 5
DReduce, 4

DReduce (MapReduce), 5
DStorage, 3,4

is.DList (DList), 3
is.DStorage (DStorage), 4

KeyValue, 4
list, 2

MapReduce, 5

	DGather
	DList
	DStorage
	KeyValue
	MapReduce
	Index

