Package 'DIscBIO'

January 20, 2025

Date 2023-11-06

Title A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Version 1.2.2

Description An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.

License MIT + file LICENSE

Encoding UTF-8

Imports methods, TSCAN, httr, mclust, statmod, igraph, RWeka, vegan, NetIndices, png, grDevices, RColorBrewer, ggplot2, rpart, fpc, cluster, rpart.plot, tsne, AnnotationDbi, org.Hs.eg.db, graphics, stats, utils, impute, withr

Depends R (>= 4.0), SingleCellExperiment

Suggests testthat, Seurat

LazyData true

RoxygenNote 7.2.3

URL https://github.com/ocbe-uio/DIscBI0

BugReports https://github.com/ocbe-uio/DIscBI0/issues

Collate 'DIscBIO-classes.R' 'DIscBIO-generic-ClassVectoringDT.R' 'DIscBIO-generic-ClustDiffGenes.R' 'DIscBIO-generic-Clustexp.R' 'DIscBIO-generic-DEGanalysis.R' 'DIscBIO-generic-DEGanalysis2clust.R' 'DIscBIO-generic-Exprmclust.R' 'DIscBIO-generic-FinalPreprocessing.R' 'DIscBIO-generic-FinalOutliers.R' 2

'DIscBIO-generic-NoiseFiltering.R' 'DIscBIO-generic-Normalizedata.R' 'DIscBIO-generic-PCAplotSymbols.R' 'DIscBIO-generic-PlotmclustMB.R' 'DIscBIO-generic-clusteringOrder.R' 'DIscBIO-generic-clustheatmap.R' 'DIscBIO-generic-comptSNE.R' 'DIscBIO-generic-plotExptSNE.R' 'DIscBIO-generic-plotGap.R' 'DIscBIO-generic-plotLabelstSNE.R' 'DIscBIO-generic-plotOrderTsne.R' 'DIscBIO-generic-plotSilhouette.R' 'DIscBIO-generic-plotSymbolstSNE.R' 'DIscBIO-generic-plottSNE.R' 'DIscBIO-generic-pseudoTimeOrdering.R' 'J48DT.R' 'J48DTeval.R' 'Jaccard.R' 'NetAnalysis.R' 'Networking.R' 'PPI.R' 'PlotMBpca.R' 'RpartDT.R' 'RpartEVAL.R' 'VolcanoPlot.R' 'bootstrap.R' 'calc_pcareduceres.R' 'cross.val.R' 'customConverters.R' 'datasets.R' 'internal-functions-samr-adapted.R' 'internal-functions.R'

NeedsCompilation no

Author Salim Ghannoum [aut, cph], Alvaro Köhn-Luque [aut, ths], Waldir Leoncio [cre, aut], Damiano Fantini [ctb]

Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no>

Repository CRAN

Date/Publication 2023-11-06 10:50:02 UTC

Contents

as.DISCBIO
check.format
ClassVectoringDT
ClustDiffGenes
Clustexp
clustheatmap
comptSNE
customConvertFeats
DEGanalysis 11
DEGanalysis2clust
DISCBIO 14
DISCBIO2SingleCellExperiment
Exprmclust
FinalPreprocessing 17
FindOutliers
foldchange.seq.twoclass.unpaired
HumanMouseGeneIds 20

J48DT	20
J48DTeval	21
Jaccard	22
KmeanOrder	22
NetAnalysis	23
Networking	24
NoiseFiltering	25
Normalizedata	26
PCAplotSymbols	28
plotExptSNE	28
plotGap	29
plotLabelstSNE	30
PlotMBpca	30
PlotmclustMB	31
	31
plotSilhouette	32
plotSymbolstSNE	32
plottSNE	33
PPI	33
prepExampleDataset	34
pseudoTimeOrdering	35
rankcols	35
reformatSiggenes	36
replaceDecimals	36
resa	37
retrieveURL	37
RpartDT	38
RpartEVAL	38
sammy	39
samr.estimate.depth	41
valuesG1msTest	41
VolcanoPlot	42
wilcoxon.unpaired.seq.func	42
	43

Index

as.DISCBI0

Convert Single Cell Data Objects to DISCBIO.

Description

Initialize a DISCBIO-class object starting from a SingleCellExperiment object or a Seurat object

Usage

as.DISCBIO(x, ...)

Arguments

х	an object of class Seurat or SingleCellExperiment
	additional parameters to pass to the function

Details

Additional parameters to pass to 'list' include, if x is a Seurat object, "assay", which is a string indicating the assay slot used to obtain data from (defaults to 'RNA')

Value

a DISCBIO-class object

check.format Check format

Description

Check format

Usage

```
check.format(y, resp.type, censoring.status = NULL)
```

Arguments

y y resp.type resp type censoring.status censoring status

ClassVectoringDT Generating a class vector to be used for the decision tree analysis.

Description

This function generates a class vector for the input dataset so the decision tree analysis can be implemented afterwards.

ClustDiffGenes

Usage

```
ClassVectoringDT(
  object,
 Clustering = "K-means",
 Κ,
 First = "CL1",
  Second = "CL2",
  sigDEG,
 quiet = FALSE
)
## S4 method for signature 'DISCBIO'
ClassVectoringDT(
  object,
 Clustering = "K-means",
 Κ,
 First = "CL1",
  Second = "CL2",
  sigDEG,
  quiet = FALSE
)
```

Arguments

object	DISCBIO class object.
Clustering	Clustering has to be one of the following: ["K-means", "MB"]. Default is "K-means"
К	A numeric value of the number of clusters.
First	A string vector showing the first target cluster. Default is "CL1"
Second	A string vector showing the second target cluster. Default is "CL2"
sigDEG	A data frame of the differentially expressed genes (DEGs) generated by running "DEGanalysis()" or "DEGanalysisM()".
quiet	If 'TRUE', suppresses intermediary output

Value

A data frame.

ClustDiffGenes ClustDiffGenes

Description

Creates a table of cluster differences

Usage

```
ClustDiffGenes(
  object,
 Κ,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
## S4 method for signature 'DISCBIO'
ClustDiffGenes(
  object,
 Κ,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
```

Arguments

object	DISCBIO class object.
К	A numeric value of the number of clusters.
pValue	A numeric value of the p-value. Default is 0.05.
fdr	A numeric value of the false discovery rate. Default is 0.01.
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet	if 'TRUE', suppresses intermediate text output
filename_up	Name of the exported "up" file (if 'export=TRUE')
filename_down	Name of the exported "down" file (if 'export=TRUE')
filename_binom filename_sigdeg	Name of the exported binomial file

Name of the exported sigDEG file

Value

A list containing two tables.

6

Clustexp

Examples

```
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln = 3, quiet = TRUE)
cdiff <- ClustDiffGenes(sc, K = 3, fdr = .3, export = FALSE)
str(cdiff)
cdiff[[2]]</pre>
```

Clustexp

Clustering of single-cell transcriptome data

Description

This functions performs the initial clustering of the RaceID algorithm.

```
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
 metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
 B.gap = 50,
  cln = 0,
 rseed = NULL,
  quiet = FALSE
)
## S4 method for signature 'DISCBIO'
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
 metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
 B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```

Arguments

object	DISCBIO class object.
clustnr	Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 20.
bootnr	A numeric value of booststrapping runs for clusterboot. Default is 50.
metric	Is the method to transform the input data to a distance object. Metric has to be one of the following: ["spearman", "pearson", "kendall", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"].
do.gap	A logical vector that allows generating the number of clusters based on the gap statistics. Default is TRUE.
SE.method	The SE.method determines the first local maximum of the gap statistics. The SE.method has to be one of the following:["firstSEmax", "Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"]. Default is "Tibs2001SEmax"
SE.factor	A numeric value of the fraction of the standard deviation by which the local maximum is required to differ from the neighboring points it is compared to. Default is 0.25.
B.gap	Number of bootstrap runs for the calculation of the gap statistics. Default is 50
cln	Number of clusters to be used. Default is NULL and the cluster number is inferred by the saturation criterion.
rseed	Random integer to enforce reproducible clustering results.
quiet	if 'TRUE', intermediate output is suppressed

Value

The DISCBIO-class object input with the cpart slot filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln = 2)</pre>
```

clustheatmap	Plotting clusters in a heatmap	representation of the cell distances

Description

This functions plots a heatmap of the distance matrix grouped by clusters. Individual clusters are highlighted with rainbow colors along the x and y-axes.

comptSNE

Usage

```
clustheatmap(
  object,
  clustering_method = "k-means",
 hmethod = "single",
 rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)
## S4 method for signature 'DISCBIO'
clustheatmap(
  object,
  clustering_method = "k-means",
 hmethod = "single",
  rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)
```

Arguments

object	DISCBIO class object.
clustering_method	
	either "k-means" or "model-based" ("k" and "mb" are also accepted)
hmethod	Agglomeration method used for determining the cluster order from hierarchical clustering of the cluster medoids. This should be one of "ward.D", "ward.D2", "single", "complete", "average". Default is "single".
rseed	Random integer to fix random results.
quiet	if 'TRUE', intermediary output is suppressed
plot	if 'TRUE', plots the heatmap; otherwise, just prints cclmo

Value

Unless otherwise specified, a heatmap and a vector of the underlying cluster order.

comptSNE

Computing tSNE

Description

This function is used to compute the t-Distributed Stochastic Neighbor Embedding (t-SNE).

Usage

```
comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
  . . .
)
## S4 method for signature 'DISCBIO'
comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
  . . .
)
```

Arguments

object	DISCBIO class object.
rseed	Random integer to to yield reproducible maps across different runs
<pre>max_iter</pre>	maximum number of iterations to perform.
epoch	The number of iterations in between update messages.
quiet	if 'TRUE', suppresses intermediate output
	other parameters to be passed to 'tsne::tsne'

Value

The DISCBIO-class object input with the tsne slot filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln = 2) # data must be clustered before plottin
sc <- comptSNE(sc, max_iter = 30)
head(sc@tsne)
```

10

customConvertFeats Automatic Feature Id Conversion.

Description

Attempt to automatically convert non-ENSEMBL feature identifiers to ENSEMBL identifiers. Features are included as rownames of the input data.frame (or matrix). It is assumed that feature identifiers (i.e., rownames of x) come from human or mouse genomes, and are either OFFICIAL SYMBOLS or ENTREZIDS. If less than 20 is identified, an error will be thrown.

Usage

```
customConvertFeats(x, verbose = TRUE)
```

Arguments

х	data.frame or matrix including raw counts (typically, UMIs), where rows are fea-
	tures (genes) and rownames are feature identifiers (SYMBOLs or ENTREZIDs).
verbose	logical, shall messages be printed to inform about conversion advances.

Value

a data.frame where rownames are ENSEMBL IDs. The new feature IDs are automatically imputed based on existing feature IDs (SYMBOLs or ENTREZIDs).

DEGanalysis	Determining differentially expressed genes (DEGs) between all indi-
	vidual clusters.

Description

This function defines DEGs between all individual clusters generated by either K-means or model based clustering.

```
DEGanalysis(
   object,
   K,
   Clustering = "K-means",
   fdr = 0.05,
   name = "Name",
   export = FALSE,
   quiet = FALSE,
   plot = TRUE,
   filename_deg = "DEGsTable",
```

```
filename_sigdeg = "sigDEG",
  . . .
)
## S4 method for signature 'DISCBIO'
DEGanalysis(
  object,
  Κ,
 Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  . . .
)
```

Arguments

object	DISCBIO class object.	
К	A numeric value of the number of clusters.	
Clustering	Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"	
fdr	A numeric value of the false discovery rate. Default is 0.05.	
name	A string vector showing the name to be used to save the resulted tables.	
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.	
quiet	if 'TRUE', suppresses intermediate text output	
plot	if 'TRUE', plots are generated	
filename_deg	Name of the exported DEG table	
filename_sigdeg		
	Name of the exported sigDEG table	
	additional parameters to be passed to samr()	

Value

A list containing two tables.

DEGanalysis2clust

Description

This function defines DEGs between particular clusters generated by either K-means or model based clustering.

Usage

```
DEGanalysis2clust(
  object,
 Κ,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  . . .
)
## S4 method for signature 'DISCBIO'
DEGanalysis2clust(
  object,
 Κ,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
 First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  . . .
)
```

)

Arguments

object DISCBIO class object.

К	A numeric value of the number of clusters.	
Clustering	Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"	
fdr	A numeric value of the false discovery rate. Default is 0.05.	
name	A string vector showing the name to be used to save the resulted tables.	
First	A string vector showing the first target cluster. Default is "CL1"	
Second	A string vector showing the second target cluster. Default is "CL2"	
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.	
quiet	if 'TRUE', suppresses intermediate text output	
plot	if 'TRUE', plots are generated	
filename_deg	Name of the exported DEG table	
filename_sigdeg		
	Name of the exported sigDEG table	
	additional parameters to be passed to samr()	

Value

A list containing two tables.

DISCBIO The DISCBIO Class	
---------------------------	--

Description

The DISCBIO class is the central object storing all information generated throughout the pipeline.

Arguments

object	An DISCBIO object.
--------	--------------------

Details

DISCBIO

Slots

- SingleCellExperiment Representation of the single cell input data, including both cells from regular and ERCC spike-in samples. Data are stored in a SingleCellExperiment object.
- expdata The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It does not contain ERCC spike-ins.
- expdataAll The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It can contain ERCC spike-ins.
- ndata Data with expression normalized to one for each cell.

fdata Filtered data with expression normalized to one for each cell.

distances A distance matrix.

- tsne A data.frame with coordinates of two-dimensional tsne layout for the K-means clustering.
- background A list storing the polynomial fit for the background model of gene expression variability. It is used for outlier identification.
- out A list storing information on outlier cells used for the prediction of rare cell types.
- cpart A vector containing the final clustering partition computed by K-means.

fcol A vector contaning the colour scheme for the clusters.

- filterpar A list containing the parameters used for cell and gene filtering based on expression.
- clusterpar A list containing the parameters used for the K-means clustering.
- outlierpar A list containing the parameters used for outlier identification.

kmeans A list containing the results of running the Clustexp() function.

- MBclusters A vector containing the final clustering partition computed by Model-based clustering.
- kordering A vector containing the Pseudo-time ordering based on k-means clusters.
- MBordering A vector containing the Pseudo-time ordering based on Model-based clusters.
- MBtsne A data.frame with coordinates of two-dimensional tsne layout for the Model-based clustering.
- noiseF A vector containing the gene list resulted from running the noise filtering.
- FinalGeneList A vector containing the final gene list resulted from running the noise filtering or/and the expression filtering.

Examples

```
class(valuesG1msTest)
G1_reclassified <- DISCBIO(valuesG1msTest)
class(G1_reclassified)
str(G1_reclassified, max.level = 2)
identical(G1_reclassified@expdataAll, valuesG1msTest)</pre>
```

DISCBI02SingleCellExperiment Convert a DISCBIO object to a SingleCellExperiment.

Description

Extract the SingleCellExperiment input data from the corresponding input slot in a DISCBIO-class object

Usage

DISCBI02SingleCellExperiment(x)

Exprmclust

Arguments

х

an object of class DISCBIO

Value

a SingleCellExperiment-class object

Examples

```
g1_disc <- DISCBIO(valuesG1msTest)
class(g1_disc)
g1_sce <- DISCBIO2SingleCellExperiment(g1_disc)
class(g1_sce)</pre>
```

Exprmclust

Performing Model-based clustering on expression values

Description

this function first uses principal component analysis (PCA) to reduce dimensionality of original data. It then performs model-based clustering on the transformed expression values.

```
Exprmclust(
  object,
 K = 3,
 modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)
## S4 method for signature 'DISCBIO'
Exprmclust(
 object,
 K = 3,
 modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)
## S4 method for signature 'data.frame'
Exprmclust(
 object,
```

FinalPreprocessing

```
K = 3,
modelNames = "VVV",
reduce = TRUE,
cluster = NULL,
quiet = FALSE
)
```

Arguments

object	DISCBIO class object.
К	An integer vector specifying all possible cluster numbers. Default is 3.
modelNames	model to be used in model-based clustering. By default "ellipsoidal, varying volume, shape, and orientation" is used.
reduce	A logical vector that allows performing the PCA on the expression data. Default is TRUE.
cluster	A vector showing the ID of cells in the clusters.
quiet	if 'TRUE', suppresses intermediary output

Value

If 'object' is of class DISCBIO, the output is the same object with the MBclusters slot filled. If the 'object' is a data frame, the function returns a named list containing the four objects that together correspond to the contents of the MBclusters slot.

FinalPreprocessing Final Preprocessing

Description

This function generates the final filtered normalized dataset.

```
FinalPreprocessing(
   object,
   GeneFlitering = "NoiseF",
   export = FALSE,
   quiet = FALSE,
   fileName = "filteredDataset"
)
## S4 method for signature 'DISCBIO'
FinalPreprocessing(
   object,
   GeneFlitering = "NoiseF",
   export = FALSE,
```

```
quiet = FALSE,
fileName = "filteredDataset"
)
```

Arguments

object	DISCBIO class object.
GeneFlitering	GeneFlitering has to be one of the followings: ["NoiseF", "ExpF"]. Default is "NoiseF"
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet	if 'TRUE', intermediary output is suppressed
fileName	File name for exporting (if 'export = TRUE')

Value

The DISCBIO-class object input with the FinalGeneList slot filled.

Examples

```
#sc <- DISCBIO(valuesG1msTest)
#sc <- NoiseFiltering(sc, percentile = 0.9, CV = 0.2, export = FALSE)
#sc <- FinalPreprocessing(sc, GeneFlitering = "NoiseF", export = FALSE)</pre>
```

FindOutliers	Inference of outlier cells

Description

This functions performs the outlier identification for k-means and model-based clustering

Usage

```
FindOutliers(
    object,
    K,
    outminc = 5,
    outlg = 2,
    probthr = 0.001,
    thr = 2^-(1:40),
    outdistquant = 0.75,
    plot = TRUE,
    quiet = FALSE
)
## S4 method for signature 'DISCBIO'
```

18

FindOutliers

```
FindOutliers(
   object,
   K,
   outminc = 5,
   outlg = 2,
   probthr = 0.001,
   thr = 2^-(1:40),
   outdistquant = 0.75,
   plot = TRUE,
   quiet = FALSE
)
```

Arguments

object	DISCBIO class object.
К	Number of clusters to be used.
outminc	minimal transcript count of a gene in a clusters to be tested for being an outlier gene. Default is 5.
outlg	Minimum number of outlier genes required for being an outlier cell. Default is 2.
probthr	outlier probability threshold for a minimum of outlg genes to be an outlier cell. This probability is computed from a negative binomial background model of expression in a cluster. Default is 0.001.
thr	probability values for which the number of outliers is computed in order to plot the dependence of the number of outliers on the probability threshold. Default is 2^{**} -(1:40).set
outdistquant	Real number between zero and one. Outlier cells are merged to outlier clusters if their distance smaller than the outdistquant-quantile of the distance distribution of pairs of cells in the orginal clusters after outlier removal. Default is 0.75.
plot	if 'TRUE', produces a plot of -log10prob per K
quiet	if 'TRUE', intermediary output is suppressed

Value

A named vector of the genes containing outlying cells and the number of cells on each.

Examples

```
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln = 2) # K-means clustering
FindOutliers(sc, K = 2)</pre>
```

foldchange.seq.twoclass.unpaired

Foldchange of twoclass unpaired sequencing data

Description

Foldchange of twoclass unpaired sequencing data

Usage

```
foldchange.seq.twoclass.unpaired(x, y, depth)
```

Arguments

х	Х
У	у
depth	depth

HumanMouseGeneIds Human and Mouse Gene Identifiers.

Description

Data.frame including ENTREZID, SYMBOL, and ENSEMBL gene identifiers of human and mouse genes.

Source

Data were imported, modified, and formatted from the Mus.musculus (ver 1.3.1) and the Homo.sapiens (ver 1.3.1) BioConductor libraries.

J48 Decision Tree

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage

J48DT(data, quiet = FALSE, plot = TRUE)

J48DTeval

Arguments

data	A data frame resulted from running the function ClassVectoringDT.
quiet	If 'TRUE', suppresses intermediary output
plot	If 'FALSE', suppresses plot output

Value

Information about the J48 model and, by default, a plot of the decision tree.

J48DTeval

Evaluating the performance of the J48 decision tree.

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

J48DTeval(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)

Arguments

data	The resulted data from running the function J48DT.
num.folds	A numeric value of the number of folds for the cross validation assessment. Default is 10.
First	A string vector showing the first target cluster. Default is "CL1"
Second	A string vector showing the second target cluster. Default is "CL2"
quiet	If 'TRUE', suppresses intermediary output

Value

Statistics about the J48 model

Jaccard

Description

Robustness of the clusters can be assessed by Jaccard's similarity, which reflects the reproducibility of individual clusters across bootstrapping runs. Jaccard's similarity is the intersect of two clusters divided by the union.

Usage

```
Jaccard(object, Clustering = "K-means", K, plot = TRUE, R = 100)
```

Arguments

object	DISCBIO class object.
Clustering	Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"
К	A numeric value of the number of clusters
plot	if 'TRUE', plots the mean Jaccard similarities
R	number of bootstrap replicates

Value

A plot of the mean Jaccard similarity coefficient per cluster.

```
KmeanOrder
```

Pseudo-time ordering based on k-means clusters

Description

This function takes the exact output of expression and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

```
KmeanOrder(
   object,
   quiet = FALSE,
   export = FALSE,
   filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters"
)
## S4 method for signature 'DISCBIO'
```

NetAnalysis

```
KmeanOrder(
   object,
   quiet = FALSE,
   export = FALSE,
   filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters"
)
```

Arguments

object	DISCBIO class object.
quiet	if 'TRUE', suppresses intermediary output
export	if 'TRUE', exports order table to csv
filename	Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the kordering slot filled.

Note

This function has been replaced by pseudoTimeOrdering(), but it is being kept for legacy purposes. It will, however, be removed from future versions of DIscBIO.

NetAnalysis	Networking analysis.	

Description

This function checks the connectivity degree and the betweenness centrality, which reflect the communication flow in the defined PPI networks

Usage

```
NetAnalysis(data, export = FALSE, FileName = "NetworkAnalysisTable-1")
```

Arguments

data	Protein-protein interaction data frame resulted from running the PPI function.
export	if 'TRUE', exports the analysis table as a csv file
FileName	suffix for the file name (if export = TRUE)

Value

A network analysis table

Networking

Description

This function uses STRING API to plot the network.

Usage

```
Networking(
   data,
   FileName = NULL,
   species = "9606",
   plot_width = 25,
   plot_height = 15,
   retries = 3
)
```

Arguments

data	A gene list.
FileName	A string vector showing the name to be used to save the resulted network. If 'NULL', the network will be saved to a temporary directory
species	The taxonomy name/id. Default is "9606" for Homo sapiens.
plot_width	Plot width
plot_height	Plot height
retries	maximum number of attempts to connect to the STRING api.

Value

A plot of the network

References

https://string-db.org/api/

NoiseFiltering Noise Filtering

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows: Each column is divided by the geometric means of the rows. The median (or, if requested, another location estimator) of these ratios (skipping the genes with a # geometric mean of zero) is used as the size factor for this column. Source: DESeq package.

Usage

```
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
## S4 method for signature 'DISCBIO'
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
```

Arguments

object	DISCBIO class object.		
percentile	A numeric value of the percentile. Default is 0.8.	It is used to validate the	e ERCC spik-ins.

CV	A numeric value of the coefficient of variation. It is used to validate the ERCC spik-ins. Default is 0.5.
geneCol	Color of the genes that did not pass the filtration.
FgeneCol	Color of the genes that passt the filtration.
erccCol	Color of the ERCC spik-ins.
Val	A logical vector that allows plotting only the validated ERCC spike-ins. Default is TRUE. If Val=FALSE will plot all the ERCC spike-ins.
plot	A logical vector that allows plotting the technical noise. Default is TRUE.
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet	if 'TRUE', suppresses printed output
filename	Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the noiseF slot filled.

Note

This function should be used only if the dataset has ERCC.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sd_filtered <- NoiseFiltering(sc, export = FALSE)
str(sd_filtered)
```

Normalizedata Normalizing and filtering

Description

This function allows filtering of genes and cells to be used in the downstream analysis.

```
Normalizedata(
   object,
   mintotal = 1000,
   minexpr = 0,
   minnumber = 0,
   maxexpr = Inf,
   downsample = FALSE,
   dsn = 1,
```

Normalizedata

```
rseed = NULL
)
## S4 method for signature 'DISCBIO'
Normalizedata(
   object,
   mintotal = 1000,
   minexpr = 0,
   minnumber = 0,
   maxexpr = Inf,
   downsample = FALSE,
   dsn = 1,
   rseed = NULL
)
```

Arguments

object	DISCBIO class object.
mintotal	minimum total transcript number required. Cells with less than mintotal transcripts are filtered out. Default is 1000.
minexpr	minimum required transcript count of a gene in at least minnumber cells. All other genes are filtered out. Default is 0.
minnumber	minimum number of cells that are expressing each gene at minexpr transcripts. Default is 0.
maxexpr	maximum allowed transcript count of a gene in at least a single cell after nor- malization or downsampling. All other genes are filtered out. Default is Inf.
downsample	A logical vector. Default is FALSE. If downsample is set to TRUE, then tran- script counts are downsampled to mintotal transcripts per cell, instead of the normalization. Downsampled versions of the transcript count data are averaged across dsn samples
dsn	A numeric value of the number of samples to be used to average the down- sampled versions of the transcript count data. Default is 1 which means that sampling noise should be comparable across cells. For high numbers of dsn the data will become similar to the median normalization.
rseed	Random integer to enforce reproducible clustering. results

Value

The DISCBIO-class object input with the ndata and fdata slots filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
# In this case this function is used to normalize the reads
sc_normal <- Normalizedata(
    sc,
    mintotal = 1000, minexpr = 0, minnumber = 0, maxexpr = Inf,</pre>
```

```
downsample = FALSE, dsn = 1, rseed = 17000
)
summary(sc_normal@fdata)
```

PCAplotSymbols Plot PCA symbols

Description

Generates a plot of grouped PCA components

Usage

PCAplotSymbols(object, types = NULL)

S4 method for signature 'DISCBIO'
PCAplotSymbols(object, types = NULL)

Arguments

object	DISCBIO class object.
types	If types=NULL then the names of the cells will be grouped automatically. Default is NULL

Value

Plot of the Principal Components

```
plotExptSNE
```

Highlighting gene expression in the t-SNE map

Description

The t-SNE map representation can also be used to analyze expression of a gene or a group of genes, to investigate cluster specific gene expression patterns

Usage

```
plotExptSNE(object, g, n = NULL)
## S4 method for signature 'DISCBIO'
plotExptSNE(object, g, n = NULL)
```

28

plotGap

Arguments

object	DISCBIO class object.
g	Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object.
n	String of characters representing the title of the plot. Default is NULL and the first element of g is chosen.

Value

t-SNE plot for one particular gene

plotGap

Plotting Gap Statistics

Description

Plotting Gap Statistics

Usage

plotGap(object, y_limits = NULL)

S4 method for signature 'DISCBIO'
plotGap(object, y_limits = NULL)

Arguments

object	DISCBIO class object.
y_limits	2-length numeric vector with the limits for the gap plot

Value

A plot of the gap statistics

plotLabelstSNE tSNE map with labels

Description

Visualizing k-means or model-based clusters using tSNE maps

Usage

```
plotLabelstSNE(object)
```

S4 method for signature 'DISCBIO'
plotLabelstSNE(object)

Arguments

object DISCBIO class object.

Value

Plot containing the ID of the cells in each cluster

PlotMBpca	Plotting pseudo-time	ordering or	· gene	expression	in Model-based	
	clustering in PCA					

Description

The PCA representation can either be used to show pseudo-time ordering or the gene expression of a particular gene.

Usage

```
PlotMBpca(object, type = "order", g = NULL, n = NULL)
```

Arguments

object	DISCBIO class object.
type	either 'order' to plot pseudo-time ordering or 'exp' to plot gene expression
g	Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object. Ignored if 'type="order".
n	String of characters representing the title of the plot. Default is NULL and the first element of g is chosen. Ignored if 'type="order"'.

PlotmclustMB

Value

A plot of the PCA.

PlotmclustMB

Plotting the Model-based clusters in PCA.

Description

Plot the model-based clustering results

Usage

PlotmclustMB(object)

S4 method for signature 'DISCBIO'
PlotmclustMB(object)

Arguments

object DISCBIO class object.

Value

A plot of the PCA.

plotOrderTsne Plotting the pseudo-time ordering in the t-SNE map

Description

The tSNE representation can also be used to show the pseudo-time ordering.

Usage

```
plotOrderTsne(object)
```

S4 method for signature 'DISCBIO'
plotOrderTsne(object)

Arguments

object DISCBIO class object.

Value

A plot of the pseudo-time ordering.

```
plotSilhouette
```

Description

The silhouette provides a representation of how well each point is represented by its cluster in comparison to the closest neighboring cluster. It computes for each point the difference between the average similarity to all points in the same cluster and to all points in the closest neighboring cluster. This difference it normalize such that it can take values between -1 and 1 with higher values reflecting better representation of a point by its cluster.

Usage

```
plotSilhouette(object, K)
## S4 method for signature 'DISCBIO'
```

plotSilhouette(object, K)

Arguments

object	DISCBIO class object.
К	A numeric value of the number of clusters

Value

A silhouette plot

plotSymbolstSNE tSNE map for K-means clustering with symbols

Description

Visualizing the K-means clusters using tSNE maps

```
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
## S4 method for signature 'DISCBIO'
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```

plottSNE

Arguments

object	DISCBIO class object.
types	If types=NULL then the names of the cells will be grouped automatically. Default is NULL
legloc	A keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". Default is "bottomright"

Value

Plot of tsne objet slot, grouped by gene.

plottSNE tSNE map

Description

Visualizing the k-means or model-based clusters using tSNE maps

Usage

```
plottSNE(object)
## S4 method for signature 'DISCBIO'
```

```
plottSNE(object)
```

Arguments

object DISCBIO class object.

Value

A plot of t-SNEs.

PPI

Defining protein-protein interactions (PPI) over a list of genes,

Description

This function uses STRING-api. The outcome of STRING analysis will be stored in commaseparated values files.

Usage

PPI(data, FileName = NULL, species = "9606")

Arguments

data	A gene list.
FileName	A string vector showing the name to be used to save the resulted table. If null, no file will be exported
species	The taxonomy name/id. Default is "9606" for Homo sapiens.

Value

Either CSV files stored in the user's file system and its corresponding 'data.frame' object in R or and R object containing that information.

prepExampleDataset Prepare Example Dataset

Description

Internal function that prepares a pre-treated dataset for use in several examples

Usage

```
prepExampleDataset(dataset, save = TRUE)
```

Arguments

dataset	Dataset used for transformation
save	save results?

Details

This function serves the purpose of treating datasets such as valuesG1msReduced to reduce examples of other functions by bypassing some analysis steps covered in the vignettes.

Value

Two rda files, ones for K-means clustering and another for Model-based clustering.

Author(s)

Waldir Leoncio

pseudoTimeOrdering *Pseudo-time ordering*

Description

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

Usage

```
pseudoTimeOrdering(
    object,
    quiet = FALSE,
    export = FALSE,
    filename = "Cellular_pseudo-time_ordering"
)
## S4 method for signature 'DISCBIO'
pseudoTimeOrdering(
    object,
    quiet = FALSE,
    export = FALSE,
    filename = "Cellular_pseudo-time_ordering"
)
```

Arguments

object	DISCBIO class object.
quiet	if 'TRUE', suppresses intermediary output
export	if 'TRUE', exports order table to csv
filename	Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the kordering slot filled.

rankcols	Rank columns		
----------	--------------	--	--

Description

Ranks the elements within each col of the matrix x and returns these ranks in a matrix

Usage

rankcols(x)

Arguments

X X

Note

this function is equivalent to 'samr::rankcol', but uses 'apply' to rank the colums instead of a compiled Fortran function which was causing our DEGanalysis functions to freeze in large datasets.

reformatSiggenes Reformat Siggenes Table

Description

Reformats the Siggenes table output from the SAMR package

Usage

```
reformatSiggenes(table)
```

Arguments

table output from 'samr::samr.compute.siggenes.table'

Author(s)

Waldir Leoncio

See Also

replaceDecimals

replaceDecimals Replace Decimals

Description

Replaces decimals separators between comma and periods on a character vector

Usage

replaceDecimals(x, from = ",", to = ".")

Arguments

х	vector of characters
from	decimal separator on input file
to	decimal separator for output file

36

resa

Note

This function was especially designed to be used with retormatSiggenes

See Also

reformatSiggenes

resa

Resampling

Description

Corresponds to 'samr::resample'

Usage

resa(x, d, nresamp = 20)

Arguments

х	data matrix. nrow=#gene, ncol=#sample
d	estimated sequencing depth
nresamp	number of resamplings

Value

xresamp: an rank array with dim #gene*#sample*nresamp

retrieveURL Retries a URL

Description

Retries a URL

Usage

```
retrieveURL(data, species, outputFormat, maxRetries = 3, successCode = 200)
```

Arguments

data	A gene list
species	The taxonomy name/id. Default is "9606" for Homo sapiens
outputFormat	format of the output. Can be "highres_image", "tsv", "json", "tsv-no-header", "xml"
maxRetries	maximum number of attempts to connect to the STRING api.
successCode	Status code number that represents success

Value

either the output of httr::GET or an error message

Author(s)

Waldir Leoncio

RpartDT

RPART Decision Tree

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage

RpartDT(data, quiet = FALSE, plot = TRUE)

Arguments

data	The exact output of the exprmclust function.
quiet	If 'TRUE', suppresses intermediary output
plot	If 'FALSE', suppresses plot output

Value

Information about the model and, by default, a plot of the decision tree.

RpartEVAL

Evaluating the performance of the RPART Decision Tree.

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

```
RpartEVAL(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
```

sammy

Arguments

data	The resulted data from running the function J48DT.
num.folds	A numeric value of the number of folds for the cross validation assessment. Default is 10.
First	A string vector showing the first target cluster. Default is "CL1"
Second	A string vector showing the second target cluster. Default is "CL2"
quiet	If 'TRUE', suppresses intermediary output

Value

Performance statistics of the model

sammy

Significance analysis of microarrays

Description

This function is an adaptation of 'samr::samr'

```
sammy(
 data.
  resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass",
    "One class", "Two class paired", "Two class unpaired timecourse",
   "One class timecourse", "Two class paired timecourse", "Pattern discovery"),
  assay.type = c("array", "seq"),
  s0 = NULL,
  s0.perc = NULL,
  nperms = 100,
  center.arrays = FALSE,
  testStatistic = c("standard", "wilcoxon"),
  time.summary.type = c("slope", "signed.area"),
  regression.method = c("standard", "ranks"),
  return.x = FALSE,
  knn.neighbors = 10,
  random.seed = NULL,
  nresamp = 20,
 nresamp.perm = NULL,
 xl.mode = c("regular", "firsttime", "next20", "lasttime"),
 xl.time = NULL,
  xl.prevfit = NULL
)
```

Arguments

data	Data object with components x- p by n matrix of features, one observation per column (missing values allowed); y- n-vector of outcome measurements; censoring.status- n-vector of censoring censoring.status (1= died or event oc-curred, 0=survived, or event was censored), needed for a censored survival outcome
resp.type	Problem type: "Quantitative" for a continuous parameter (Available for both array and sequencing data); "Two class unpaired" (for both array and sequencing data); "Survival" for censored survival outcome (for both array and sequencing-data); "Multiclass": more than 2 groups (for both array and sequencing data); "One class" for a single group (only for array data); "Two class paired" for two classes with paired observations (for both array and sequencing data); "Two class unpaired timecourse" (only for array data), "One class time course" (only for array data), "One class time course" (only for array data), "Two class paired timecourse" (only for array data), or "Pattern discovery" (only for array data)
assay.type	Assay type: "array" for microarray data, "seq" for counts from sequencing
s0	Exchangeability factor for denominator of test statistic; Default is automatic choice. Only used for array data.
s0.perc	Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of stan- dard deviation values= min of sd values. Only used for array data.
nperms	Number of permutations used to estimate false discovery rates
center.arrays	Should the data for each sample (array) be median centered at the outset? De- fault =FALSE. Only used for array data.
testStatistic	Test statistic to use in two class unpaired case.Either "standard" (t-statistic) or ,"wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). Only used for array data.
<pre>time.summary.ty</pre>	pe
	Summary measure for each time course: "slope", or "signed.area"). Only used for array data.
regression.meth	
	Regression method for quantitative case: "standard", (linear least squares) or "ranks" (linear least squares on ranked data). Only used for array data.
return.x	Should the matrix of feature values be returned? Only useful for time course data, where x contains summaries of the features over time. Otherwise x is the same as the input data
knn.neighbors	Number of nearest neighbors to use for imputation of missing features values. Only used for array data.
random.seed	Optional initial seed for random number generator (integer)
nresamp	For assay.type="seq", number of resamples used to construct test statistic. De- fault 20. Only used for sequencing data.
nresamp.perm	For assay.type="seq", number of resamples used to construct test statistic for permutations. Default is equal to nresamp and it must be at most nresamp. Only used for sequencing data.

xl.mode	Used by Excel interface
xl.time	Used by Excel interface
xl.prevfit	Used by Excel interface

samr.estimate.depth Estimate sequencing depths

Description

Estimate sequencing depths

Usage

samr.estimate.depth(x)

Arguments

Х

data matrix. nrow=#gene, ncol=#sample

Value

depth: estimated sequencing depth. a vector with len sample.

valuesG1msTest

Single-cells data from a myxoid liposarcoma cell line

Description

A sample of single cells from a myxoid liposarcoma cell line. Columns refer to samples and rows refer to genes. The last rows refer to external RNA controls consortium (ERCC) spikeins. This dataset is part of a larger dataset containing 94 single cells. The complete dataset is fully compatible with this package and an rda file can be obtained at https://github.com/ocbeuio/DIscBIO/blob/dev/data/valuesG1ms.rda VolcanoPlot

Description

Plotting differentially expressed genes (DEGs) in a particular cluster. Volcano plots are used to readily show the DEGs by plotting significance versus fold-change on the y and x axes, respectively.

Usage

```
VolcanoPlot(object, value = 0.05, name = NULL, fc = 0.5, FS = 0.4)
```

Arguments

object	A data frame showing the differentially expressed genes (DEGs) in a particular cluster
value	A numeric value of the false discovery rate. Default is 0.05 Default is 0.05
name	A string vector showing the name to be used on the plot title
fc	A numeric value of the fold change. Default is 0.5.
FS	A numeric value of the font size. Default is 0.4.

Value

A volcano plot

wilcoxon.unpaired.seq.func Twoclass Wilcoxon statistics

Description

Twoclass Wilcoxon statistics

Usage

```
wilcoxon.unpaired.seq.func(xresamp, y)
```

Arguments

xresamp	an rank array with dim #gene*#sample*nresamp
У	outcome vector of values 1 and 2

Value

the statistic.

Index

as.DISCBIO,3

check.format, 4 ClassVectoringDT, 4 ClassVectoringDT, DISCBIO-method (ClassVectoringDT), 4 ClustDiffGenes, 5 ClustDiffGenes,DISCBIO-method (ClustDiffGenes), 5 Clustexp, 7 Clustexp, DISCBIO-method (Clustexp), 7 clustheatmap, 8 clustheatmap,DISCBIO-method (clustheatmap), 8 comptSNE, 9 comptSNE,DISCBIO-method (comptSNE),9 customConvertFeats, 11 DEGanalysis, 11 DEGanalysis, DISCBIO-method (DEGanalysis), 11 DEGanalysis2clust, 13 DEGanalysis2clust,DISCBIO-method (DEGanalysis2clust), 13 DISCBIO, 14 DISCBIO-class (DISCBIO), 14 DISCBIO-class, (DISCBIO), 14 DISCBI02SingleCellExperiment, 15 Exprmclust, 16

Exprmclust, data.frame-method (Exprmclust), 16 Exprmclust,DISCBIO-method(Exprmclust), 16 FinalPreprocessing, 17

FinalPreprocessing, DISCBIO-method (FinalPreprocessing), 17 FindOutliers, 18 FindOutliers, DISCBIO-method (FindOutliers), 18

foldchange.seq.twoclass.unpaired, 20 HumanMouseGeneIds, 20 J48DT, 20 J48DTeval, 21 Jaccard, 22 KmeanOrder, 22 KmeanOrder,DISCBIO-method (KmeanOrder), 22 NetAnalysis, 23 Networking, 24 NoiseFiltering, 25 NoiseFiltering,DISCBIO-method (NoiseFiltering), 25 Normalizedata, 26 Normalizedata, DISCBIO-method (Normalizedata), 26 PCAplotSymbols, 28 PCAplotSymbols,DISCBI0-method (PCAplotSymbols), 28 plotExptSNE, 28 plotExptSNE,DISCBI0-method (plotExptSNE), 28 plotGap, 29 plotGap,DISCBIO-method (plotGap), 29 plotLabelstSNE, 30 plotLabelstSNE,DISCBIO-method (plotLabelstSNE), 30 PlotMBpca, 30 PlotmclustMB, 31 PlotmclustMB,DISCBIO-method (PlotmclustMB), 31 plotOrderTsne, 31 plotOrderTsne,DISCBIO-method (plotOrderTsne), 31 plotSilhouette, 32

INDEX

plotSilhouette,DISCBIO-method (plotSilhouette), 32 plotSymbolstSNE, 32 plotSymbolstSNE,DISCBIO-method (plotSymbolstSNE), 32 plottSNE, 33 plottSNE,DISCBIO-method (plottSNE), 33 PPI, 33 prepExampleDataset, 34 pseudoTimeOrdering, 35 pseudoTimeOrdering,DISCBIO-method (pseudoTimeOrdering), 35

rankcols, 35
reformatSiggenes, 36
replaceDecimals, 36
resa, 37
retrieveURL, 37
RpartDT, 38
RpartEVAL, 38

sammy, 39
samr.estimate.depth, 41

valuesG1msTest, 41
VolcanoPlot, 42

wilcoxon.unpaired.seq.func,42

44