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bCond.estParamCopula Estimation of the conditional parameters of a parametric conditional

copula with discrete conditioning events.

Description

By Sklar’s theorem, any conditional distribution function can be written as

Figja(w1,22) = c1 214 (Frja(21), Fo a(72)),

where A is an event and c; 34 is a copula depending on the event A. In this function, we assume that
we have a partition A4, ... A, of the probability space, and that for each k = 1, ..., p, the conditional
copula is parametric according to the following model

C1,2|Ak = Co(Ak)>
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for some parameter 6( Ak) depending on the realized event Ak. This function uses canonical maxi-
mum likelihood to estimate §( Ak) and the corresponding copulas C1,2| Ak-

Usage

bCond.estParamCopula(U1, U2, family, partition)

Arguments
U1 vector of n conditional pseudo-observations of the first conditioned variable.
u2 vector of n conditional pseudo-observations of the second conditioned variable.
family the family of conditional copulas used for each conditioning event Ay. If not of
length p, it is recycled to match the number of events p.
partition matrix of size n * p, where p is the number of conditioning events that are con-
sidered. partition[i,j] should be the indicator of whether the i-th observation
belongs or not to the j-th conditioning event
Value

a list of size p containing the p conditional copulas

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo20170011

Derumigny, A., & Fermanian, J. D. (2022) Conditional empirical copula processes and generalized
dependence measures Electronic Journal of Statistics, 16(2), 5692-5719. doi:10.1214/22EJS2075

See Also

bCond. pobs for the computation of (conditional) pseudo-observations in this framework.

bCond. simpA.param for a test of the simplifying assumption that all these conditional copulas are
equal (assuming they all belong to the same parametric family). bCond.simpA.CKT for a test of
the simplifying assumption that all these conditional copulas are equal, based on the equality of
conditional Kendall’s tau.

Examples

n = 800
Z = stats::runif(n = n)
CKT = 0.2 * as.numeric(Z <= 0.3) +
0.5 * as.numeric(Z > 0.3 & Z <= 0.5) +
- 0.8 * as.numeric(Z > 0.5)
simCopula = VineCopula::BiCopSim(N = n,
par = VineCopula::BiCopTau2Par (CKT, family = 1), family = 1)
X1 = simCopulal,1]
X2 = simCopulal, 2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)
condPseudoObs = bCond.pobs(X = cbind(X1, X2), partition = partition)


https://doi.org/10.1515/demo-2017-0011
https://doi.org/10.1214/22-EJS2075

4 bCond.pobs

estimatedCondCopulas = bCond.estParamCopula(
Ul = condPseudoObs[,1], U2 = condPseudoObs[, 2],
family = 1, partition = partition)
print(estimatedCondCopulas)
# Comparison with the true conditional parameters: 0.2, 0.5, -0.8.

bCond. pobs Computing the pseudo-observations in case of discrete conditioning
events

Description

Let Ay, ..., A, be p events forming a partition of a probability space and X, ..., X4 be d random
variables. Assume that we observe n i.i.d. replications of (X1,..., X4), and that for each i =
1,...,d,

Vijla = Fx; a0 (Xij|Ar),
we also know which of the A was realized. This function computes the pseudo-observations where
k is such that the event Ay, is realized for the i-th observation.

Usage

bCond.pobs(X, partition)

Arguments
X matrix of size n x d observations of conditioned variables.
partition matrix of size n * p, where p is the number of conditioning events that are con-
sidered. partition[i,k] should be the indicator of whether the i-th observation
belongs or not to the k-th conditioning event.
Value

a matrix of size n x d containing the conditional pseudo-observations V; j 4.

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo20170011

Derumigny, A., & Fermanian, J. D. (2022) Conditional empirical copula processes and generalized
dependence measures Electronic Journal of Statistics, 16(2), 5692-5719. doi:10.1214/22EJS2075


https://doi.org/10.1515/demo-2017-0011
https://doi.org/10.1214/22-EJS2075
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See Also

bCond. estParamCopula for the estimation of a (conditional) parametric copula model in this frame-
work.

bCond. treeCKT that provides a binary tree based on conditional Kendall’s tau and that can be used
to derive relevant conditioning events.

Examples

n = 800
Z = stats::runif(n = n)
CKT = 0.2 * as.numeric(Z <= 0.3) +

0.5 * as.numeric(Z > 0.3 & Z <= 0.5) +

- 0.8 * as.numeric(Z > 0.5)
simCopula = VineCopula::BiCopSim(N = n,

par = VineCopula::BiCopTau2Par (CKT, family = 1), family = 1)
X1 = simCopulal,1]
X2 = simCopulal, 2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)
condPseudoObs = bCond.pobs(X = cbind(X1, X2),

partition = partition)

bCond. simpA.CKT Function for testing the simplifying assumption with data-driven box-
type conditioning events

Description

This function takes in parameter the matrix of (observations) of the conditioned variables and either
matrixInd, a matrix of indicator variables describing which events occur for which observations

Usage
bCond. simpA.CKT(
XI,
XJ = NULL,
matrixInd = NULL,
minCut = 0,
minProb = 0.01,

minSize = minProb * nrow(XI),
nPoints_xJ = 10,
type.quantile = 7,

verbose = 2,

methodTree = "doSplit”,
propTree = 0.5,

methodPvalue = "bootNP",
nBootstrap = 100



Arguments

XI
XJ

matrixInd

minCut
minProb

minSize

nPoints_xJ

type.quantile

verbose

methodTree

propTree

methodPvalue

nBootstrap

Value

bCond.simpA.CKT

matrix of size n*p of observations of the conditioned variables.
matrix of size n*(d-p) containing observations of the conditioning vector.

a matrix of indexes of size (n, N.boxes) describing for each observation i to
which box ( = event) it belongs.

If it is NULL, then a tree will be estimated to provide relevant boxes (by using
bCond. treeCKT()) and then converting to amatrixInd by treeCKT2matrixInd().
minimum difference in probabilities that is necessary to cut.

minimum probability of being in one of the node.

minimum number of observations in each node. This is an alternative to minProb
and has priority over it.

number of points in the grid that are considered when choosing the point for
splitting the tree.

way of computing the quantiles, see stats: :quantile().

control the text output of the procedure. If verbose = @, suppress all output. If
verbose = 2, the progress of the computation is printed during the computation.

method for constructing the tree

* doSplit some part of the data is used for constructing the tree and the other
part for constructing the test statistic using the boxes defined by the esti-
mated tree. The share of the data used for construction the tree is controlled
by the parameter propTree.

¢ noSplit all of the data is used for both the tree and the test statistic on it.
Note that p-values obtained by this method have an upward bias due to the
lack of independence between these two steps.

Only used if matrixInd is not provided.

share of observations used to build the tree (the rest of the observations are used
for the computation of the p-value). Only used if matrixInd is not provided.

method for computing the p-value

* covMatrix by computation of the covariance matrix of the random vector
(Tikx, e, 1 <0,k <p, 1 <j<m).

* bootNP by the usual non-parametric bootstrap

* bootInd by the independent bootstrap

number of bootstrap replications (Only used if methodPvalue is not covMatrix).

a list with the following components

* p.value the estimated p-value.

e stat the test statistic.

* treeCKT the estimated tree if matrixInd is not provided.

* vec_statB the vector of bootstrapped statistics if methodPvalue is not covMatrix.
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Author(s)

Alexis Derumigny, Jean-David Fermanian and Aleksey Min

References

Derumigny, A., Fermanian, J. D., & Min, A. (2022). Testing for equality between conditional cop-
ulas given discretized conditioning events. Canadian Journal of Statistics. doi:10.1002/cjs.11742

Derumigny, A., & Fermanian, J. D. (2022) Conditional empirical copula processes and generalized
dependence measures Electronic Journal of Statistics, 16(2), 5692-5719. doi:10.1214/22EJS2075

See Also

bCond. simpA.param for a test of this simplifying assumption in a parametric framework.
bCond. treeCKT provides the binary tree that is used in this function (if matrixInd is not provided).

Tests of the simplifying assumption for conditional copulas with a continuous conditioning variable:

* simpA.NP in a nonparametric setting

* simpA.param in a (semi)parametric setting, where the conditional copula belongs to a para-
metric family, but the conditional margins are estimated arbitrarily through kernel smoothing

* simpA.kendallReg: test based on the constancy of conditional Kendall’s tau

Examples

set.seed(1)
n = 200
XJ = MASS::mvrnorm(n = n, mu = c¢(3,3), Sigma = rbind(c(1, 0.2), c(0.2, 1)))
XI = matrix(nrow = n, ncol = 2)
high_XJ1 = which(XJ[,1]1 > 4)
XI[high_XJ1, 1 = MASS::mvrnorm(n = length(high_XJ1), mu = c(10,10),
Sigma = rbind(c(1, 0.8), c(0.8, 1)))
XI[-high_XJ1, ] = MASS::mvrnorm(n = n - length(high_XJ1), mu = c(8,8),
Sigma = rbind(c(1, -0.2), c(-0.2, 1)))

result = bCond.simpA.CKT(XI = XI, XJ = XJ, minSize = 10, verbose = 2,
methodTree = "doSplit"”, nBootstrap = 4)

print(result$p.value)

result2 = bCond.simpA.CKT(XI = XI, XJ = XJ, minSize = 10, verbose = 2,
methodTree = "noSplit"”, nBootstrap = 4)

print(result2$p.value)


https://doi.org/10.1002/cjs.11742
https://doi.org/10.1214/22-EJS2075

bCond.simpA.param

bCond. simpA.param Test of the assumption that a conditional copulas does not vary

through a list of discrete conditioning events

Description

Test of the assumption that a conditional copulas does not vary through a list of discrete conditioning

events

Usage

bCond. simpA.param(

X1,

X2,
partition,
family,

testStat = "T2c_tau”,
typeBoot = "boot.NP",
nBootstrap = 100

Arguments

X1
X2

partition

family
testStat

typeBoot

nBootstrap

Value

a list containing

vector of n observations of the first conditioned variable.
vector of n observations of the second conditioned variable.

matrix of size n * p, where p is the number of conditioning events that are con-
sidered. partition[i,j] should be the indicator of whether the i-th observation
belongs or not to the j-th conditioning event.

family of parametric copulas used
test statistic used. Possible choices are

 T2c_par Y., . (60 — 0(box))?
* T2c_tau Same as above, except that the copula family is now parametrized
by its Kendall’s tau instead of its natural parameter.

type of bootstrap used

number of bootstrap replications

* true_stat: the value of the test statistic computed on the whole sample

* vect_statB: a vector of length nBootstrap containing the bootstrapped test statistics.

* p_val: the p-value of the test.
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References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo20170011

Derumigny, A., & Fermanian, J. D. (2022) Conditional empirical copula processes and generalized
dependence measures Electronic Journal of Statistics, 16(2), 5692-5719. doi:10.1214/22EJS2075

See Also

bCond. estParamCopula for the estimation of a (conditional) parametric copula model in this frame-
work.

bCond.simpA.CKT for a test of the simplifying assumption that all these conditional copulas are
equal, based on the equality of conditional Kendall’s tau (i.e. without any parametric assumption).

Tests of the simplifying assumption for conditional copulas with a continuous conditioning variable:

* simpA.NP in a nonparametric setting

* simpA.param in a (semi)parametric setting, where the conditional copula belongs to a para-
metric family, but the conditional margins are estimated arbitrarily through kernel smoothing

* simpA.kendallReg: test based on the constancy of conditional Kendall’s tau

Examples

n = 800
Z = stats::runif(n = n)
CKT = 0.2 *x as.numeric(Z <= 0.3) +
0.5 * as.numeric(Z > 0.3 & Z <= 0.5) +
+ 0.3 x as.numeric(Z > 0.5)
family = 3
simCopula = VineCopula::BiCopSim(N = n,
par = VineCopula: :BiCopTau2Par(CKT, family = family), family = family)
X1 = simCopulal,1]
X2 = simCopulal,2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)

result = bCond.simpA.param(X1 = X1, X2 = X2, testStat = "T2c_tau”,
partition = partition, family = family, typeBoot = "boot.paramInd")
print(result$p_val)

n = 800
Z = stats::runif(n = n)
CKT = 0.1
family = 3
simCopula = VineCopula::BiCopSim(N = n,
par = VineCopula::BiCopTau2Par (CKT, family = family), family = family)
X1 = simCopulal,1]
X2 = simCopulal, 2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)

result = bCond.simpA.param(X1 = X1, X2 = X2,
partition = partition, family = family, typeBoot = "boot.NP")
print(result$p_val)


https://doi.org/10.1515/demo-2017-0011
https://doi.org/10.1214/22-EJS2075
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bCond. treeCKT Construct a binary tree for the modeling the conditional Kendall’s tau

Description

This function takes in parameter two matrices of observations: the first one contains the observations
of XI (the conditioned variables) and the second on contains the observations of XJ (the conditioning
variables). The goal of this procedure is to find which of the variables in XJ have important influence
on the dependence between the components of XI, (measured by the Kendall’s tau).

Usage
bCond. treeCKT(
XI,
XJ,
minCut = 0,

minProb = 0.01,

minSize = minProb * nrow(XI),
nPoints_xJ = 10,
type.quantile = 7,

verbose = 2

)
Arguments
XI matrix of size n*p of observations of the conditioned variables.
XJ matrix of size n*(d-p) containing observations of the conditioning vector.
minCut minimum difference in probabilities that is necessary to cut.
minProb minimum probability of being in one of the node.
minSize minimum number of observations in each node. This is an alternative to minProb
and has priority over it.
nPoints_xJ number of points in the grid that are considered when choosing the point for

splitting the tree.
type.quantile way of computing the quantiles, see stats: :quantile().

verbose control the text output of the procedure. If verbose = @, suppress all output. If
verbose = 2, the progress of the computation is printed during the computation.
Details

The object return by this function is a binary tree. Each leaf of this tree correspond to one event (or,
equivalently, one subset of R¥™(X/)) and the conditional Kendall’s tau conditionally to it.
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Value

the estimated tree using the data “XI, XJ*.

References

Derumigny, A., Fermanian, J. D., & Min, A. (2022). Testing for equality between conditional cop-
ulas given discretized conditioning events. Canadian Journal of Statistics. doi:10.1002/cjs.11742

See Also

bCond.simpA.CKT for a test of the simplifying assumption that all these conditional Kendall’s tau
are equal.

treeCKT2matrixInd for converting this tree to a matrix of indicators of each event. matrixInd2matrixCKT
for getting the matrix of estimated conditional Kendall’s taus for each event.

CKT.estimate for the estimation of pointwise conditional Kendall’s tau, i.e. assuming a continuous
conditioning variable Z.

Examples

set.seed(1)
n = 400
XJ = MASS::mvrnorm(n = n, mu = c¢(3,3), Sigma = rbind(c(1, 0.2), c(0.2, 1)))
XI = matrix(nrow = n, ncol = 2)
high_XJ1 = which(XJ[,1]1 > 4)
XI[high_XJ1, 1 = MASS::mvrnorm(n = length(high_XJ1), mu = c(10,10),
Sigma = rbind(c(1, 0.8), c(0.8, 1)))
XI[-high_XJ1, ] = MASS::mvrnorm(n = n - length(high_XJ1), mu = c(8,8),
Sigma = rbind(c(1, -0.2), c(-0.2, 1)))

result = bCond.treeCKT(XI = XI, XJ = XJ, minSize = 50, verbose = 2)
# Plotting the corresponding tree using the "DiagrammeR" package
if (requireNamespace("DiagrammeR"”, quietly = TRUE)){

plot(result)
3

# Number of observations in the first two children
print(length(data.tree: :GetAttribute(result$children[[1]], "condObs")))
print(length(data.tree::GetAttribute(result$children[[2]], "condObs")))

CKT.estimate Estimation of conditional Kendall’s tau between two variables X1 and
X2 given Z =z



https://doi.org/10.1002/cjs.11742
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Description

Let X; and X5 be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and X5 given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X; and X given Z = z is defined as:

P((Xl,l — X271)(X172 — X272) > 0|Z1 =y = Z)

—P((X11 — X21)(X1,2 — Xo2) <021 = Zy = 2),

where (X411, X1,2,Z1) and (X2,1, X2 2, Z5) are two independent and identically distributed copies
of (X1, X2, Z). In other words, conditional Kendall’s tau is the difference between the probabilities
of observing concordant and discordant pairs from the conditional law of

(Xl,X2)|Z = Z.

This function can use different estimators for conditional Kendall’s tau, see the description of the
parameter methodEstimation for a complete list of possibilities.

Usage

CKT.estimate(
X1 = NULL, X2 = NULL, Z = NULL,
newZ = Z, methodEstimation, h,
listPhi = if(methodEstimation == "kendallReg")
{list( function(x){return(x)} ,
function(x){return(x*2)} ,
function(x){return(x*3)3} )
} else {list(identity)} ,

’

observedX1 = NULL, observedX2 = NULL, observedZ = NULL )

Arguments
X1 a vector of n observations of the first variable
X2 a vector of n observations of the second variable
z a vector of n observations of the conditioning variable, or a matrix with n rows
of observations of the conditioning vector (if Z is multivariate).
newZ the new values for the conditioning variable Z at which the conditional Kendall’s
tau should be estimated.
¢ If observed?Z is a vector, then newZ must be a vector as well.
e If observedZ is a matrix, then newZ must be a matrix as well, with the same
number of columns ( = the dimension of 7).
methodEstimation
method for estimating the conditional Kendall’s tau. Possible estimation meth-
ods are:

e "kernel”: kernel smoothing, as described in (Derumigny, & Fermanian
(2019a))
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e "kendallReg": regression-type model, as described in (Derumigny, & Fer-
manian (2020))

e "tree”, "randomForest"”, "logit"”, and "neuralNetwork"”: use the re-
lationship between conditional Kendall’s tau and classification problems to
use the respective classification algorithms for the estimation of conditional
Kendall’s tau, as described in (Derumigny, & Fermanian (2019b))

h the bandwidth

listPhi the list of transformations to be applied to the conditioning variable Z (in case
of regression-type models).

other parameters passed to the estimating functions CKT.fit.tree, CKT.fit.randomForest,
CKT.fit.GLM,CKT.fit.nNets, CKT.predict.kNN, CKT.kernel and CKT.kendallReg.fit.
observedX1, observedX2, observedZ

old parameter names for X1, X2, Z. Support for this will be removed at a later
version.

Value

the vector of estimated conditional Kendall’s tau at each of the observations of newZ.

References

Derumigny, A., & Fermanian, J. D. (2019a). A classification point-of-view about conditional
Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94. doi:10.1016/j.csda.2019.01.013

Derumigny, A., & Fermanian, J. D. (2019b). On kernel-based estimation of conditional Kendall’s
tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321. doi:10.1515/
demo020190016

Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Anal-
ysis, 178, 104610. doi:10.1016/j.jmva.2020.104610

See Also

the specialized functions for estimating conditional Kendall’s tau for each method: CKT.fit.tree,
CKT.fit.randomForest, CKT.fit.GLM,CKT.fit.nNets, CKT.predict.kNN, CKT.fit.randomForest,
CKT.kernel and CKT.kendallReg.fit.

See also the nonparametric estimator of conditional copula models estimateNPCondCopula, and
the parametric estimators of conditional copula models estimateParCondCopula.

In the case where Z is discrete or in the case of discrete conditioning events, see bCond. treeCKT.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 300
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))


https://doi.org/10.1016/j.csda.2019.01.013
https://doi.org/10.1515/demo-2019-0016
https://doi.org/10.1515/demo-2019-0016
https://doi.org/10.1016/j.jmva.2020.104610
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X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2,10,by = 0.1)

h=20.1

estimatedCKT_tree <- CKT.estimate(
X1 = X1, X2=X2, Z=2,
newZ = newZ,
methodEstimation = "tree”, h = h)

estimatedCKT_rf <- CKT.estimate(
X1 =X1, X2 =X2, Z =12,
newZ = newZ,
methodEstimation = "randomForest”, h = h)

estimatedCKT_GLM <- CKT.estimate(
X1 = X1, X2 =X2, Z=12,
newZ = newZ,
methodEstimation = "logit"”, h = h,
listPhi = list(function(x){return(x)}, function(x){return(x*2)3},
function(x){return(x*3)}) )

estimatedCKT_kNN <- CKT.estimate(
X1 =X1, X2 =X2, 2 =12,
newZ = newZ,
methodEstimation = "nearestNeighbors”, h = h,
number_nn = c(50,80, 100, 120,200),
partition = 4

)

estimatedCKT_nNet <- CKT.estimate(
X1 = X1, X2 =X2, Z =12,
newZ = newZ,
methodEstimation = "neuralNetwork”, h = h,

)

estimatedCKT_kernel <- CKT.estimate(
X1 =X1, X2=X2, Z=12,
newZ = newZ,
methodEstimation = "kernel”, h = h,

)

estimatedCKT_kendallReg <- CKT.estimate(
X1 = X1, X2 = X2, Z =2Z,
newZ = newZ,
methodEstimation = "kendallReg”, h = h)

# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in other colors)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black”,

type = "1", ylim = c(-1, 1))
lines(newZ, estimatedCKT_tree, col = "red")

CKT.estimate
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lines(newZ, estimatedCKT_rf, col = "blue")

lines(newZ, estimatedCKT_GLM, col = "green")
lines(newZ, estimatedCKT_kNN, col = "purple”)
lines(newZ, estimatedCKT_nNet, col = "coral”)
lines(newZ, estimatedCKT_kernel, col = "skyblue")
lines(newZ, estimatedCKT_kendallReg, col = "darkgreen")

CKT.fit.GLM Estimation of conditional Kendall’s taus by penalized GLM

Description

The function CKT. fit.GLM fits a regression model for the conditional Kendall’s tau 7, 5|7 between
two variables X; and X5 conditionally to some predictors Z. More precisely, this function fits the
model

Ti21z = 2% A(Bo + B161(Z) + ... + Bpop(2))

for a link function A, and p real-valued functions ¢1, ..., ¢,,. The function CKT.predict.GLM pre-
dicts the values of conditional Kendall’s tau for some values of the conditioning variable Z.

Usage

CKT.fit.GLM(
datasetPairs,
designMatrix = datasetPairs[, 2:(ncol(datasetPairs) - 3), drop = FALSE],
link = "logit",

CKT.predict.GLM(fit, newZ)

Arguments

datasetPairs  the matrix of pairs and corresponding values of the kernel as provided by datasetPairs.

designMatrix  the matrix of predictor to be used for the fitting of the model. It should have the
same number of rows as the datasetPairs.

link link function, can be one of logit, probit, cloglog, cauchit).
other parameters passed to ordinalNet: :ordinalNet().
fit result of a call to CKT. fit.GLM

newZ new matrix of observations of the conditioning vector Z, with the same number
of variables and same names as the designMatrix that was used to fit the GLM.

Value

CKT.fit.GLM returns the fitted GLM, an object with S3 class ordinalNet.

CKT.predict.GLM returns a vector of (predicted) conditional Kendall’s taus of the same size as the
number of rows of the matrix newZ.
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References

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s
tau. Computational Statistics & Data Analysis, 135, 70-94. (Algorithm 2) doi:10.1016/j.csda.2019.01.013

See Also

See also other estimators of conditional Kendall’s tau: CKT.fit.tree, CKT.fit.randomForest,
CKT.fit.nNets, CKT.predict.kNN, CKT.kernel, CKT.kendallReg.fit, and the more general
wrapper CKT.estimate.

Examples

# We simulate from a conditional copula
set.seed(1)
N = 400
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 2xplogis(-1 + 0.8*Z - 0.1xZ"2) - 1
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

datasetP = datasetPairs(X1 = X1, X2 = X2, Z =12, h = 0.07, cut = 0.9)
designMatrix = cbind(datasetP[,2], datasetP[,2]%2)
fitCKT_GLM <- CKT.fit.GLM(
datasetPairs = datasetP, designMatrix = designMatrix,
maxiterOut = 10, maxiterIn = 5)
print(coef (fitCKT_GLM))
# These are rather close to the true coefficients -1, 0.8, -0.1
# used to generate the data above.

newZ = seq(2,10,by = 0.1)
estimatedCKT_GLM = CKT.predict.GLM(
fit = fitCKT_GLM, newZ = cbind(newZ, newZ*2))

# Comparison between true Kendall's tau (in red)
# and estimated Kendall's tau (in black)
trueConditionalTau = 2*xplogis(-1 + @.8*%newZ - @.1xnewZ"2) - 1
plot(newZ, trueConditionalTau , col="red",
type = "1", ylim = c(-1, 1))
lines(newZ, estimatedCKT_GLM)

CKT.fit.nNets Estimation of conditional Kendall’s taus by model averaging of neural
networks



https://doi.org/10.1016/j.csda.2019.01.013
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Description

Let X; and X5 be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and Xs given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X; and X given Z = z is defined as:

P((X11—X21)(X12 —Xo2) > 0121 = Zy = 2)

—P((X11—X21)(X12 — Xa2) <021 = Z3 = 2),

where (X411, X1,2,Z1) and (X2,1, X2 2, Z5) are two independent and identically distributed copies
of (X1, X2, Z). In other words, conditional Kendall’s tau is the difference between the probabilities
of observing concordant and discordant pairs from the conditional law of

<X17 X2)|Z = Z.

This function estimates conditional Kendall’s tau using neural networks. This is possible by the
relationship between estimation of conditional Kendall’s tau and classification problems (see Deru-
migny and Fermanian (2019)): estimation of conditional Kendall’s tau is equivalent to the prediction
of concordance in the space of pairs of observations.

Usage

CKT.fit.nNets(
datasetPairs,
designMatrix = datasetPairs[, 2:(ncol(datasetPairs) - 3), drop = FALSE],
vecSize = rep(3, times = 10),
nObs_per_NN = 0.9 * nrow(designMatrix),
verbose = 1

Arguments

datasetPairs the matrix of pairs and corresponding values of the kernel as provided by datasetPairs.

designMatrix  the matrix of predictor to be used for the fitting of the tree

vecSize vector with the number of neurons for each network
nObs_per_NN number of observations used for each neural network.
verbose a number indicated what to print

* 0: nothing printed at all.
* 1: a message is printed at the convergence of each neural network.
e 2: details are printed for each optimization of each network.

Value

CKT.fit.nNets returns a list of the fitted neural networks

References

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s
tau. Computational Statistics & Data Analysis, 135, 70-94. (Algorithm 7) doi:10.1016/j.csda.2019.01.013


https://doi.org/10.1016/j.csda.2019.01.013
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See Also

See also other estimators of conditional Kendall’s tau: CKT.fit.tree, CKT.fit.randomForest,
CKT.fit.GLM, CKT.predict.kNN, CKT.kernel, CKT.kendallReg.fit, and the more general wrap-
per CKT.estimate.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 800
Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2,10,by = 0.1)
datasetP = datasetPairs(X1 = X1, X2 = X2, Z =12, h = 0.07, cut = 0.9)

fitCKT_nets <- CKT.fit.nNets(datasetPairs = datasetP)
estimatedCKT_nNets <- CKT.predict.nNets(
fit = fitCKT_nets, newZ = matrix(newZ, ncol = 1))

# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black”,
type = "1", ylim = c(-1, 1))
lines(newZ, estimatedCKT_nNets, col = "red")

CKT.fit.randomForest Fit a Random Forest that can be used for the estimation of conditional
Kendall’s tau.

Description

Let X; and X, be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and X5 given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X; and X, given Z = z is defined as:

P((X11—X21)(X12 —Xo2) > 0121 = Zy = 2)
—P((X11— X21)(X1,2 — Xo2) <021 = Zy = 2),

where (X3 1, X1,2,Z1) and (X321, X2,2, Z2) are two independent and identically distributed copies
of (X1, X2, Z). In other words, conditional Kendall’s tau is the difference between the probabilities
of observing concordant and discordant pairs from the conditional law of

(Xl,X2)|Z = Z.
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These functions estimate and predict conditional Kendall’s tau using a random forest. This is pos-
sible by the relationship between estimation of conditional Kendall’s tau and classification problems
(see Derumigny and Fermanian (2019)): estimation of conditional Kendall’s tau is equivalent to the
prediction of concordance in the space of pairs of observations.

Usage
CKT.fit.randomForest(
datasetPairs,
designMatrix = data.frame(x = datasetPairs[, 2:(ncol(datasetPairs) - 3)1),
n)
nTree = 10,
mindev = 0.008,
mincut = 0,

nObs_per_Tree = ceiling(0.8 * n),

nVar_per_Tree = ceiling(0.8 * (ncol(datasetPairs) - 4)),
verbose = FALSE,

nMaxDepthAllowed = 10

CKT.predict.randomForest(fit, newZ)

Arguments

datasetPairs  the matrix of pairs and corresponding values of the kernel as provided by datasetPairs.

designMatrix  the matrix of predictor to be used for the fitting of the tree

n the original sample size of the dataset
nTree number of trees of the Random Forest.
mindev a factor giving the minimum deviation for a node to be splitted. See tree: :tree.control()

for more details.

mincut the minimum number of observations (of pairs) in a node See tree: : tree.control()
for more details.

nObs_per_Tree number of observations kept in each tree.
nVar_per_Tree number of variables kept in each tree.

verbose if TRUE, a message is printed after fitting each tree.
nMaxDepthAllowed

the maximum number of errors of type "the tree cannot be fitted" or "is too deep”
before stopping the procedure.

fit result of a call to CKT.fit.randomForest.

newZ new matrix of observations, with the same number of variables. and same names
as the designMatrix that was used to fit the Random Forest.

Value

a list with two components
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e list_tree alist of size nTree composed of all the fitted trees.

e list_variables alist of size nTree composed of the (predictor) variables for each tree.

CKT.predict.randomForest returns a vector of (predicted) conditional Kendall’s taus of the same

size as the number of rows of the newZ.
References

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s

tau. Computational Statistics & Data Analysis, 135, 70-94. (Algorithm 4) doi:10.1016/j.csda.2019.01.013
Examples

# We simulate from a conditional copula
set.seed(1)

N = 800
Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula: :BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

datasetP = datasetPairs(X1 = X1, X2 = X2, Z =12, h = 0.07, cut = 0.9)
est_RF = CKT.fit.randomForest(datasetPairs = datasetP, n = N,
mindev = 0.008)

newZ = seq(1,10,by = 0.1)
prediction = CKT.predict.randomForest(fit = est_RF,
newZ = data.frame(x=newZ))
# Comparison between true Kendall's tau (in red)
# and estimated Kendall's tau (in black)
plot(newZ, prediction, type = "1", ylim = c(-1,1))
lines(newZ, -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2), col="red")

CKT.fit.tree Estimation of conditional Kendall’s taus using a classification tree

Description

Let X; and X5 be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and X5 given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X; and X given Z = z is defined as:

P((X11—X21)(X12 —Xo2) > 0121 = Zy = 2)

—P((X11—X21)(X12 — X22) <021 = Z3 = 2),


https://doi.org/10.1016/j.csda.2019.01.013
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where (X711, X1,2, Z1) and (X2,1, X2,2, Z5) are two independent and identically distributed copies
of (X1, X2, Z). In other words, conditional Kendall’s tau is the difference between the probabilities
of observing concordant and discordant pairs from the conditional law of

(Xl,X2)|Z = Z.

These functions estimate and predict conditional Kendall’s tau using a classification tree. This is
possible by the relationship between estimation of conditional Kendall’s tau and classification prob-
lems (see Derumigny and Fermanian (2019)): estimation of conditional Kendall’s tau is equivalent
to the prediction of concordance in the space of pairs of observations.

Usage

CKT.fit.tree(datasetPairs, mindev = 0.008, mincut = Q)

CKT.predict.tree(fit, newZ)

Arguments

datasetPairs the matrix of pairs and corresponding values of the kernel as provided by datasetPairs.

mindev a factor giving the minimum deviation for a node to be splitted. See tree: :tree.control()
for more details.

mincut the minimum number of observations (of pairs) in anode See tree: :tree.control()
for more details.

fit result of a call to CKT.fit.tree

newZ new matrix of observations, with the same number of variables. and same names
as the designMatrix that was used to fit the tree.

Value

CKT.fit.tree returns the fitted tree.

CKT.predict. tree returns a vector of (predicted) conditional Kendall’s taus of the same size as
the number of rows of newZ.

References
Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s
tau. Computational Statistics & Data Analysis, 135, 70-94. (Section 3.2) doi:10.1016/j.csda.2019.01.013

See Also

See also other estimators of conditional Kendall’s tau: CKT.fit.nNets, CKT.fit.randomForest,
CKT.fit.GLM, CKT.predict.kNN, CKT.kernel, CKT.kendallReg.fit, and the more general wrap-
per CKT.estimate.


https://doi.org/10.1016/j.csda.2019.01.013
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Examples

# We simulate from a conditional copula
set.seed(1)

N = 800
Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula: :BiCopSim(N=N , family = 1,

par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

datasetP = datasetPairs(X1 = X1, X2 = X2, Z =12, h = 0.07, cut = 0.9)
est_Tree = CKT.fit.tree(datasetPairs = datasetP, mindev = 0.008)
print(est_Tree)

newZ = seq(1,10,by = 0.1)

prediction = CKT.predict.tree(fit = est_Tree, newZ = data.frame(x=newZ))
# Comparison between true Kendall's tau (in red)

# and estimated Kendall's tau (in black)

plot(newZ, prediction, type = "1", ylim = c(-1,1))

lines(newZ, -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2), col="red")

CKT.hCV.11o0ut Choose the bandwidth for kernel estimation of conditional Kendall’s
tau using cross-validation

Description

Let X7 and X5 be two random variables. The goal here is to estimate the conditional Kendall’s tau (a
dependence measure) between X; and X» given Z = z for a conditioning variable Z. Conditional
Kendall’s tau between X; and X» given Z = z is defined as:

P((X11—X01)(X12—X02)>0|Z1 =25 =2)

—P((X11— X21)(X1,2 — Xo2) <021 = Zy = 2),

where (X3 1, X1,2,Z1) and (X321, X2,2, Z2) are two independent and identically distributed copies
of (X1, X5, Z). For this, a kernel-based estimator is used, as described in (Derumigny & Fermanian
(2019)). These functions aims at finding the best bandwidth h among a given range_h by cross-
validation. They use either:

¢ leave-one-out cross-validation: function CKT.hCV.11out

¢ or K-folds cross-validation: function CKT.hCV.Kfolds
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Usage

CKT.hCV.11out(

)

X1 = NULL,
X2 = NULL,
Z = NULL,
range_h,

matrixSignsPairs = NULL,
nPairs = 10 * length(X1),
typeEstCKT = "wdm",
kernel.name = "Epa”,
progressBar = TRUE,
verbose = FALSE,
observedX1 = NULL,
observedX2 = NULL,
observedZ = NULL

CKT.hCV.Kfolds(

X1,

X2,

Z,

ZToEstimate,
range_h,
matrixSignsPairs = NULL,
typeEstCKT = "wdm",
kernel.name = "Epa”,
Kfolds = 5,
progressBar = TRUE,
verbose = FALSE,
observedX1 = NULL,
observedX2 = NULL,
observedZ = NULL

Arguments

X1

X2

z

range_h

a vector of n observations of the first variable

a vector of n observations of the second variable

23

vector of observed values of Z. If Z is multivariate, then this is a matrix whose

rows correspond to the observations of Z

matrixSignsPairs

nPairs

typeEstCKT

square matrix of signs of all pairs, produced by computeMatrixSignPairs(observedX1,
observedX2). Only needed if typeEstCKT is not the default *wdm’.

vector containing possible values for the bandwidth.

number of pairs used in the cross-validation criteria.

type of estimation of the conditional Kendall’s tau.



24 CKT.hCV.1lout

kernel.name name of the kernel used for smoothing. Possible choices are "Gaussian” (Gaus-
sian kernel) and "Epa” (Epanechnikov kernel).

progressBar if TRUE, a progressbar for each h is displayed to show the progress of the com-
putation.

verbose if TRUE, print the score of each h during the procedure.

observedX1, observedX2, observedZ
old parameter names for X1, X2, Z. Support for this will be removed at a later
version.

ZToEstimate vector of fixed conditioning values at which the difference between the two con-
ditional Kendall’s tau should be computed. Can also be a matrix whose lines
are the conditioning vectors at which the difference between the two conditional
Kendall’s tau should be computed.

Kfolds number of subsamples used.

Value
Both functions return a list with two components:

¢ hCV: the chosen bandwidth

* scores: vector of the same length as range_h giving the value of the CV criteria for each of
the h tested. Lower score indicates a better fit.
References

Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s
tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321. Page
296, Equation (4). doi:10.1515/demo20190016

See Also

CKT.kernel for the corresponding estimator of conditional Kendall’s tau by kernel smoothing.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 200
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2,10,by = 0.1)
range_h = 3:10

resultCV <- CKT.hCV.1llout(X1 = X1, X2 = X2, Z = Z,
range_h = range_h, nPairs = 100)


https://doi.org/10.1515/demo-2019-0016
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resultCV <- CKT.hCV.Kfolds(X1 = X1, X2 = X2, Z = Z,
range_h = range_h, ZToEstimate = newZ)

plot(range_h, resultCV$scores, type = "b")

CKT.kendallReg.fit Fit Kendall’s regression, a GLM-type model for conditional Kendall’s
tau

Description

The function CKT.kendallReg.fit fits a regression-type model for the conditional Kendall’s tau
between two variables X; and X conditionally to some predictors Z. More precisely, it fits the
model

p/
AT, Xalz=2) = Y Bii (2),
j=1

where Tx, x,|z—. is the conditional Kendall’s tau between X; and X conditionally to Z = z,
A is a function from | — 1,1] to R, (f1,...,0,) are unknown coefficients to be estimated and
1, ..., ) are a dictionary of functions. To estimate beta, we used the penalized estimator which
is defined as the minimizer of the following criteria

’
n

1

2n/!
i=1

;
[APx, X zmm) = 3 Bith ()] + A% |81,
j=1

where the z; are a second sample (here denoted by ZToEstimate).

The function CKT.kendallReg.predict predicts the conditional Kendall’s tau between two vari-
ables X; and X5 given Z = z for some new values of z.

Usage

CKT.kendallReg.fit(
X1 = NULL,
X2 = NULL,
Z = NULL,
ZToEstimate,
designMatrixZ = cbind(ZToEstimate, ZToEstimate”2, ZToEstimate”3),
newZ = designMatrixZ,
h_kernel,
Lambda = identity,
Lambda_inv = identity,
lambda = NULL,
Kfolds_lambda = 10,
1_norm = 1,
h_lambda = h_kernel,
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observedX1 = NULL,
observedX2 = NULL,
observedZ = NULL

)

CKT.kendallReg.predict(fit, newZ, lambda = NULL, Lambda_inv =

Arguments

X1
X2
z

ZToEstimate

designMatrixz

newZ
h_kernel
Lambda

Lambda_inv
lambda

Kfolds_lambda

1_norm

h_lambda

identity)

a vector of n observations of the first variable X7.
a vector of n observations of the second variable X5.

a vector of n observations of the conditioning variable, or a matrix with n rows
of observations of the conditioning vector (if Z is multivariate).

the intermediary dataset of observations of Z at which the conditional Kendall’s
tau should be estimated.

the transformation of the ZToEstimate that will be used as predictors. By de-
fault, no transformation is applied.

the new observations of the conditioning variable.
bandwidth used for the first step of kernel smoothing.

the function to be applied on conditional Kendall’s tau. By default, the identity
function is used.

the functional inverse of Lambda. By default, the identity function is used.

the regularization parameter. If NULL, then it is chosen by K-fold cross valida-

tion. Internally, cross-validation is performed by the function CKT.KendallReg.LambdaCV.

the number of folds used in the cross-validation procedure to choose 1ambda.

type of norm used for selection of the optimal lambda by cross-validation. 1_norm=1
corresponds to the sum of absolute values of differences between predicted and
estimated conditional Kendall’s tau while 1_norm=2 corresponds to the sum of
squares of differences.

the smoothing bandwidth used in the cross-validation procedure to choose 1ambda.

other arguments to be passed to CKT.kernel for the first step (kernel-based)
estimator of conditional Kendall’s tau.

observedX1, observedX2, observedZ

fit

Value

old parameter names for X1, X2, Z. Support for this will be removed at a later
version.

the fitted model, obtained by a call to CKT.kendallReg.fit.

The function CKT.kendallReg. fit returns a list with the following components:

* estimatedCKT: the estimated CKT at the new data points newZ.

o fit: the fitted model, of S3 class glmnet (see glmnet: :glmnet for more details).
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* lambda: the value of the penalized parameter used. (i.e. either the one supplied by the user or
the one determined by cross-validation)

CKT.kendallReg.predict returns the predicted values of conditional Kendall’s tau.

References

Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Anal-
ysis, 178, 104610. doi:10.1016/j.jmva.2020.104610

See Also

See also other estimators of conditional Kendall’s tau: CKT.fit.tree, CKT.fit.randomForest,
CKT.fit.nNets, CKT.predict.kNN, CKT.kernel, CKT.fit.GLM, and the more general wrapper
CKT.estimate.

See also the test of the simplifying assumption that a conditional copula does not depend on the
value of the conditioning variable using the nullity of Kendall’s regression coefficients: simpA.kendallReg.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 400
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2, 10, by = 0.1)
estimatedCKT_kendallReg <- CKT.kendallReg.fit(
X1 = X1, X2 =X2, Z =12,
ZToEstimate = newZ, h_kernel = 0.07)

coef(estimatedCKT_kendallReg$fit,
s = estimatedCKT_kendallReg$lambda)

# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black”,
type = "1", ylim = c(-1, 1))
lines(newZ, estimatedCKT_kendallReg$estimatedCKT, col = "red")


https://doi.org/10.1016/j.jmva.2020.104610
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CKT.KendallReg.LambdaCV
Kendall’s regression: choice of the penalization parameter by K-folds
cross-validation

Description

In this model, three variables X1, X7 and Z are observed. We try to model the conditional Kendall’s
tau between X; and X5 conditionally to Z = z, as follows:

p/
ATx, X z=2) = Y Bitki(2),
=1

where Tx, x,|z—. is the conditional Kendall’s tau between X; and X conditionally to Z = z,
A is a function from | — 1,1[] to R, (f1,...,5p) are unknown coefficients to be estimated and
1, ..., ) are a dictionary of functions. To estimate beta, we used the penalized estimator which
is defined as the minimizer of the following criteria

1 & v
o0 Z[A<7A-X1,X2\Z:z) - Zﬁjd’j(z)]Q + A8l
i=1 =

This function chooses the penalization parameter lambda by cross-validation.

Usage

CKT.KendallReg.LambdaCV(
X1 = NULL,
X2 = NULL,
Z = NULL,
ZToEstimate,
designMatrixZ = cbind(ZToEstimate, ZToEstimate*2, ZToEstimate”3),
typeEstCKT = 4,

h_lambda,
Lambda = identity,
kernel.name = "Epa”,
Kfolds_lambda = 10,
1_norm = 1,
matrixSignsPairs = NULL,
progressBars = "global”,
observedX1 = NULL,
observedX2 = NULL,
observedZ = NULL
)
Arguments

X1 a vector of n observations of the first variable X;.
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X2 a vector of n observations of the second variable X5.

Z a vector of n observations of the conditioning variable, or a matrix with n rows
of observations of the conditioning vector (if Z is multivariate).

ZToEstimate the new data of observations of Z at which the conditional Kendall’s tau should
be estimated.

designMatrixZ the transformation of the ZToEstimate that will be used as predictors. By default,
no transformation is applied.

typeEstCKT type of estimation of the conditional Kendall’s tau.
h_lambda the smoothing bandwidth used in the cross-validation procedure to choose 1ambda.
Lambda the function to be applied on conditional Kendall’s tau. By default, the identity

function is used.

kernel.name name of the kernel. Possible choices are "Gaussian" (Gaussian kernel) and
"Epa" (Epanechnikov kernel).

Kfolds_lambda the number of folds used in the cross-validation procedure to choose lambda.

1_norm type of norm used for selection of the optimal lambda. 1_norm=1 corresponds
to the sum of absolute values of differences between predicted and estimated
conditional Kendall’s tau while 1_norm=2 corresponds to the sum of squares of
differences.

matrixSignsPairs
the results of a call to computeMatrixSignPairs (if already computed). If NULL
(the default value), the matrixSignsPairs will be computed again from the
data.

progressBars  should progress bars be displayed? Possible values are
* "none": no progress bar at all.
» "global”: only one global progress bar (default behavior)
* "eachStep": uses a global progress bar + one progress bar for each kernel
smoothing step.
observedX1, observedX2, observedZ
old parameter names for X1, X2, Z. Support for this will be removed at a later
version.

Value

A list with the following components

* lambdaCV: the chosen value of the penalization parameters 1ambda.

* vectorLambda: a vector containing the values of 1ambda that have been compared.

* vectorMSEMean: the estimated MSE for each value of 1lambda in vectorLambda

* vectorMSESD: the estimated standard deviation of the MSE for each lambda. It can be used

to construct confidence intervals for estimates of the MSE given by vectorMSEMean.
References

Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Anal-
ysis, 178, 104610.
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See Also

the main fitting function CKT.kendallReg.fit.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 400
Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2, 10, by = 0.1)
result <- CKT.KendallReg.LambdaCV(X1 = X1, X2 = X2, Z = Z,
ZToEstimate = newZ, h_lambda = 2)

plot(x = result$vectorLambda, y = result$vectorMSEMean,
type = Nlll’ 10g = IIXU)

CKT.kernel Estimation of conditional Kendall’s tau using kernel smoothing

Description

Let X; and X5 be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and X5 given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X7 and X given Z = z is defined as:

P((X11—X21)(X12 —Xo2) > 0121 = Zy = 2)

—P((X1,1— X21)(X12 — X22) <021 = Z5 = 2),

where (X1 1, X1,2,Z1) and (X2,1, X2 2, Z5) are two independent and identically distributed copies
of (X1, Xo, Z). For this, a kernel-based estimator is used, as described in (Derumigny, & Fermanian
(2019)).

Usage
CKT.kernel(
X1 = NULL,
X2 = NULL,
Z = NULL,
newz,
h ’

kernel.name = "Epa”,
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methodCV = "Kfolds",

Kfolds = 5,

nPairs = 10 * length(observedX1),
typeEstCKT = "wdm",

progressBar = TRUE,

observedX1 = NULL,

observedX2 = NULL,

observedZ = NULL

)
Arguments

X1 a vector of n observations of the first variable (or a 1-column matrix)

X2 a vector of n observations of the second variable (or a 1-column matrix)

z a vector of n observations of the conditioning variable, or a matrix with n rows
of observations of the conditioning vector

newZ the new data of observations of Z at which the conditional Kendall’s tau should
be estimated.

h the bandwidth used for kernel smoothing. If this is a vector, then cross-validation
is used following the method given by argument methodCV to choose the best
bandwidth before doing the estimation.

kernel.name name of the kernel used for smoothing. Possible choices are "Gaussian” (Gaus-
sian kernel) and "Epa” (Epanechnikov kernel).

methodCV method used for the cross-validation. Possible choices are "leave-one-out”
and "Kfolds".

Kfolds number of subsamples used, if methodCV = "Kfolds".

nPairs number of pairs used in the cross-validation criteria, if mnethodCV = "leave-one-out".

typeEstCKT type of estimation of the conditional Kendall’s tau. Possible choices are

* 1 and 3 produced biased estimators. 2 does not attain the full range [—1, 1].
Therefore these 3 choices are not recommended for applications on real
data.

* 4 is an improved version of 1,2, 3 that has less bias and attains the full
range [—1,1].

* "wdm" is the default version and produces the same results as 4 when they
are no ties in the data.

progressBar control the display of progress bars. Possible choices are:

* 0 no progress bar is displayed
* 1 a general progress bar is displayed
* 2 and larger values: a general progress bar is displayed, and additionally,
a progressbar for each value of h is displayed to show the progress of the
computation. This only applies when the bandwidth is chosen by cross-
validation (i.e. when h is a vector).
observedX1, observedX2, observedZ
old parameter names for X1, X2, Z. Support for this will be removed at a later
version.
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Details

Choice of the bandwidth h. The choice of the bandwidth must be done carefully. In the univariate
case, the default kernel (Epanechnikov kernel) has a support on [—1,1], so for a bandwidth h,
estimation of conditional Kendall’s tau at Z = z will only use points for which Z; € [z £ h]. As
usual in nonparametric estimation, h should not be too small (to avoid having a too large variance)
and should not be large (to avoid having a too large bias).

We recommend that for each z for which the conditional Kendall’s tau 7x, x,|z— is estimated, the
set {¢ : Z; € [z + h]} should contain at least 20 points and not more than 30% of the points of
the whole dataset. Note that for a consistent estimation, as the sample size n tends to the infinity, h
should tend to 0 while the size of the set {¢ : Z; € [z £ h]} should also tend to the infinity. Indeed
the conditioning points should be closer and closer to the point of interest z (small h) and more and
more numerous (h tending to 0 slowly enough).

In the multivariate case, similar recommendations can be made. Because of the curse of dimen-
sionality, a larger sample will be necessary to reach the same level of precision as in the univariate
case.

Value
a list with two components
* estimatedCKT the vector of size NROW(newZ) containing the values of the estimated condi-

tional Kendall’s tau.

e finalh the bandwidth h that was finally used for kernel smoothing (either the one specified
by the user or the one chosen by cross-validation if multiple bandwidths were given.)

References

Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s tau:
finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321. doi:10.1515/
demo20190016

See Also

CKT.estimate for other estimators of conditional Kendall’s tau. CKTmatrix.kernel for a gen-
eralization of this function when the conditioned vector is of dimension d instead of dimension 2
here.

See CKT.hCV.11out for manual selection of the bandwidth h by leave-one-out or K-folds cross-
validation.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 800
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])


https://doi.org/10.1515/demo-2019-0016
https://doi.org/10.1515/demo-2019-0016
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X2 = gnorm(simCopulal,2])

newZ = seq(2,10,by = 0.1)
estimatedCKT_kernel <- CKT.kernel(
X1 = X1, X2 = X2, Z = Z,
newZ = newZ, h = @.1, kernel.name = "Epa")$estimatedCKT

# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col = "black”,
type = "1", ylim = c(-1, 1))

lines(newZ, estimatedCKT_kernel, col = "red")
CKT.predict.kNN Prediction of conditional Kendall’s tau using nearest neighbors
Description

Let X; and X, be two random variables. The goal of this function is to estimate the conditional
Kendall’s tau (a dependence measure) between X; and X5 given Z = z for a conditioning variable
Z. Conditional Kendall’s tau between X; and X, given Z = z is defined as:

P((X11—X21)(X12—X22) > 02, =2 = 2)

—P((X1,1— X21)(X12 — X22) <021 = Z5 = 2),

where (X11,X1,2, Z1) and (X321, X2 2, Z5) are two independent and identically distributed copies
of (X1, X2, Z). In other words, conditional Kendall’s tau is the difference between the probabilities
of observing concordant and discordant pairs from the conditional law of

(Xl,X2)|Z = Z.

This function estimates conditional Kendall’s tau using a nearest neighbors. This is possible by
the relationship between estimation of conditional Kendall’s tau and classification problems (see
Derumigny and Fermanian (2019)): estimation of conditional Kendall’s tau is equivalent to the
prediction of concordance in the space of pairs of observations.

Usage

CKT.predict.kNN(
datasetPairs,
designMatrix = datasetPairs[, 2:(ncol(datasetPairs) - 3), drop = FALSE],
newz,
number_nn,
weightsVariables = 1,
normLp = 2,
constantA = 1,
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partition = NULL,

verbose = 1,

lengthVerbose = 100,
methodSort = "partial.sort”

Arguments

datasetPairs the matrix of pairs and corresponding values of the kernel as provided by datasetPairs.

designMatrix the matrix of predictors. They must have the same number of variables as newZ
and the same number of observations as inputMatrix, i.e. there should be one
"multivariate observation" of the predictor for each pair.

newZ the matrix of predictors for which we want to estimate the conditional Kendall’s
taus at these values.

number_nn vector of numbers of nearest neighbors to use. If several number of neighbors
are given (local) aggregation is performed using Lepski’s method on the subset
determined by the partition.

weightsVariables
optional argument to give different weights w; to each variable.

normLp the p in the weighted p-norm |[z|[, = >~ w;* 2" used to determine the distance
in the computation of the nearest neighbors.

constantA a tuning parameter that controls the adaptation. The higher, the smoother it is;
while the smaller, the least smooth it is.

partition used only if length(number_nn) > 1. It is the number of subsets to consider for
the local choice of the number of nearest neighbors ; or a vector giving the id of
each observations among the subsets. If NULL, only one set is used.

verbose if TRUE, this print information each lengthVerbose iterations
lengthVerbose number of iterations at each time for which progress is printed.

methodSort is the sorting method used to find the nearest neighbors. Possible choices are
ecdf (uses the ecdf to order the points to find the neighbors) and partial.sort
uses a partial sorting algorithm. This parameter should not matter except for the
computation time.

Value

a list with two components
* estimatedCKT the estimated conditional Kendall’s tau, a vector of the same size as the number
of rows in newZ;

» vect_k_chosen the locally selected number of nearest neighbors, a vector of the same size as
the number of rows in newZ.

References

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s
tau. Computational Statistics & Data Analysis, 135, 70-94. (Algorithm 5) doi:10.1016/j.csda.2019.01.013


https://doi.org/10.1016/j.csda.2019.01.013
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See Also

See also other estimators of conditional Kendall’s tau: CKT.fit.tree, CKT.fit.randomForest,
CKT.fit.nNets, CKT.fit.randomForest, CKT.fit.GLM, CKT.kernel, CKT.kendallReg.fit, and
the more general wrapper CKT.estimate.

Examples

# We simulate from a conditional copula
set.seed(1)

N = 800
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

newZ = seq(2,10,by = 0.1)
datasetP = datasetPairs(X1 = X1, X2 = X2, Z =12, h = 0.07, cut = 0.9)
estimatedCKT_knn <- CKT.predict.kNN(

datasetPairs = datasetP,

newZ = matrix(newZ,ncol = 1),

number_nn = c(50,80, 100, 120,200),

partition = 8)

# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black”,
type = "1", ylim = c(-1, 1))
lines(newZ, estimatedCKT_knn$estimatedCKT, col = "red")

CKT.predict.nNets Predict the values of conditional Kendall’s tau using Model Averaging
of Neural Networks

Description

Predict the values of conditional Kendall’s tau using Model Averaging of Neural Networks

Usage

CKT.predict.nNets(fit, newZ, aggregationMethod = "mean")



36 CKTmatrix.kernel

Arguments
fit result of a call to CKT.fit.nNet
newZ new matrix of observations, with the same number of variables. and same names
as the designMatrix that was used to fit the neural networks.
aggregationMethod
the method to be used to aggregate all the predictions together. Can be "mean”
or "median”.
Value

CKT.predict.nNets returns a vector of (predicted) conditional Kendall’s taus of the same size as
the number of rows of the matrix newZ.

CKTmatrix.kernel Estimate the conditional Kendall’s tau matrix at different conditioning
points

Description

Assume that we are interested in a random vector (X, Z), where X is of dimension d > 2 and Z is
of dimension 1. We want to estimate the dependence across the elements of the conditioned vector
X given Z = 2. This function takes in parameter observations of (X, Z) and returns kernel-based
estimators of

Ti,j|Z=zk

which is the conditional Kendall’s tau between X; and X; given to Z = zk, for every condi-
tioning point zk in gridZ. If the conditional Kendall’s tau matrix has a block structure, then im-
proved estimation is possible by averaging over the kernel-based estimators of pairwise conditional
Kendall’s taus. Groups of variables composing the same blocks can be defined using the param-
eter blockStructure, and the averaging can be set on using the parameter averaging=all, or
averaging=diag for faster estimation by averaging only over diagonal elements of each block.

Usage

CKTmatrix.kernel(
dataMatrix,
observedZ,
gridz,
averaging = "no",
blockStructure = NULL,
h,
kernel.name = "Epa”,
typeEstCKT = "wdm"
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Arguments
dataMatrix a matrix of size (n,d) containing n observations of a d-dimensional random
vector X.
observedz vector of observed points of a conditioning variable Z. It must have the same
length as the number of rows of dataMatrix.
gridz points at which the conditional Kendall’s tau is computed.
averaging type of averaging used for fast estimation. Possible choices are

* no: no averaging;
* all: averaging all Kendall’s taus in each block;
» diag: averaging along diagonal blocks elements.
blockStructure list of vectors. Each vector corresponds to one group of variables and contains

the indexes of the variables that belongs to this group. blockStructure must
be a partition of 1:d, where d is the number of columns in dataMatrix.

h bandwidth. It can be a real, in this case the same h will be used for every element
of gridZ. If h is a vector then its elements are recycled to match the length of
gridzZ.

kernel.name name of the kernel used for smoothing. Possible choices are: "Gaussian”

(Gaussian kernel) and "Epa” (Epanechnikov kernel).

typeEstCKT type of estimation of the conditional Kendall’s tau.

Value

array with dimensions depending on averaging:

» If averaging = "no": it returns an array of dimensions (n, n, length(gridZ)), containing
the estimated conditional Kendall’s tau matrix given Z = z. Here, n is the number of rows in
dataMatrix.

e Ifaveraging = "all” or "diag": it returns an array of dimensions (length(blockStructure),
length(blockStructure), length(gridZ)), containing the block estimates of the condi-
tional Kendall’s tau given Z = z with ones on the diagonal.

Author(s)

Rutger van der Spek, Alexis Derumigny

References
van der Spek, R., & Derumigny, A. (2022). Fast estimation of Kendall’s Tau and conditional
Kendall’s Tau matrices under structural assumptions. arxiv:2204.03285.

See Also

CKT.kernel for kernel-based estimation of conditional Kendall’s tau between two variables (i.e.
the equivalent of this function when X is bivariate and d=2).


https://arxiv.org/abs/2204.03285
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Examples

Data simulation
= 100
runif(n)
=5
CKT_11
CKT_22
CKT_12 = 0.1 + 0.5 * cos(pi * 2)
data_X = matrix(nrow = n, ncol = d)
for (i in 1:n){
CKT_matrix = matrix(data =
c( 1 , CKT_11 , CKT_11 , CKT_12[i], CKT_12[i]
CKT_11  , 1 , CKT_11 , CKT_12[il, CKT_12[i] ,
CKT_11 , CKT_11 , 1 , CKT_12[i], CKT_12[i] ,
CKT_12[i], CKT_12[i], CKT_12[il], 1 , CKT_22
CKT_12[i], CKT_12[i], CKT_12[il, CKT_22 , 1
),
nrow = 5, ncol = 5)
sigma = sin(pi * CKT_matrix/2)
data_X[i, ] = mvtnorm::rmvnorm(n = 1, sigma = sigma)
3
plot(as.data.frame.matrix(data_X))

O N S #H
1

0.8
0.9

’

)

# Estimation of CKT matrix
h =1.06 * sd(Z) * n*"{-1/5}
gridZ = c(0.2, 0.8)
estMatrixAll <- CKTmatrix.kernel(
dataMatrix = data_X, observedZ = Z, gridZ = gridZ, h = h)
# Averaging estimator
estMatrixAve <- CKTmatrix.kernel(
dataMatrix = data_X, observedZ = Z, gridZ = gridZ,
averaging = "diag", blockStructure = list(1:3,4:5), h = h)

# The estimated CKT matrix conditionally to 7Z=0.2 is:
estMatrixAlll , , 1]

# Using the averaging estimator,

# the estimated CKT between the first group (variables 1 to 3)
# and the second group (variables 4 and 5) is

estMatrixAvel[1, 2, 1]

# True value (of CKT between variables in block 1 and 2 given Z = 0.2):
0.1 + 0.5 x cos(pi * 0.2)

computeKernelMatrix Computing the kernel matrix
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Description

This function computes a matrix of dimensions (length(observedX3), length(newX3)), whose
element at coordinate (i,J) is K, (observedX3[i]—newX3[j]), where K} (x) := K(z/h)/h and K
is the kernel.

Usage

computeKernelMatrix(observedX, newX, kernel, h)

Arguments
observedX a numeric vector of observations of X3. on the interval [0, 1].
newX a numeric vector of points of X3.
kernel a character string describing the kernel to be used. Possible choices are Gaussian,
Triangular and Epanechnikov.
h the bandwidth
Value

a numeric matrix of dimensions (length(observedX), length(newX))

See Also

estimateCondCDF_matrix, estimateCondCDF_vec,

Examples

Y = MASS::mvrnorm(n = 100, mu = c(0,0), Sigma = cbind(c(1, 0.9), c(0.9, 1)))
matrixK = computeKernelMatrix(observedX = Y[,2], newX = c(@, 1, 2.5),
kernel = "Gaussian”, h = 0.8)

# To have an estimator of the conditional expectation of Y1 given Y2 =0, 1, 2.5
Y[,1] * matrixK[,1] / sum(matrixK[,1])
Y[,1] x matrixK[,2] / sum(matrixK[,2])
Y[,1]1 * matrixK[,3] / sum(matrixK[,31)

computeMatrixSignPairs
Compute the matrix of signs of pairs

Description

Compute a matrix giving the concordance or discordance of each pair of observations.

Usage

computeMatrixSignPairs(vectorX1, vectorX2, typeEstCKT = 4)
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conv_treeCKT

Arguments
vectorX1 vector of observed data (first coordinate)
vectorX2 vector of observed data (second coordinate)
typeEstCKT if typeEstCKT = 2 or 4, compute the matrix whose term (i,j) is :
H{(Xi0 = Xj1) * (Xip — Xj2) > 0} = 1{(Xi1 — Xj1) * (X2 — X 2) <0},
where 1 is the indicator function.
For typeEstCKT = 1 (respectively typeEstCKT = 3) a negatively biased (respec-
tively positively) matrix is given.
Value

an n * n matrix with the signs of each pair of observations.

Examples

# We simulate from a conditional copula

N = 500

Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = 0.9 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N = N , family = 3,

par = VineCopula::BiCopTau2Par(1 , conditionalTau) )

matrixPairs = computeMatrixSignPairs(vectorX1 = simCopulal,1],

vectorX2 = simCopulal,2])

conv_treeCKT Converting to matrix of indicators / matrix of conditional Kendall’s
tau

Description

The function treeCKT2matrixInd takes as input a binary tree that has been returned by the function
bCond. treeCKT. Since this tree describes a partition of the conditioning space, it can be interesting
to get, for a given dataset, the matrix

1{X7;,J S Aj”]},

where each A; y corresponds to a conditioning subset. This is the so-called matrixInd. Finally, it
can be interesting to get the matrix of

Usage

treeCKT2matrixInd(estimatedTree, newDataXJ = NULL)
matrixInd2matrixCKT(matrixInd, newDataXI)

treeCKT2matrixCKT (estimatedTree, newDataXI

NULL, newDataXJ = NULL)
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Arguments

estimatedTree

newDataXJ

matrixInd

newDataXI

Value

41

the tree that has been estimated before, for example by bCond. treeCKT.

this is a matrix of size N * | J| where |J| is the number of conditional variables
used in the tree. By default this is NULL meaning that we return the matrix for
the original data (that was used to compute the estimatedTree).

a matrix of indexes of size (n, N.boxes) describing for each observation i to
which box ( = event) it belongs.

this is a matrix of size N * |I| where | I| is the number of conditioned variables.
By default this is NULL meaning that we return the matrix for the original data
used to compute the estimatedTree

* The function treeCKT2matrixInd returns a matrix of size N * m which component [i, j] is

l{XZ'J € Aj)J}

e The function matrixInd2matrixCKT and treeCKT2matrixCKT return a matrix of size |I| *
(]1I]-1) * m where each component corresponds to a conditional Kendall’s tau between a pair
of conditional variables conditionally to the conditioned variables in one of the boxes

See Also

bCond. treeCKT for the construction of such a binary tree.

Examples

set.seed(1)
n = 200

XJ = MASS::mvrnorm(n = n, mu = c¢(3,3), Sigma = rbind(c(1, 0.2), c(0.2, 1)))
XI = matrix(nrow = n, ncol = 2)
high_XJ1 = which(XJ[,1] > 4)

XI[high_XJ1, ]

= MASS::mvrnorm(n = length(high_XJ1), mu = c(10,10),

Sigma = rbind(c(1, 0.8), c(0.8, 1)))

XI[-high_XJ1, ] = MASS::mvrnorm(n = n - length(high_XJ1), mu = c(8,8),

Sigma = rbind(c(1, -0.2), c(-0.2, 1)))

result = bCond.treeCKT(XI = XI, XJ = XJ, minSize = 10, verbose = 2)

treeCKT2matrixInd(result)

matrixInd2matrixCKT(treeCKT2matrixInd(result), newDataXI = XI)

treeCKT2matrixCKT(result)
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datasetPairs Construct a dataset of pairs of observations for the estimation of con-
ditional Kendall’s tau

Description

In (Derumigny, & Fermanian (2019)), it is described how the problem of estimating conditional
Kendall’s tau can be rewritten as a classification task for a dataset of pairs (of observations).
This function computes such a dataset, that can be then used to estimate conditional Kendall’s
tau using one of the following functions: CKT.fit.tree, CKT.fit.randomForest, CKT.fit.GLM,
CKT.fit.nNets, CKT.predict.kNN.

Usage

datasetPairs(
X1,
X2,
Z,
h,
cut = 0.9,
onlyConsecutivePairs = FALSE,
nPairs = NULL

)
Arguments
X1 vector of observations of the first conditioned variable.
X2 vector of observations of the second conditioned variable.
z vector or matrix of observations of the conditioning variable(s), of dimension
dimZ.
h the bandwidth. Can be a vector; in this case, the components of h will be reused
to match the dimension of Z.
cut the cutting level to keep a given pair or not. Used only if no nPairs is provided.
onlyConsecutivePairs
if TRUE, only consecutive pairs are used.
nPairs number of most relevant pairs to keep in the final datasets. If this is different
than the default NULL, the cutting level cut is not used.
Value

A matrix with (4+dimZ) columns and nx(n-1)/2 rows if onlyConsecutivePairs=FALSE and else
(n/2) rows. It is structured in the following way:

e column 1 contains the information about the concordance of the pair (i,j) ;

* columns 2 to 1+dimZ contain the mean value of Z (the conditioning variables) ;

 column 2+dimZ contains the value of the kernel K_h(Z_j - Z_i) ;

* column 3+dimZ and 4+dimZ contain the corresponding values of i and j.
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References

Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s
tau. Computational Statistics & Data Analysis, 135, 70-94. (Algorithm 1 for all pairs and Algorithm
8 for the case of only consecutive pairs) doi:10.1016/j.csda.2019.01.013

See Also

the functions that require such a dataset of pairs to do the estimation of conditional Kendall’s tau:
CKT.fit.tree, CKT.fit.randomForest, CKT.fit.GLM, CKT.fit.nNets, CKT.predict.kNN, and
CKT.fit.randomForest.

Examples

# We simulate from a conditional copula
N = 500
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 0.9 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N = , family = 3,
par = VineCopula::BiCopTau2Par(1 , conditionalTau) )
X1 gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

Z 1

datasetP = datasetPairs(
X1 =X1, X2 =X2, Z=2, h =0.07, cut = 0.9)

estimateCondCDF_matrix
Compute kernel-based conditional marginal (univariate) cdfs

Description
This function computes an estimate of the conditional (marginal) cdf of X1 given a conditioning
variable X3.

Usage

estimateCondCDF_matrix(observedX1, newX1, matrixK3)

Arguments
observedX1 a sample of observations of X1 of size n
newX1 a sample of new points for the variable X1, of size p1
matrixk3 a matrix of kernel values of dimension (p3, n) (K (X3[i] — U3[j]))l.’j such as

given by computeKernelMatrix.
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Details

This function is supposed to be used with computeKernelMatrix. Assume that we observe a
sample (X; 1,X;3),i =1,...,n. We want to estimate the conditional cdf of X given X5 = z3 at
point x; using the following kernel-based estimator

- Y Y Xy <@} KR (X3 — as)

P(X;) < 1| X3 =23) := n )
( | ) 1=1 Kn(Xi3 — a3)

for every x; in newX1 and every x3 in newX3. The matrixK3 should be a matrix of the val-
ues Kp(X;3 — x3) such as the one produced by computeKernelMatrix(observedX3, newX3,
kernel, h).

Value

A matrix of dimensions (p1 = length(newX), p3 = length(matrixkK3[,1])) of estimators P(Xl <
x1|X3 = x3) for every possible choices of (z1, x3).

Examples

Y = MASS: :mvrnorm(n = 100, mu = c(0,0), Sigma = cbind(c(1, 0.9), c(0.9, 1)))
newYl = seq(-1, 1, by = 0.5)
newY2 = c(0, 1, 2)
matrixK = computeKernelMatrix(observedX = Y[,2], newX = newY2,
kernel = "Gaussian”, h = 0.8)
# In this matrix, there are the estimated conditionl cdf at points given by newY1l
# conditionally to the points given by newY2.
matrixCondCDF = estimateCondCDF_matrix(observedX1 = Y[,1],
newX1 = newY1, matrixK)
matrixCondCDF

estimateCondCDF_vec Compute kernel-based conditional marginal (univariate) cdfs

Description

This function computes an estimate of the conditional (marginal) cdf of X1 given a conditioning
variable X3. This function is supposed to be used with computeKernelMatrix. Assume that we
observe a sample (X; 1, X;3),9 = 1,...,n. We want to estimate the conditional cdf of X; given
X3 = z3 at point x; using the following kernel-based estimator

R S HXpy < a0 }Kp(Xy 3 — a3)
P(X] <z1|X3 =x3) := = e - )
(K < 2] X ) > Kn(Xis — x3)

for every couple (z, 1, z;,3) where x; 1 in newX1 and x; 3 in newX3. The matrixK3 should be a ma-
trix of the values K}, (X; 3 —x3) such as the one produced by computeKernelMatrix(observedX3,
newX3, kernel, h).
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Usage

estimateCondCDF_vec(observedX1, newX1, matrixK3)

Arguments
observedX1 a sample of observations of X1 of size n
newX1 a sample of new points for the variable X1, of size p1l
matrixk3 a matrix of kernel values of dimension (p2 , n) (K, (X3[i] — U3[j}))m, such as
given by computeKernelMatrix.
Value

It returns a vector of length newX1 of estimators P(Xl < z1|X3 = x3) for every couple (1, %} 3).

Examples

Y = MASS::mvrnorm(n = 100, mu = c(@,0), Sigma = cbind(c(1, 0.9), c(0.9, 1)))
newYl = seq(-1, 1, by = 0.5)
newY2 = newY1
matrixK = computeKernelMatrix(observedX = Y[,2], newX = newY2,
kernel = "Gaussian”, h = 0.8)
vecCondCDF = estimateCondCDF_vec(observedX1 = Y[,1],
newX1 = newY1, matrixK)
vecCondCDF

estimateCondQuantiles Compute kernel-based conditional quantiles

Description

This function is supposed to be used with computeKernelMatrix. Assume that we observe a
sample (X;1,X;3),s = 1,...,n. We want to estimate the conditional quantiles of X; given
X3 = x3 at point u; using the following kernel-based estimator

Q(U1|X3 = 1'3) = p(fl)(ul S I'1|X3 = $3),
where
. T X L) <z M KR(X(L,3) -z
P(X]_ §$1|X3:x3) — Zl—l { 5L )— 1} h( ( ) 3)’
Zl:l K;L(X(l, 3) - .rg)
for every uj in probsX1 and every x3 in newX3. The matrixK3 should be a matrix of the val-

ues K, (X(l,3) — x3) such as the one produced by computeKernelMatrix(observedX3, newX3,
kernel, h).

Usage

estimateCondQuantiles(observedX1, probsX1, matrixK3)
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Arguments
observedX1 a sample of observations of X1 of size n
probsX1 a sample of probabilities at which we want to compute the quantiles for the
variable X1, of size pl
matrixK3 a matrix of kernel values of dimension (p2 , n) (K, (X3[i] — US[j]))i ; suchas
given by computeKernelMatrix.
Value
A matrix of dimensions (p1,p2) whose (i,j) entry is Q(u1|X3 = x3) with u; = probsX1[i] and
x3 = newX3[j], where newX3[j] is the vector that was used to construct matrixK3.
Examples

Y = MASS::mvrnorm(n = 100, mu = c(@,0), Sigma = cbind(c(1, 0.9), c(0.9, 1)))
matrixK = computeKernelMatrix(observedX = Y[,2] , newX = c(@, 1, 2.5),
kernel = "Gaussian”, h = 0.8)
matrixnp = estimateCondQuantiles(observedX1 = Y[,2],
probsX1 = c(0.3, 0.5) , matrixK3 = matrixK)
matrixnp

estimateNPCondCopula  Compute a kernel-based estimator of the conditional copula

Description

Assuming that we observe a sample (X, 1,X; 2, X;3),7 = 1,...,n, this function returns a array
C1,213(u1, up| X3 = 23) for each choice of (u_1,u_2, x_3).

Usage
estimateNPCondCopula(
X1 = NULL,
X2 = NULL,
X3 = NULL,
ui_,
u2_,
newx3,
kernel,
h,

observedX1 = NULL,
observedX2 = NULL,
observedX3 = NULL
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Arguments
X1, X2, X3 vectors of observations of size n
ui_ a vector of numbers in [0, 1]
u2_ a vector of numbers in [0, 1]
newX3 a vector of new values for the conditioning variable X3
kernel a character string describing the kernel to be used. Possible choices are Gaussian,
Triangular and Epanechnikov.
h the bandwidth to use in the estimation.

observedX1, observedX2, observedX3
old parameter names for X1, X2, X3. Support for this will be removed at a later
version.

Value

An array of dimension (length(U1_, U2_, newX3)) whose element in position (i, j, k) is 6’172‘3 (ur,us| X3 =
x3) where u; = Ul_[i], ug = U2_[j] and x5 = newX3[k]

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo20170011

See Also

estimateParCondCopula for estimating a conditional copula in a parametric setting ( = where
the conditional copula is assumed to belong to a parametric class). simpA.NP for a test that this
conditional copula is constant with respect to the value x3 of the conditioning variable.

Examples

# We simulate from a conditional copula
N = 500
X3 = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 0.9 * pnorm(X3, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 3,
par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

# We do the estimation

grid = c(0.2, 0.4, 0.6, 0.8)

arrayEst = estimateNPCondCopula(
X1 = X1, X2 = X2, X3 = X3,
Ul_ = grid, U2_ = grid, newX3 = c(2, 5, 7),
kernel = "Gaussian”, h = 0.8)

arrayEst
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estimateParCondCopula Estimation of parametric conditional copulas

Description

The function estimateParCondCopula computes an estimate of the conditional parameters in a
conditional parametric copula model, i.e.

CX1,X2‘X3:$3 = C@(Ig)?

for some parametric family (Cj), some conditional parameter 6(z3), and a three-dimensional ran-
dom vector (X1, X2, X3). Remember that C'x, x, |X3=az, denotes the conditional copula of X; and
Xo given X35 = x3.

The function estimateParCondCopula_zZ17J is an auxiliary function that is called when conditional
pseudos-observations are already available when one wants to estimate a parametric conditional
copula.

Usage

estimateParCondCopula(
X1 = NULL,
X2 = NULL,
X3 = NULL,
newX3,
family,
method = "mle”,
h,
observedX1
observedX2
observedX3

NULL,
NULL,
NULL

estimateParCondCopula_ZIJ(Z1_J, Z2_J, observedX3, newX3, family, method, h)

Arguments
X1 a vector of n observations of the first conditioned variable
X2 a vector of n observations of the second conditioned variable
X3 a vector of n observations of the conditioning variable
newx3 a vector of new observations of X3
family an integer indicating the parametric family of copulas to be used, following the
conventions of the VineCopula package, see e.g. VineCopula::BiCop.
method the method of estimation of the conditional parameters. Can be "mle” for max-

imum likelihood estimation or "itau"” for estimation by inversion of Kendall’s
tau.
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h bandwidth to be chosen
observedX1, observedX2, observedX3

old parameter names for X1, X2, X3. Support for this will be removed at a later

version.

Z1_7J the conditional pseudos-observations of the first variable, i.e. F 1| J(@ialey =
.’L‘i’J) fori = 1,...,’17,.

72_7J the conditional pseudos-observations of the second variable, i.e. F2| J(@iolzy =
x;g)fori=1,...,n.

Value

a vector of size length(newX3) containing the estimated conditional copula parameters for each
value of newX3.

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo20170011

See Also

estimateNPCondCopula for estimating a conditional copula in a nonparametric setting ( = without
parametric assumption on the conditional copula). simpA.param for a test that this conditional
copula is constant with respect to the value x3 of the conditioning variable.

Examples

# We simulate from a conditional copula
N = 500

X3 = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 0.9 * pnorm(X3, mean = 5, sd = 2)
simCopula = VineCopula: :BiCopSim(
N=N , family = 1, par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

gridnewX3 = seq(2, 8, by = 1)
conditionalTauNewX3 = 0.9 * pnorm(gridnewX3, mean = 5, sd = 2)

vecEstimatedThetas = estimateParCondCopula(
X1 = X1, X2 = X2, X3 = X3,
newX3 = gridnewX3, family = 1, h = 0.1)

# Estimated conditional parameters
vecEstimatedThetas

# True conditional parameters

VineCopula: :BiCopTau2Par(1 , conditionalTauNewX3 )

# Estimated conditional Kendall's tau
VineCopula: :BiCopPar2Tau(1 , vecEstimatedThetas )
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# True conditional Kendall's tau

conditionalTauNewX3
simpA.kendallReg Test of the simplifying assumption using the constancy of conditional
Kendall’s tau
Description

This function computes Kendall’s regression, a regression-like model for conditional Kendall’s tau.
More precisely, it fits the model

p/
AT, Xa12=2) = Y Bii (2),
j=1

where Tx, x,|z—- is the conditional Kendall’s tau between X; and X conditionally to Z = z,

A is a function from | — 1,1] to R, (f,..., 3,) are unknown coefficients to be estimated and
1, ..., ) are a dictionary of functions. Then, this function tests the assumption
B2 =03 =..=pBy =0,

where the coefficient corresponding to the intercept is removed.

Usage

simpA.kendallReg(
X1,
X2,
Z,
vectorZToEstimate = NULL,
listPhi = list(z = function(z) {
return(z)
D,
typeEstCKT = 4,
h_kernel,
Lambda = function(x) {
return(x)
1,
Lambda_deriv = function(x) {
return(1)
1
Lambda_inv = function(x) {
return(x)
1,
lambda = NULL,



simpA.kendallReg 51

h_lambda = h_kernel,
Kfolds_lambda = 5,
1_norm =1

)

## S3 method for class 'simpA_kendallReg_test'
coef(object, ...)

## S3 method for class 'simpA_kendallReg_test'
vcov(object, ...)

## S3 method for class 'simpA_kendallReg_test'
print(x, ...)

## S3 method for class 'simpA_kendallReg_test'

Lambda_deriv
Lambda_inv
lambda

h_lambda
Kfolds_lambda

1_norm

object, x

ylim

plot(x, ylim = c(-1.5, 1.5), ...)
Arguments

X1 vector of observations of the first conditioned variable

X2 vector of observations of the second conditioned variable

Z vector of observations of the conditioning variable

vectorZToEstimate
vector containing the points Z/ to be used at which the conditional Kendall’s tau
should be estimated.

listPhi the list of transformations phi to be used.

typeEstCKT the type of estimation of the kernel-based estimation of conditional Kendall’s
tau.

h_kernel the bandwidth used for the kernel-based estimations.

Lambda the function to be applied on conditional Kendall’s tau. By default, the identity

function is used.
the derivative of the function Lambda.
the inverse function of Lambda.

the penalization parameter used for Kendall’s regression. By default, cross-
validation is used to find the best value of lambda if length(listPhi) > 1.
Otherwise lambda = 0 is used.

bandwidth used for the smooth cross-validation in order to get a value for lambda.

the number of subsets used for the cross-validation in order to get a value for
lambda.

type of norm used for selection of the optimal lambda by cross-validation. 1_norm=1

corresponds to the sum of absolute values of differences between predicted and
estimated conditional Kendall’s tau while 1_norm=2 corresponds to the sum of
squares of differences.

an S3 object of class simpA_kendallReg_test.
other arguments, unused

graphical parameter, see plot
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Value

simpA.kendallReg returns an S3 object of class simpA_kendallReg_test, containing

¢ statWn: the value of the test statistic.

* p_val: the p-value of the test.
plot.simpA_kendallReg_test returns (invisibly) a matrix with columns z, est_CKT_NP, asympt_se_np,
est_CKT_NP_q@25, est _CKT_NP_q975, est_CKT_reg, asympt_se_reg, est_CKT_reg_q@25, est_CKT_reg_q975.
The first column correspond to the grid of values of z. The next 4 columns are the NP (kernel-based)

estimator of conditional Kendall’s tau, with its standard error, and lower/upper confidence bands.
The last 4 columns are the equivalents for the estimator based on Kendall’s regression.

plot.simpA_kendallReg_test plots the kernel-based estimator and its confidence band (in red),
and the estimator based on Kendall’s regression and its confidence band (in blue).

Usually the confidence band for Kendall’s regression is much tighter than the pure non-parametric
counterpart. This is because the parametric model is sparser and the corresponding estimator con-
verges faster (even without penalization).

print.simpA_kendallReg_test has no return values and is only called for its side effects.

Function coef.simpA_kendallReg_test returns the matrix of coefficients with standard errors, z
values and p-values.

Function vcov.simpA_kendallReg_test returns the (estimated) variance-covariance matrix of the
estimated coefficients.

References

Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Anal-
ysis, 178, 104610. (page 7) doi:10.1016/j.jmva.2020.104610

See Also

The function to fit Kendall’s regression: CKT.kendallReg.fit.

Other tests of the simplifying assumption:

* simpA.NP in a nonparametric setting

* simpA.param in a (semi)parametric setting, where the conditional copula belongs to a para-
metric family, but the conditional margins are estimated arbitrarily through kernel smoothing

* the counterparts of these tests in the discrete conditioning setting: bCond.simpA.CKT (test
based on conditional Kendall’s tau) bCond. simpA.param (test assuming a parametric form
for the conditional copula)

Examples

# We simulate from a non-simplified conditional copula
set.seed(1)

N = 300

Z = runif(n = N, min = @, max = 1)

conditionalTau = -0.9 + 1.8 * Z
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simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

result = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(z = function(z){return(z)} ) )
print(result)
plot(result)
# Obtain matrix of coefficients, std err, z values and p values
coef(result)
# Obtain variance-covariance matrix of the coefficients
vcov(result)

result_morePhi = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(
z = function(z){return(z)},
cos10z = function(z){return(cos(10 * z))},
sin10@z = function(z){return(sin(10 * z))3},
“1(z <= 0.4)" = function(z){return(as.numeric(z <= 0.4))},
“1(z <= 0.6)" = function(z){return(as.numeric(z <= 0.6))}) )
print(result_morePhi)
plot(result_morePhi)

# We simulate from a simplified conditional copula
set.seed(1)

N = 300
Z = runif(n = N, min = @, max = 1)
conditionalTau = -0.3

simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1])
X2 = gnorm(simCopulal,2])

result = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(
z = function(z){return(z)},
cos10z = function(z){return(cos(10 * z))},
sin10@z = function(z){return(sin(10 * z))3},

“1(z <= 0.4)" = function(z){return(as.numeric(z <= 0.4))},
“1(z <= 0.6)" = function(z){return(as.numeric(z <= 0.6))}) )
print(result)
plot(result)

simpA.NP Nonparametric testing of the simplifying assumption
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Description

This function tests the “simplifying assumption” that a conditional copula
Ch213(u1, u2| X3 = x3)

does not depend on the value of the conditioning variable x3 in a nonparametric setting, where the
conditional copula is estimated by kernel smoothing.

Usage
simpA.NP(
X1,
X2,
X3,
testStat,
typeBoot = "bootNP",
h,
nBootstrap = 100,
kernel.name = "Epanechnikov",
truncVal = h,
numericalInt = list(kind = "legendre”, nGrid = 10)
)
Arguments
X1 vector of n observations of the first conditioned variable
X2 vector of n observations of the second conditioned variable
X3 vector of n observations of the conditioning variable
testStat name of the test statistic to be used. Possible values are
* T1_CvM_Cs3: Equation (3) of (Derumigny & Fermanian, 2017) with the
simplified copula estimated by Equation (6) and the weight w (uy,us,uz) =
Fl(ul)Fg(u2)F3(U3).
* T1_CvM_Cs4: Equation (3) of (Derumigny & Fermanian, 2017) with the
simplified copula estimated by Equation (7) and the weight w(u1, ug, us) =
Fl(ul)FQ(UQ)F;g(u?,).
* T1_KS_Cs3: Equation (4) of (Derumigny & Fermanian, 2017) with the sim-
plified copula estimated by Equation (6).
e T1_KS_Cs4: Equation (4) of (Derumigny & Fermanian, 2017) with the sim-
plified copula estimated by Equation (7).
e tilde_T@_CvM: Equation (10) of (Derumigny & Fermanian, 2017).
e tilde_T@_KS: Equation (9) of (Derumigny & Fermanian, 2017).
e I_chi: Equation (13) of (Derumigny & Fermanian, 2017).
e I_2n: Equation (15) of (Derumigny & Fermanian, 2017).
typeBoot the type of bootstrap to be used (see Derumigny and Fermanian, 2017, p.165).

Possible values are

* boot.NP: usual (Efron’s) non-parametric bootstrap
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* boot.pseudoInd: pseudo-independent bootstrap

* boot.pseudoInd.sameX3: pseudo-independent bootstrap without resam-
pling on X3

* boot.pseudoNP: pseudo-non-parametric bootstrap

* boot. cond: conditional bootstrap

h the bandwidth used for kernel smoothing

nBootstrap number of bootstrap replications

kernel.name the name of the kernel

truncval the value of truncation for the integral, i.e. the integrals are computed from

truncVal to 1-truncVal instead of from O to 1.

numericalInt  parameters to be given to statmod: : gauss. quad, including the number of quadra-
ture points and the type of interpolation.

Value
a list containing
* true_stat: the value of the test statistic computed on the whole sample

* vect_statB: a vector of length nBootstrap containing the bootstrapped test statistics.

e p_val: the p-value of the test.

References

Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for condi-
tional copulas. Dependence Modeling, 5(1), 154-197. doi:10.1515/demo02017001 1

See Also
Other tests of the simplifying assumption:
* simpA.param in a (semi)parametric setting, where the conditional copula belongs to a para-
metric family, but the conditional margins are estimated arbitrarily through kernel smoothing
* simpA.kendallReg: test based on the constancy of conditional Kendall’s tau

¢ the counterparts of these tests in the discrete conditioning setting: bCond.simpA.CKT (test
based on conditional Kendall’s tau) bCond.simpA.param (test assuming a parametric form
for the conditional copula)

Examples

# We simulate from a conditional copula
set.seed(1)

N = 500
Z = rnorm(n = N, mean = 5, sd = 2)

conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1], mean = Z)
X2 = gnorm(simCopulal,2], mean = - Z)
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result <- simpA.NP(
X1 = X1, X2 = X2, X3 = Z,
testStat = "I_chi"”, typeBoot = "boot.pseudoInd”,
h = 0.03, kernel.name = "Epanechnikov”, nBootstrap = 10)

# In practice, it is recommended to use at least nBootstrap = 100
# with nBootstrap = 200 being a good choice.

print(result$p_val)

set.seed(1)
N = 500
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 0.8
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1], mean = Z)
X2 = gnorm(simCopulal,2], mean = - Z)

result <- simpA.NP(

X1 = X1, X2 = X2, X3 = Z,

testStat = "I_chi”, typeBoot = "boot.pseudoInd”,

h = 0.08, kernel.name = "Epanechnikov”, nBootstrap = 10)
print(result$p_val)

simpA.param Semiparametric testing of the simplifying assumption

Description

This function tests the “simplifying assumption” that a conditional copula
Ch23(u1, ug| X3 = x3)

does not depend on the value of the conditioning variable z3 in a semiparametric setting, where the
conditional copula is of the form

C1o3(u1, u2| X5 = x3) = Cp(ay) (U1, u2),

for all 0 <= wuy,u2 <= 1 and all 3. Here, (Cy) is a known family of copula and 6(x3) is an
unknown conditional dependence parameter. In this setting, the simplifying assumption can be
rewritten as “6(z3) does not depend on 3, i.e. is a constant function of x3”.

Usage

simpA.param(
X1,
X2,
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X3,

family,

testStat = "T2c”,
typeBoot = "boot.NP",

h,
nBootstrap = 100,
kernel.name = "Epanechnikov”,

truncvVal = h,
numericalInt = list(kind = "legendre", nGrid = 10)

)
Arguments
X1 vector of n observations of the first conditioned variable
X2 vector of n observations of the second conditioned variable
X3 vector of n observations of the conditioning variable
family the chosen family of copulas (see the documentation of the class VineCopula: :BiCop()
for the available families).
testStat name of the test statistic to be used. The only choice implemented yet is 'T2c".
typeBoot the type of bootstrap to be used. (see Derumigny and Fermanian, 2017, p.165).
Possible values are
* "boot.NP": usual (Efron’s) non-parametric bootstrap
* "boot.pseudoInd”: pseudo-independent bootstrap
* "boot.pseudoInd.sameX3": pseudo-independent bootstrap without resam-
pling on X3
* "boot.pseudoNP": pseudo-non-parametric bootstrap
* "poot.cond": conditional bootstrap
* "boot.paramInd”: parametric independent bootstrap
* "boot.paramCond": parametric conditional bootstrap
h the bandwidth used for kernel smoothing
nBootstrap number of bootstrap replications

kernel.name

the name of the kernel

truncval the value of truncation for the integral, i.e. the integrals are computed from
truncVal to 1-truncVal instead of from 0 to 1.
numericalInt  parameters to be given to statmod: : gauss. quad, including the number of quadra-
ture points and the type of interpolation.
Value

a list containing

* true_stat: the value of the test statistic computed on the whole sample
* vect_statB: a vector of length nBootstrap containing the bootstrapped test statistics.

* p_val: the p-value of the test.
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See Also
Other tests of the simplifying assumption:

* simpA.NP in a nonparametric setting
* simpA.kendallReg: test based on the constancy of conditional Kendall’s tau

* the counterparts of these tests in the discrete conditioning setting: bCond.simpA.CKT (test
based on conditional Kendall’s tau) bCond.simpA.param (test assuming a parametric form
for the conditional copula)

Examples

# We simulate from a conditional copula
set.seed(1)

N = 500
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)

simCopula = VineCopula::BiCopSim(N=N , family = 1,

par = VineCopula: :BiCopTau2Par(1 , conditionalTau ))
X1 = gnorm(simCopulal,1], mean = Z)
X2 = gnorm(simCopulal,2], mean = - Z)

result <- simpA.param(

X1 = X1, X2 = X2, X3 = Z, family = 1,

h = 0.03, kernel.name = "Epanechnikov”, nBootstrap = 5)
print(result$p_val)
# In practice, it is recommended to use at least nBootstrap = 100
# with nBootstrap = 200 being a good choice.

set.seed(1)
N = 500
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = 0.8
simCopula = VineCopula: :BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 gnorm(simCopulal,1], mean = Z)
X2 = gnorm(simCopulal,2], mean = - Z)

result <- simpA.param(

X1 = X1, X2 = X2, X3 = Z, family = 1,

h = 0.08, kernel.name = "Epanechnikov"”, nBootstrap = 5)
print(result$p_val)
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