
Package ‘DEoptimR’
January 20, 2025

Version 1.1-3-1

Date 2024-11-23

Title Differential Evolution Optimization in Pure R

URL svn://svn.r-forge.r-project.org/svnroot/robustbase/pkg/DEoptimR

Description Differential Evolution (DE) stochastic heuristic algorithms for
global optimization of problems with and without general constraints.
The aim is to curate a collection of its variants that
(1) do not sacrifice simplicity of design,
(2) are essentially tuning-free, and
(3) can be efficiently implemented directly in the R language.
Currently, it provides implementations of the algorithms 'jDE' by
Brest et al. (2006) <doi:10.1109/TEVC.2006.872133> for single-objective
optimization and 'NCDE' by Qu et al. (2012) <doi:10.1109/TEVC.2011.2161873>
for multimodal optimization (single-objective problems with
multiple solutions).

Imports stats

Enhances robustbase

License GPL (>= 2)

Author Eduardo L. T. Conceicao [aut, cre],
Martin Maechler [ctb] (<https://orcid.org/0000-0002-8685-9910>)

Maintainer Eduardo L. T. Conceicao <mail@eduardoconceicao.org>

Repository CRAN

Repository/R-Forge/Project robustbase

Repository/R-Forge/Revision 1008

Repository/R-Forge/DateTimeStamp 2024-11-23 19:13:45

Date/Publication 2024-11-23 20:20:02 UTC

NeedsCompilation no

Contents
JDEoptim . 2
NCDEoptim . 9

1

https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.1109/TEVC.2011.2161873
https://orcid.org/0000-0002-8685-9910

2 JDEoptim

Index 13

JDEoptim Bound-Constrained and Nonlinear Constrained Single-Objective Op-
timization via Differential Evolution

Description

A bespoke implementation of the ‘jDE’ variant by Brest et al. (2006) doi:10.1109/TEVC.2006.872133.

Usage

JDEoptim(lower, upper, fn,
constr = NULL, meq = 0, eps = 1e-05,
NP = 10*length(lower), Fl = 0.1, Fu = 1,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
jitter_factor = 0.001,
tol = 1e-15, maxiter = 200*length(lower), fnscale = 1,
compare_to = c("median", "max"),
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
details = FALSE, ...)

Arguments

lower, upper numeric vectors of lower and upper bounds for the parameters to be optimized
over. Must be finite (is.finite) as they bound the hyper-rectangle of the initial
random population.

fn (nonlinear) objective function to be minimized. It takes as first argument the
vector of parameters over which minimization is to take place. It must return the
value of the function at that point.

constr an optional function for specifying the left-hand side of nonlinear constraints
under which we want to minimize fn. Nonlinear equalities should be given
first and defined to equal zero (hj(X) = 0), followed by nonlinear inequali-
ties defined as lesser than zero (gi(X) ≤ 0). This function takes the vector of
parameters as its first argument and returns a real vector with the length of the
total number of constraints. It defaults to NULL, meaning that bound-constrained
minimization is used.

meq an optional positive integer specifying that the first meq constraints are treated
as equality constraints, and all the remaining as inequality constraints. Defaults
to 0 (inequality constraints only).

eps maximal admissible constraint violation for equality constraints. An optional
real vector of small positive tolerance values with length meq used in the trans-
formation of equalities into inequalities of the form |hj(X)| − ϵ ≤ 0. A scalar
value is expanded to apply to all equality constraints. Default is 1e-5.

NP an optional positive integer giving the number of candidate solutions in the ran-
domly distributed initial population. Defaults to 10*length(lower).

https://doi.org/10.1109/TEVC.2006.872133

JDEoptim 3

Fl an optional scalar which represents the minimum value that the scaling factor F
could take. Default is 0.1, which is almost always satisfactory.

Fu an optional scalar which represents the maximum value that the scaling factor F
could take. Default is 1, which is almost always satisfactory.

tau_F an optional scalar which represents the probability that the scaling factor F is
updated. Defaults to 0.1, which is almost always satisfactory.

tau_CR an optional constant value which represents the probability that the crossover
probability CR is updated. Defaults to 0.1, which is almost always satisfactory.

tau_pF an optional scalar which represents the probability that the mutation probability
pF in the mutation strategy DE/rand/1/either-or is updated. Defaults to 0.1.

jitter_factor an optional tuning constant for jitter. If NULL only dither is used. Defaults to
0.001.

tol an optional positive scalar giving the tolerance for the stopping criterion. Default
is 1e-15.

maxiter an optional positive integer specifying the maximum number of iterations that
may be performed before the algorithm is halted. Defaults to 200*length(lower).

fnscale an optional positive scalar specifying the typical magnitude of fn. It is used only
in the stopping criterion. Defaults to 1. See ‘Details’.

compare_to an optional character string controlling which function should be applied to the
fn values of the candidate solutions in a generation to be compared with the
so-far best one when evaluating the stopping criterion. If “median” the median
function is used; else, if “max” the max function is used. It defaults to “median”.
See ‘Details’.

add_to_init_pop

an optional real vector of length length(lower) or matrix with length(lower)
rows specifying initial values of the parameters to be optimized which are ap-
pended to the randomly generated initial population. It defaults to NULL.

trace an optional logical value indicating if a trace of the iteration progress should be
printed. Default is FALSE.

triter an optional positive integer giving the frequency of tracing (every triter iter-
ations) when trace = TRUE. Default is triter = 1, in which case iteration : <
value of stopping test > (value of best solution) best solution { index
of violated constraints } is printed at each iteration.

details an optional logical value. If TRUE the output will contain the parameters in the
final population and their respective fn values. Defaults to FALSE.

... optional additional arguments passed to fn and constr.

Details

Overview: The setting of the control parameters of canonical Differential Evolution (DE) is crucial
for the algorithm’s performance. Unfortunately, when the generally recommended values for
these parameters (see, e.g., Storn and Price, 1997) are unsuitable for use, their determination
is often difficult and time consuming. The jDE algorithm proposed in Brest et al. (2006)
employs a simple self-adaptive scheme to perform the automatic setting of control parameters
scale factor F and crossover rate CR.

4 JDEoptim

This implementation differs from the original description, most notably in the use of the
DE/rand/1/either-or mutation strategy (Price et al., 2005), combination of jitter with dither
(Storn, 2008), and the random initialization of F and CR. The mutation operator brings an
additional control parameter, the mutation probability pF , which is self-adapted in the same
manner as CR.
As done by jDE and its variants (Brest et al., 2021) each worse parent in the current popu-
lation is immediately replaced (asynchronous update) by its newly generated better or equal
offspring (Babu and Angira, 2006) instead of updating the current population with all the new
solutions at the same time as in classical DE (synchronous update).
As the algorithm subsamples via sample() which from R version 3.6.0 depends on RNGkind(*,
sample.kind), exact reproducibility of results from R versions 3.5.3 and earlier requires set-
ting RNGversion("3.5.0"). In any case, do use set.seed() additionally for reproducibility!

Constraint Handling: Constraint handling is done using the approach described in Zhang and
Rangaiah (2012), but with a different reduction updating scheme for the constraint relaxation
value (µ). Instead of doing it once for every generation or iteration, the reduction is triggered
for two cases when the constraints only contain inequalities. Firstly, every time a feasible
solution is selected for replacement in the next generation by a new feasible trial candidate so-
lution with a better objective function value. Secondly, whenever a current infeasible solution
gets replaced by a feasible one. If the constraints include equalities, then the reduction is not
triggered in this last case. This constitutes an original feature of the implementation.
The performance of any constraint handling technique for metaheuristics is severely impaired
by a small feasible region. Therefore, equality constraints are particularly difficult to handle
due to the tiny feasible region they define. So, instead of explicitly including all equality
constraints in the formulation of the optimization problem, it might prove advantageous to
eliminate some of them. This is done by expressing one variable xk in terms of the remaining
others for an equality constraint hj(X) = 0 where X = [x1, . . . , xk, . . . , xd] is the vector
of solutions, thereby obtaining a relationship as xk = Rk,j([x1, . . . , xk−1, xk+1, . . . , xd]). In
this way both the variable xk and the equality constraint hj(X) = 0 can be removed altogether
from the original optimization formulation, since the value of xk can be calculated during the
search process by the relationship Rk,j . Notice, however, that two additional inequalities

lk ≤ Rk,j([x1, . . . , xk−1, xk+1, . . . , xd]) ≤ uk,

where the values lk and uk are the lower and upper bounds of xk, respectively, must be pro-
vided in order to obtain an equivalent formulation of the problem. For guidance and examples
on applying this approach see Wu et al. (2015).
Bound constraints are enforced by the midpoint base approach (see, e.g., Biedrzycki et al.,
2019).

Discrete and Integer Variables: Any DE variant is easily extended to deal with mixed integer non-
linear programming problems using a small variation of the technique presented by Lampinen
and Zelinka (1999). Integer values are obtained by means of the floor() function only in the
evaluation of the objective function and constraints, whereas DE itself still uses continuous
variables. Additionally, each upper bound of the integer variables should be added by 1.
Notice that the final solution needs to be converted with floor() to obtain its integer elements.

Stopping Criterion: The algorithm is stopped if

compare_to{[fn(X1), . . . , fn(Xnpop)]} − fn(Xbest)

fnscale
≤ tol,

JDEoptim 5

where the “best” individual Xbest is the feasible solution with the lowest objective func-
tion value in the population and the total number of elements in the population, npop, is
NP+NCOL(add_to_init_pop). For compare_to = "max" this is the Diff criterion studied by
Zielinski and Laur (2008) among several other alternatives, which was found to yield the best
results.

Value

A list with the following components:

par The best set of parameters found.
value The value of fn corresponding to par.
iter Number of iterations taken by the algorithm.
convergence An integer code. 0 indicates successful completion. 1 indicates that the iteration

limit maxiter has been reached.

and if details = TRUE:

poppar Matrix of dimension (length(lower), npop), with columns corresponding to
the parameter vectors remaining in the population.

popcost The values of fn associated with poppar, vector of length npop.

Note

It is possible to perform a warm start, i.e., starting from the previous run and resume optimization,
using NP = 0 and the component poppar for the add_to_init_pop argument.

Author(s)

Eduardo L. T. Conceicao <mail@eduardoconceicao.org>

References

Babu, B. V. and Angira, R. (2006) Modified differential evolution (MDE) for optimization of non-
linear chemical processes. Computers and Chemical Engineering 30, 989–1002. doi:10.1016/
j.compchemeng.2005.12.020.

Biedrzycki, R., Arabas, J. and Jagodzinski, D. (2019) Bound constraints handling in differential
evolution: An experimental study. Swarm and Evolutionary Computation 50, 100453. doi:10.1016/
j.swevo.2018.10.004.

Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V. (2006) Self-adapting control pa-
rameters in differential evolution: A comparative study on numerical benchmark problems. IEEE
Transactions on Evolutionary Computation 10, 646–657. doi:10.1109/TEVC.2006.872133.

Brest, J., Maucec, M. S. and Boskovic, B. (2021) Self-adaptive differential evolution algorithm
with population size reduction for single objective bound-constrained optimization: Algorithm j21;
in 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 817–824. doi:10.1109/
CEC45853.2021.9504782.

Lampinen, J. and Zelinka, I. (1999). Mechanical engineering design optimization by differential
evolution; in Corne, D., Dorigo, M. and Glover, F., Eds., New Ideas in Optimization. McGraw-Hill,
pp. 127–146.

https://doi.org/10.1016/j.compchemeng.2005.12.020
https://doi.org/10.1016/j.compchemeng.2005.12.020
https://doi.org/10.1016/j.swevo.2018.10.004
https://doi.org/10.1016/j.swevo.2018.10.004
https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.1109/CEC45853.2021.9504782
https://doi.org/10.1109/CEC45853.2021.9504782

6 JDEoptim

Price, K. V., Storn, R. M. and Lampinen, J. A. (2005) Differential evolution: A practical approach
to global optimization. Springer, Berlin, Heidelberg, pp. 117–118. doi:10.1007/3540313060_2.

Storn, R. (2008) Differential evolution research — Trends and open questions; in Chakraborty, U.
K., Ed., Advances in differential evolution. SCI 143, Springer, Berlin, Heidelberg, pp. 11–12.
doi:10.1007/9783540688303_1.

Storn, R. and Price, K. (1997) Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359. doi:10.1023/
A:1008202821328.

Wu, G., Pedrycz, W., Suganthan, P. N. and Mallipeddi, R. (2015) A variable reduction strategy
for evolutionary algorithms handling equality constraints. Applied Soft Computing 37, 774–786.
doi:10.1016/j.asoc.2015.09.007.

Zhang, H. and Rangaiah, G. P. (2012) An efficient constraint handling method with integrated differ-
ential evolution for numerical and engineering optimization. Computers and Chemical Engineering
37, 74–88. doi:10.1016/j.compchemeng.2011.09.018.

Zielinski, K. and Laur, R. (2008) Stopping criteria for differential evolution in constrained single-
objective optimization; in Chakraborty, U. K., Ed., Advances in differential evolution. SCI 143,
Springer, Berlin, Heidelberg, pp. 111–138. doi:10.1007/9783540688303_4.

See Also

Function DEoptim() in the DEoptim package has many more options than JDEoptim(), but does
not allow constraints in the same flexible manner.

Examples

NOTE: Examples were excluded from testing
to reduce package check time.

Use a preset seed so test values are reproducible.
set.seed(1234)

Bound-constrained optimization

Griewank function
#
-600 <= xi <= 600, i = {1, 2, ..., n}
The function has a global minimum located at
x* = (0, 0, ..., 0) with f(x*) = 0. Number of local minima
for arbitrary n is unknown, but in the two dimensional case
there are some 500 local minima.
#
Source:
Ali, M. Montaz, Khompatraporn, Charoenchai, and
Zabinsky, Zelda B. (2005).
A numerical evaluation of several stochastic algorithms
on selected continuous global optimization test problems.
Journal of Global Optimization 31, 635-672.
https://doi.org/10.1007/s10898-004-9972-2
griewank <- function(x) {

https://doi.org/10.1007/3-540-31306-0_2
https://doi.org/10.1007/978-3-540-68830-3_1
https://doi.org/10.1023/A%3A1008202821328
https://doi.org/10.1023/A%3A1008202821328
https://doi.org/10.1016/j.asoc.2015.09.007
https://doi.org/10.1016/j.compchemeng.2011.09.018
https://doi.org/10.1007/978-3-540-68830-3_4
https://CRAN.R-project.org/package=DEoptim

JDEoptim 7

1 + crossprod(x)/4000 - prod(cos(x/sqrt(seq_along(x))))
}

JDEoptim(rep(-600, 10), rep(600, 10), griewank,
tol = 1e-7, trace = TRUE, triter = 50)

Nonlinear constrained optimization

0 <= x1 <= 34, 0 <= x2 <= 17, 100 <= x3 <= 300
The global optimum is
(x1, x2, x3; f) = (0, 16.666667, 100; 189.311627).
#
Source:
Westerberg, Arthur W., and Shah, Jigar V. (1978).
Assuring a global optimum by the use of an upper bound
on the lower (dual) bound.
Computers and Chemical Engineering 2, 83-92.
https://doi.org/10.1016/0098-1354(78)80012-X
fcn <-

list(obj = function(x) {
35*x[1]^0.6 + 35*x[2]^0.6

},
eq = 2,
con = function(x) {

x1 <- x[1]; x3 <- x[3]
c(600*x1 - 50*x3 - x1*x3 + 5000,

600*x[2] + 50*x3 - 15000)
})

JDEoptim(c(0, 0, 100), c(34, 17, 300),
fn = fcn$obj, constr = fcn$con, meq = fcn$eq,
tol = 1e-7, trace = TRUE, triter = 50)

Designing a pressure vessel
Case A: all variables are treated as continuous
#
1.1 <= x1 <= 12.5*, 0.6 <= x2 <= 12.5*,
0.0 <= x3 <= 240.0*, 0.0 <= x4 <= 240.0
Roughly guessed*
The global optimum is (x1, x2, x3, x4; f) =
(1.100000, 0.600000, 56.99482, 51.00125; 7019.031).
#
Source:
Lampinen, Jouni, and Zelinka, Ivan (1999).
Mechanical engineering design optimization
by differential evolution.
In: David Corne, Marco Dorigo and Fred Glover (Editors),
New Ideas in Optimization, McGraw-Hill, pp 127-146
pressure_vessel_A <-

list(obj = function(x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3

8 JDEoptim

},
con = function(x) {

x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,

0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)

})

JDEoptim(c(1.1, 0.6, 0.0, 0.0),
c(12.5, 12.5, 240.0, 240.0),
fn = pressure_vessel_A$obj,
constr = pressure_vessel_A$con,
tol = 1e-7, trace = TRUE, triter = 50)

Mixed integer nonlinear programming

Designing a pressure vessel
Case B: solved according to the original problem statements
steel plate available in thicknesses multiple
of 0.0625 inch
#
wall thickness of the
shell 1.1 [18*0.0625] <= x1 <= 12.5 [200*0.0625]
heads 0.6 [10*0.0625] <= x2 <= 12.5 [200*0.0625]
0.0 <= x3 <= 240.0, 0.0 <= x4 <= 240.0
The global optimum is (x1, x2, x3, x4; f) =
(1.125 [18*0.0625], 0.625 [10*0.0625],
58.29016, 43.69266; 7197.729).
pressure_vessel_B <-

list(obj = function(x) {
x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
0.6224*x1*x3*x4 + 1.7781*x2*x3^2 +
3.1611*x1^2*x4 + 19.84*x1^2*x3

},
con = function(x) {

x1 <- floor(x[1])*0.0625
x2 <- floor(x[2])*0.0625
x3 <- x[3]; x4 <- x[4]
c(0.0193*x3 - x1,

0.00954*x3 - x2,
750.0*1728.0 - pi*x3^2*x4 - 4/3*pi*x3^3)

})

res <- JDEoptim(c(18, 10, 0.0, 0.0),
c(200+1, 200+1, 240.0, 240.0),
fn = pressure_vessel_B$obj,
constr = pressure_vessel_B$con,
tol = 1e-7, trace = TRUE, triter = 50)

res
Now convert to integer x1 and x2
c(floor(res$par[1:2]), res$par[3:4])

NCDEoptim 9

NCDEoptim Bound-Constrained and Nonlinear Constrained Multimodal Opti-
mization via Differential Evolution

Description

A bespoke implementation of the ‘NCDE’ (neighborhood based crowding DE) algorithm by Qu
et al. (2012) doi:10.1109/TEVC.2011.2161873, assisted with the dynamic archive mechanism of
Epitropakis et al. (2013) doi:10.1109/CEC.2013.6557556.

Usage

NCDEoptim(lower, upper, fn,
constr = NULL, meq = 0, eps = 1e-5,
crit = 1e-5, niche_radius = NULL, archive_size = 100,
reinit_if_solu_in_arch = TRUE,
NP = 100, Fl = 0.1, Fu = 1, CRl = 0, CRu = 1.1,
nbngbrsl = NP/20, nbngbrsu = NP/5,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
tau_nbngbrs = 0.1,
jitter_factor = 0.001,
maxiter = 2000,
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
...)

Arguments

lower, upper numeric vectors, the lower and upper bounds of the search space (box con-
straints); must be finite (is.finite).

fn a function to be minimized that takes a numeric vector Xi as first argument
and returns the value of the objective.

constr a vector function specifying the left-hand side of equality constraints defined
to equal zero (hj(Xi) = 0, j = 1, . . . ,meq), followed by inequality constraints
defined as lesser than zero (gj(Xi) ≤ 0, j = meq+ 1, . . .). This function takes
Xi as its first argument and returns a numeric vector with the same length of
the total number of constraints. It defaults to NULL, which means that bound-
constrained minimization is used.

meq an integer, the first meq constraints are equality constraints whereas the remain-
ing ones are inequality constraints. Defaults to 0 (inequality constraints only).

eps the maximal admissible constraint violation for equality constraints. A numeric
vector of small positive tolerance values with length meq used in the transforma-
tion of equalities into inequalities of the form |hj(Xi)| − ϵ ≤ 0. A scalar value
is expanded to apply to all equality constraints. Default is 1e-5.

https://doi.org/10.1109/TEVC.2011.2161873
https://doi.org/10.1109/CEC.2013.6557556

10 NCDEoptim

crit a numeric, the acceptance threshold on the archive strategy. If isTRUE(all.equal(fn(X_best_so_far_in_archive),
fn(X_i), tolerance = crit)), a solution Xi is checked for possible insertion
into the dynamic archive. Defaults to 1e-5.

niche_radius a numeric, the absolute tolerance used to decide whether the solution Xi is iden-
tical to an already existing local or global solution in the archive. It defaults to
NULL, meaning that the niche radius is adaptively chosen during the search. Re-
sults are much better if one is able to provide a reasonable value.

archive_size an integer, the maximum number of solutions that can be kept in the archive;
entries above this limit are discarded. Default is 100.

reinit_if_solu_in_arch

a logical, if TRUE, any solution Xi already in the archive reinitializes its nearest
neighbor in the population within the range [lower,upper]. Default is TRUE.

NP an integer, the population size. Defaults to 100.

Fl a numeric, the minimum value that the scaling factor F could take. It defaults to
0.1.

Fu a numeric, the maximum value that the scaling factor F could take. It defaults
to 1.

CRl a numeric, the minimum value to be used for the crossover constant CR. It de-
faults to 0.

CRu a numeric, the maximum value to be used for the crossover constant CR. It de-
faults to 1.1.

nbngbrsl an integer, the lower limit for the neighborhood size nbngbrs. It defaults to
1/20 of the population size.

nbngbrsu an integer, the upper limit for the neighborhood size nbngbrs. It defaults to 1/5
of the population size.

tau_F a numeric, the probability that the scaling factor F is updated. Defaults to 0.1.

tau_CR a numeric, the probability that the crossover constant CR is updated. Defaults to
0.1.

tau_pF a numeric, the probability that the mutation probability pF in the mutation strat-
egy DE/rand/1/either-or is updated. Defaults to 0.1.

tau_nbngbrs a numeric, the probability that the neighborhood size nbngbrs is updated. De-
faults to 0.1.

jitter_factor a numeric, the tuning constant for jitter. If NULL only dither is used. Default is
0.001.

maxiter an integer, the maximum number of iterations allowed which is the stopping
condition. Default is 2000.

add_to_init_pop

numeric vector of length length(lower) or column-wise matrix with length(lower)
rows specifying initial candidate solutions which are appended to the randomly
generated initial population. Default is NULL.

trace a logical, determines whether or not to monitor the iteration process. Default is
FALSE.

triter an integer, trace output is printed at every triter iterations. Default is 1.

... additional arguments passed to fn and constr.

NCDEoptim 11

Details

This implementation differs mainly from the original ‘NCDE’ algorithm of Qu et al. (2012) by
employing the archiving procedure proposed in Epitropakis et al. (2013) and the adaptive ‘jDE’
strategy instead of canonical Diferential Evolution. The key reason for archiving good solutions
during the search process is to prevent them from being lost during evolution. Constraints are
tackled through the ε-constrained method as proposed in Poole and Allen (2019). The ‘jDE’ and
ε-constrained mechanisms are applied in the same way as in JDEoptim, but with synchronous mode
of population update. In contrast, the reinitialization in the current population triggered by already
found solutions is done asynchronously.

Each line of trace output follows the format of:

iteration : < value of niche radius > population>> (value of best solution) best solution
{ index of violated constraints } archive>> [number of solutions found] (value of best
solution) best solution

Value

A list with the following components:

solution_arch a matrix whose columns are the local and global minima stored in the archive
of feasible solutions in ascending order of the objective function values.

objective_arch the values of fn(Xi) for the corresponding columns of solution_arch.

solution_pop a matrix whose columns are the local and global minima stored in the final
population in ascending order of the objective function values; feasible solu-
tions come first followed by the infeasible ones.

objective_pop the values of fn(Xi) for the corresponding columns of solution_pop.

iter the number of iterations used.

and if there are general constraints present:

constr_value_arch

a matrix whose columns contain the values of the constraints for solution_arch.
constr_value_pop

a matrix whose columns contain the values of the constraints for solution_pop.

Note

This function is in an experimental stage.

Author(s)

Eduardo L. T. Conceicao <mail@eduardoconceicao.org>

References

Epitropakis, M. G., Li, X. and Burke, E. K. (2013) A dynamic archive niching differential evolu-
tion algorithm for multimodal optimization; in 2013 IEEE Congress on Evolutionary Computation
(CEC). IEEE, pp. 79–86. doi:10.1109/CEC.2013.6557556.

https://doi.org/10.1109/CEC.2013.6557556

12 NCDEoptim

Poole, D. J. and Allen, C. B. (2019) Constrained niching using differential evolution. Swarm and
Evolutionary Computation 44, 74–100. doi:10.1016/j.swevo.2018.11.004.

Qu, B. Y., Suganthan, P. N. and Liang, J. J. (2012) Differential evolution with neighborhood muta-
tion for multimodal optimization. IEEE Transactions on Evolutionary Computation 16, 601–614.
doi:10.1109/TEVC.2011.2161873.

Examples

NOTE: Examples were excluded from testing
to reduce package check time.

Use a preset seed so test values are reproducible.
set.seed(1234)

Warning: the examples are run using a very small number of
iterations to decrease execution time.

Bound-constrained optimization

Vincent function
#
f(x) = -mean(sin(10*log(x)))
#
0.25 <= xi <= 10, i = {1, 2, ..., n}
The function has 6^n global minima without local minima.

NCDEoptim(c(0.25, 0.25), c(10, 10),
function(x) -mean(sin(10*log(x))),
niche_radius = 0.2,
maxiter = 200, trace = TRUE, triter = 20)

Nonlinear constrained optimization

Function F10 of Poole and Allen (2019)
#
f(x) = -sin(5*pi*x)^6 + 1
subject to:
g(x) = -cos(10*pi*x) <= 0
#
0 <= x <= 1
The 10 global optima are
(x1*, ..., x10*; f*) = ((2*(1:10) - 1)/20; 0.875).

NCDEoptim(0, 1,
function(x) -sin(5*pi*x)^6 + 1,
function(x) -cos(10*pi*x),
niche_radius = 0.05,
maxiter = 200, trace = TRUE, triter = 20)

https://doi.org/10.1016/j.swevo.2018.11.004
https://doi.org/10.1109/TEVC.2011.2161873

Index

∗ global optimization
JDEoptim, 2

∗ multimodal optimization
NCDEoptim, 9

∗ nonlinear
JDEoptim, 2

∗ optimize
JDEoptim, 2

all.equal, 10

DEoptim, 6

function, 2, 9

is.finite, 2, 9
isTRUE, 10

JDEoptim, 2, 11

matrix, 3, 10, 11

NCDEoptim, 9

RNGkind, 4
RNGversion, 4

sample, 4
set.seed, 4

13

	JDEoptim
	NCDEoptim
	Index

