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Abstract

The auxiliary function log1pmx() (“log 1 plus minus x”), had been introduced by
Morten Welinder in his proposal to improve R’s pgamma() (incomplete Γ function)
numerically, in R’s PR#7307 comment #61, in Jan. 2005. log1pmx() has also been
added to the R’s C API Mathlib (aka libRmath, r-mathlib, or nmath) library in March
2005. It is defined as log1pmx(x) := log(1+x)−x and for numerical evaluation, suffers
from two levels of cancellations for small x, i.e., using log1p(x) for log(1 + x) is not
sufficient.

In 2000 already, Catherine Loader’s contributions for more accurate computation of
binomial, Poisson and negative binomial probabilities, Loader (2000), had introduced
auxiliary functions bd0() and stirlerr(), see below.

Much later, in R’s PR#15628, in Jan. 20142, Welinder noticed that in spite of
Loader’s improvements, Poisson probabilities were not perfectly accurate (only ca. 13
accurate digits instead of 15.6 ≈ log

10
(252)), relating the problem to somewhat im-

perfect computations in bd0(), which he proposed to address using log1pmx() on one
hand, and additionally addressing cancellation by using two double precision numbers
to store the result (his proposal of an ebd0() function).

Here, I address the problem of providing more accurate bd0() (and stirlerr()

as well), applying Welinder’s proposal to use log1pmx(), but otherwise diverging from
the proposal.

Notably, I noticed that ebd0() currently suffers from accuracy loss, when bd0(x,M)

is large and x/M ≈ 1.

1 Introduction

According to R’s reference documentation, help(dbinom), the binomial (point-mass) prob-
abilities of the binomial distribution with size = n and prob = p has “density” (point
probabilities)

p(x) := p(x;n, p) :=

(
n

x

)

px(1− p)n−x , (1)

for x = 0, . . . , n, and these are (in R function dbinom()) computed via Loader’s algo-
rithm (Loader (2000)) which had improved accuracy considerably, also for R’s internal
dpois_raw() function which is used further directly in dpois(), dnbinom(), dgamma(),
the non-central dbeta() and dchisq() and even the cumulative Γ() probabilities pgamma()

1https://bugs.R-project.org/show_bug.cgi?id=7307#c6
2https://bugs.r-project.org/show_bug.cgi?id=15628
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and hence indirectly e.g., for cumulative central and non-central chisquare probabilities
(pchisq()).

Loader noticed that for large n, the usual way to compute p(x;n, p) via its logarithm
log(p(x;n, p)) = log(n!)−log(x!)−log((n−x)!)+x log(p)+(n−x) log(1−p) was inaccurate,
even when accurate log Γ(x) = lgamma(x) values are available to get log(x!) = log Γ(x+1),
e.g., for x = 106, n = 2× 106, p = 1/2, about 7 digits accuracy were lost from cancellation
(in substraction of the log factorials).

Instead, she wrote

p(x;n, p) = p(x;n,
x

n
) · e−D(x;n,p), (2)

where the “Deviance” D(.) is defined as

D(x;n, p) = log p(x;n,
x

n
)− log p(x;n, p)

= x log
( x

np

)
+ (n− x) log

( n− x

n(1− p)

)
, (3)

and to avoid cancellation, D() has to be computed somewhat differently, namely – correct-
ing notation wrt the original – using a two-argument version D0():

D(x;n, p) = npd0
( x

np

)
+ nqd0

(n− x

nq

)

= D0(x, np) +D0(n− x, nq), (4)

where q := 1− p and

d0(r) := r log(r) + 1− r and (5)

D0(x,M) := M · d0(x/M)

= M ·
( x

M
log

( x

M

)
+ 1− x

M

)

= x log
( x

M

)
+M − x (6)

Note that since limx↓0 x log x = 0, setting

d0(0) := 1 and (7)

D0(0,M) := Md0(0) = M · 1 = M

defines D0(x,M) for all x ≥ 0, M > 0.
The careful C function implementation of D0(x,M) is called bd0(x, np) in Loader’s C

code and now R’s Mathlib at https://svn.r-project.org/R/trunk/src/nmath/bd0.c,
mirrored, e.g., at Winston Chen’s github mirror3. In 2014, Morten Welinder suggested in
R’s PR#156284 that the current bd0() implementation is still inaccurate in some regions
(mostly not in the one it has been carefully implemented to be accurate, i.e., when x ≈ M)
notably for computing Poisson probabilities, dpois() in R; see more in A.1 below.

Evaluating of p(x;n, p) in (1) and (2), in addition to D(x;n, p) in (4) also needs
p(x;n, xn) where in turn, the Stirling De Moivre series is used:

log n! =
1

2
log(2πn) + n log(n)− n+ δ(n), where the “Stirling error” δ(n) is (8)

δ(n) := log n!− 1

2
log(2πn)− n log(n) + n = (9)

=
1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+

1

1188n9
+O(n−11). (10)

3https://github.com/wch/r-source/blob/trunk/src/nmath/bd0.c
4https://bugs.r-project.org/show_bug.cgi?id=15628
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See appendix C how δ(n) ≡stirlerr(n) is computed and implemented in the C code of
R, and can be improved.

Note that for the binomial, x is an integer in {0, 1, . . . , n} and M = np ≥ 0, but the
formulas around (6) for D0(x,M) apply and are needed, e.g., for pgamma() computations
for general non-negative (x,M > 0) where even the x = 0 case is well defined, see (7)
above.

Summarizing, using (1) and (6), the binomial probabilities in R, dbinom(x, n,p) have
been computed as

p(x;n, p) = p(x;n,
x

n
) · e−D(x;n,p) = (11)

=

√
n

2πx(n− x)
eδ(n)−δ(x)−δ(n−x)−D(x;n,p), (12)

the second line from replacing p(x;n, xn) by eq. (5) of Loader, derived by using Stirling’s
(8) three times, viz. for n, x, and n− x, and noticing that many log terms cancel and the
three log(2π∗)/2 terms simplify to log

(
n

2πx(n−x)

)
/2.

Further, Loader showed that such a saddle point approach is needed for Poisson prob-
abilities, as well, where

pλ(x) = e−λλ
x

x!
(13)

log pλ(x) = −λ+ x log λ − log(x!)
︸ ︷︷ ︸

log(1/
√
2πx)−(x log x−x+δ(x))

= log
1√
2πx

− x log
x

λ
+ x− λ− δ(x), (14)

is re-expressed using δ(x) and from (6) D0(x, λ) as

pλ(x) =
1√
2πx

e−δ(x)−D0(x,λ) (15)

Also, negative binomial probabilities, dnbinom(), . . . . . . . . . TODO . . . . . .

Even for the tν density, dt(), . . . . . . . . .
. . . but there have a direct approximations in package DPQ, currently functions c_dt(nu)
and even more promisingly, lb_chi(nu). . . . . . . . . . TODO . . . . . .

2 Loader’s “Binomial Deviance” D0(x,M) = bd0(x, M)

Loader’s “Binomial Deviance” function D0(x,M) = bd0(x, M) has been defined for x,M >
0 where the limit x → 0 is allowed (even though not implemented in the original bd0()),
here repeated from (5), (6) :

D0(x,M) := M · d0
( x

M

)
, where

d0(u) := u log(u) + 1− u = u(log(u)− 1) + 1.
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Note the graph of d0(u) (= p1l1(u− 1), see (18) below),
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has a double zero at u = 1, such that for large M and x ≈ M , i.e., x
M ≈ 1, the direct

computation of D0(x,M) = M · d0
(

x
M

)
is numerically problematic. Further,

D0(x,M) = M ·
( x

M
(log(

x

M
)− 1) + 1

)
= x log(

x

M
)− x+M. (16)

We can rewrite this, originally by e-mail from Martyn Plummer, then also indirectly
from Morten Welinder’s mentioning of log1pmx() in his PR#15628 notably for the im-
portant situation when |x−M | ≪ M . Setting t := (x − M)/M , i.e., |t| ≪ 1 for that
situation, or equivalently, x

M = 1 + t.

With t :=
x−M

M
(17)

D0(x,M) =

x
︷ ︸︸ ︷

M · (1 + t) log(1 + t)−
x−M
︷ ︸︸ ︷

t ·M = M ·
(
(t+ 1) log(1 + t)− t

)
=

= M · p1l1(t) !
= M · d0(t+ 1), (18)

where
p1l1(t) := (t+ 1) log(1 + t)− t =

t2

2
− t3

6
± · · · , (19)

= (log(1 + t)− t) + t · log(1 + t)

= log1pmx(t) + t · log1p(t) (20)

and
log1pmx(t) := log(1 + t)− t ≈ −t2/2 + t3/3− t4/4± . . . . (21)

The Taylor series expansions for log1pmx(t) and p1l1(t) are useful for small |t|,

p1l1(t) =
t2

2
− t3

6
+

t4

12
± · · · =

∞∑

n=2

(−t)n

n(n− 1)
=

t2

2

∞∑

n=2

(−t)n−2

n(n− 1)/2
=

t2

2

∞∑

n=0

(−t)n
(
n+2
2

) =

=
t2

2

(
1− t

(1

3
− t

(1

6
− t

( 1

10
− t

( 1

15
− · · ·

)))))
, (22)

which we provide in DPQ via function p1l1ser(t, k) getting the first k terms, and by
(18), the corresponding series approximation for

p1l1(t) = lim
k→∞

t2

2

k∑

n=0

(−t)n
(
n+2
2

) =: p1l1ser
(
t, k

)
, where t =

x−M

M
. (23)
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This Taylor series expansion is useful and nice, but may not even be needed typically,
as both utility functions log1pmx(t) and log1p(t) are available, implemented to be fully
accurate for small t, t ≪ 1, and (20), indeed, with t = (x−M)/M the evaluation of

D0(x,M) = M · p1l1(t) = M ·
(
log1pmx(t) + t · log1p(t)

)
, (24)

seems quite accurate already on a wide range of (x,M) values.

> par(mfcol=1:2, mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)

> p.p1l1( -1, 2, ylim = c(-1,2))

> zoomTo <- function(x,y=x, tx,ty){ arrows(x,-y, tx, ty)

+ text (x,-y, "zoom in", adj=c(1/3,9/8)) }

> zoomTo0 <- function(x,y=x) zoomTo(x,y, 0,0)

> zoomTo0(.3)

> p.p1l1(-1e-4, 1.5e-4, ylim=1e-8*c(-.6, 1), do.leg=FALSE)
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Figure 1: p1l1(t) = p1l1() and its constituents, x ∗ log1p(x) and log1pmx() = log1pmx(),
with R functions from our DPQ package. On the right, zoomed in 4 and 8 orders of
magnitude, where the Taylor approximations x2/2 and x2/2 − x3/6 are visually already
perfect.

Note that x ∗ log1p(x) and log1pmx() have different signs, but also note that for small
|x|, are well approximated by x2 and −x2/2, so their sum p1l1(x) = log1pmx(x) + x ·
log1p(x) is approximately x2/2 and numerically computing x2 − x2/2 should only lose 1
or 2 bits of precision.

Note that in Appendix A.1, we show how using different versions of bd0() computations
for computing Poisson density values, dpois(), i.e., our DPQ package’s dpois_raw() leads
to differing accurate results.

A Accuracy of log1pmx(x) Computations

As we’ve seen, the “binomial deviance” function D0(x,M) = bd0(x, M) is crucial for ac-
curate (saddlepoint) computations of binomial, Poisson, etc probabilities, and (at the end
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of section 2), one stable way to compute D0(x,M) is via (24), i.e., with t = (x −M)/M ,
to compute the sum of two terms D0(x,M) = M ·

(
log1pmx(t) + t · log1p(t)

)
.

Here, we look more closely at the computation of log1pmx(x) := log(1+x)−x, at first
visualizing the function, notably around (0, 0) where numeric cancellations happen if no
special care is taken.

> lcurve <- function(Fn, a,b, ylab = "", lwd = 1.5, ...)

+ plot(Fn, a,b, n=1001, col=2, ylab=ylab, lwd=lwd, ...,

+ panel.last = abline(h=0, v=-1:0, lty=3))

> par(mfrow=c(2,2), mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)

> lcurve(log1pmx, -.9999, 7, main=quote(log1pmx(x) == log(1+x)-x))

> rect(-.1, log1pmx(-.1 ), .1 , 0); zoomTo0(1/2, 1)

> lcurve(log1pmx, -.1, .1 ); rect(-.01, log1pmx(-.01 ), .01 , 0); zoomTo0(.02, .001)

> lcurve(log1pmx, -.01, .01); rect(-.002,log1pmx(-.002), .002, 0); zoomTo0(2e-3,1e-5)

> lcurve(function(x) -log1pmx(x), -.002, .002, log="y", yaxt="n") -> l1r

> sfsmisc::eaxis(2); abline(v=0, lty=3)

> d1r <- cbind(as.data.frame(l1r), y.naive = with(l1r, -(log(1+x)-x)))

> ## --> d1r is data frame w/ ("x", "y", "y.naive")

> c4 <- adjustcolor(4, 1/3)

> lines(y.naive ~ x, data=d1r, col=c4, lwd=3, lty=2)

> legend("left", legend=expression(- log1pmx(x), -(log(1+x)-x)),

+ col=c(palette()[2],c4), lwd=c(1,3), lty=1:2, bty="n")
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Even if you can’t see it in the above 4th plot, the accuracy of our log1pmx() is already
vastly better than the naive log(1 + x)− x computation:

> par(mfrow=1:2, mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1)

> d1r[, "relE.naive"] <- with(d1r, sfsmisc::relErrV(y, y.naive))

> plot(relE.naive ~ x, data=d1r, type="l", ylim = c(-1,1)*1e-6)

> y2 <- 1e-8

> rect(-.002, -y2, .002, y2, col=adjustcolor("gray",1/2), border="transparent")

> zoomTo(15e-4, 9*y2, 13e-4, -y2)

> plot(relE.naive ~ x, data=d1r, type="l", ylim = c(-1,1)*y2); abline(h=0,lty=3)
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Now, we explore the accuracy achieved with R’s, i.e., Welinder’s algorithm, which

uses relatively few terms of a continued-fraction representation of the Taylor series of
log1pmx(x), using package Rmpfr and high precision arithmetic. see ‘../tests/dnbinom-tst.R’,
2b: log1pmx(). From there, it seems that the (hardcoded currently in R’s ‘pgamma.c’ as
double minLog1Value = -0.79149064 could or should (?) be changed to around -0.7 or
e.g., -0.66.

In DPQ’s log1pmx() it is the argument minL1 = -0.79149064, there’ a switch constant
eps2, (hardwired in current R to 1e-2, i.e., eps2 = 0.02) to switch from an explicit 5-term
formula to the full logcf() based procedure. In DPQ, we already use eps2 = 0.01 as
default. Note that this does not influence the choice of minL1 as long as eps2 (order of
0.01) is far from the range in which we choose minL1 ([−0.85,−0.4]).
((MM: Still: can we prove that 0.01 is “uniformly” better than 0.02 ?? "../tests/dnbinom-tst.R"

rather suggests eps2 = .00163 as optimal for default tol = 1e-14 . ))

A.1 Testing dpois_raw() / dpois() Poisson probabilities

Testing the Poisson probabilities (‘density’) with several versions of bd0(), ebd0() and
..., we found that using Welinder’s proposed ebd0() was advantageous indeed to get full
accuracy, and indeed better than all versions of bd0() computations we made available
in package DPQ. However, the direct formula was more appropriate than ebd0() and all
bd0() version for the cases where x/M or M/x were extremely small. Note: Since March
2022 MM has had another (private, uncommitted) tweak in ‘src/nmath/dpois.c’ to NOT*
use ebd0() nor bd0() but a direct formula, when 2−1022 < x

λ ≤ 2−52, i.e.,

Look at examples in file "../man/dgamma-utils.Rd" and then also
/u/maechler/R/MM/NUMERICS/dpq-functions/15628-dpois_raw_accuracy.R .

B Accuracy of p1l1(t) Computations

Loader’s “Binomial Deviance” D0(x,M) = bd0(x, M) function can also be re-expressed
(mathematically) as bd0(x,M) :=D0(x,M) := M · p1l1((x − M)/M) where we look into
providing numerically stable formula for p1l1(t), our p1l1(t), as its mathematical formula
p1l1(t) = (t + 1) log(1 + t) − t suffers from cancellation for small |t| even when log1p(t)
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is used instead of log(1+t); see the derivations (18), (19), and (21) above, and the Taylor
series expansion (22) which we provide in our R functions p1l1, and p1l1ser, respectively.

Using a hybrid implementation, p1l1() uses a direct formula, now the stable one in
p1l1p(), for |t| > c and a series approximation for |t| ≤ c for some cutoff c.

NB: The re-expression via log1pmx() is almost perfect; it fixes the cancellation problem
entirely (and exposes the fact that log1pmx()’s internal cutoff seems sub optimal.

TODO — very unfinished. How much more here?
For now, look at the examples in ?p1l1, or even run example(p1l1).

C Accuracy of stirlerr(x)= δ(x) Computations

Note that the “Stirling error”, δ(x) ≡stirlerr(x), δ(x) := log x!− 1
2 log(2πx)−x log(x)+x

by Stirling’s formula is δ(x) = 1
12x − 1

360x3 + 1
1260x5 − 1

1680x7 + 1
1188x9 +O(x−11), see (9).

A C code implementation had been provided by Loader and for years in R’s Mathlib, fur-
ther improved by the author. Current version in the R sources at https://svn.r-project.
org/R/trunk/src/nmath/stirlerr.c, mirrored, e.g., at https://github.com/wch/r-source/
blob/trunk/src/nmath/stirlerr.c

TODO:
Look at examples in ‘../tests/stirlerr-tst.R’ to show the small accuracy loss with

Loader’s defaults (for the cut offs of the number of terms used) and also how we explore
improving these defaults to improve accuracy.

Consequently, I have have committed the results to the R sources, svn rev 86191, in
March 2024, to be used from R version 4.4.0 on.
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