Package 'CalibratR'

January 20, 2025

Type Package

Title Mapping ML Scores to Calibrated Predictions

Version 0.1.2

Author Johanna Schwarz, Dominik Heider

Maintainer Dominik Heider <heiderd@mathematik.uni-marburg.de>

Description Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.

License LGPL-3

Encoding UTF-8

LazyData true

Depends R (>= 2.10.0)

Imports ggplot2, pROC, reshape2, parallel, foreach, stats, fitdistrplus, doParallel

NeedsCompilation no

Repository CRAN

Date/Publication 2019-08-19 13:00:05 UTC

Contents

Q_CV	2
om_for_histogram	3
d_BBQ	4
d_GUESS	4
d_hist_binning	5
brate	5
brate_me	7
brate_me_CV_errors	8
npare_models_visual	
uate_discrimination	9

example	10
format_values	10
getECE	11
getMCE	12
getRMSE	12
get_Brier_score	13
get_CLE_class	13
get_CLE_comparison	14
get_ECE_equal_width	14
get_MCE_equal_width	15
GUESS_CV	15
hist_binning_CV	16
	17
plot_model	18
predict_BBQ	18
predict_calibratR	19
predict_GUESS	20
predict_hist_binning	21
predict_model	22
rd_multiple_runs	22
reliability_diagramm	23
scale_me	24
statistics_calibratR	24
transform_me	26
uncalibrated_CV	27
visualize_calibrated_test_set	28
visualize_calibratR	28
visualize_distribution	31
visualize_error_boxplot	31
	33

Index

BBQ_CV

BBQ_CV

Description

trains and evaluates the BBQ calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A BBQ model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

```
BBQ_CV(actual, predicted, method_for_prediction = 0, n_folds = 10, seed,
input)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
<pre>method_for_pre</pre>	diction
	0=selection, 1=averaging, Default: 0
n_folds	number of folds in the cross-validation, Default: 10
seed	random seed to alternate the split of data set partitions
input	specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error	list object that summarizes discrimination and calibration errors obtained during the CV
pred_idx	which BBQ prediction method was used during CV, 0=selection, 1=averaging
type	"BBQ"
probs_CV	vector of calibrated predictions that was used during the CV
actual_CV	respective vector of true values (0 or 1) that was used during the CV

Examples

Loading dataset in environment
data(example)
actual <- example\$actual
predicted <- example\$predicted
BBQ_model <- CalibratR:::BBQ_CV(actual, predicted, method_for_prediction=0, n_folds=4, 123, 1)</pre>

binom_for_histogram binom_for_histogram

Description

p_values from stats::binom.test for each bin, if bin is empty, a p-value of 2 is returned

Usage

```
binom_for_histogram(n_x)
```

Arguments

n_x numeric vector of two integers. The first one is the number of cases in the bin; the second the number of instances in the bin

Value

p-value from stats::binom.test method

build_BBQ

Description

This method builds a BBQ calibration model using the trainings set provided.

Usage

```
build_BBQ(actual, predicted)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions

Details

Based on the paper (and matlab code) : "Obtaining Well Calibrated Probabilities Using Bayesian Binning" by Naeini, Cooper and Hauskrecht: ; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

returns the BBQ model which includes models for all evaluated binning schemes; the prunedmodel contains only a selection of BBQ models with the best Bayesian score

build_GUESS	ld_GUESS
-------------	----------

Description

This method builds a GUESS calibration model using the trainings set provided.

Usage

```
build_GUESS(actual, predicted)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions

Value

returns the trained GUESS model that can be used to calibrate a test set using the predict_GUESS method

build_hist_binning

See Also

denscomp

build_hist_binning build_hist_binning

Description

calculate estimated probability per bin, input predicted and real score as numeric vector; builds a histogram binning model which can be used to calibrate uncalibrated predictions using the predict_histogramm_binning method

Usage

build_hist_binning(actual, predicted, bins = NULL)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
bins	number of bins that should be used to build the binning model, Default: de- cide_on_break estimates optimal number of bins

Details

if trainings set is smaller then threshold (15 bins*5 elements=75), number of bins is decreased

Value

returns the trained histogram model that can be used to calibrate a test set using the predict_hist_binning method

calibrate

calibrate

Description

Builds selected calibration models on the supplied trainings values actual and predicted and returns them to the user. New test instances can be calibrated using the predict_calibratR function. Returns cross-validated calibration and discrimination error values for the models if evaluate_CV_error is set to TRUE. Repeated cross-Validation can be time-consuming.

Usage

```
calibrate(actual, predicted, model_idx = c(1, 2, 3, 4, 5),
evaluate_no_CV_error = TRUE, evaluate_CV_error = TRUE, folds = 10,
n_seeds = 30, nCores = 4)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
model_idx	which calibration models should be implemented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS, Default: c(1, 2, 3, 4, 5)
evaluate_no_CV_	error
	computes internal errors for calibration models that were trained on all available actual/predicted tuples. Testing is performed with the same set. Be careful to interpret those error values, as they are not cross-validated. Default: TRUE
evaluate_CV_err	or
	computes cross-validation error. folds times cross validation is repeated n_seeds times with changing seeds. The trained models and the their calibration and dis- crimination errors are returned. Evaluation of CV errors can take some time to compute, depending on the number of repetitions specified in n_seeds, Default: TRUE
folds	number of folds in the cross-validation of the calibration model. If folds is set to 1, no CV is performed and summary_CV can be calculated. Default: 10
n_seeds	n_seeds determines how often random data set partition is repeated with vary- ing seed. If folds is 1, n_seeds should be set to 1, too. Default: 30
nCores	nCores how many cores should be used during parallelisation. Default: 4

Details

parallised execution of random data set splits for the Cross-Validation procedure over n_seeds

Value

A list object with the following components:

calibration_models

	a list of all trained calibration models, which can be used in the predict_calibratR method.
summary_CV	a list containing information on the CV errors of the implemented models
<pre>summary_no_CV</pre>	a list containing information on the internal errors of the implemented models
predictions	calibrated predictions for the original predicted values
n_seeds	number of random data set partitions into training and test set for folds-times CV

Author(s)

Johanna Schwarz

calibrate_me

Examples

calibrate_me calibrate_me

Description

trains calibration models on the training set of predicted/actual value pairs.model_idx specifies which models should be trained.

Usage

calibrate_me(actual, predicted, model_idx)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
model_idx	a single number from 1 to 5, indicating which calibration model should be imple- mented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS

Value

depending on the value of model_idx, the respective calibration model is build on the input from actual and predicted

calibrate_me_CV_errors

calibrate_me_CV_errors

Description

trains and evaluates calibration models using n_seeds-times repeated folds-Cross-Validation (CV).model_idx specifies which models should be trained.

Model training and evaluation is repeated $n_{seeds-times}$ with a different training/test set partition scheme for the CV each time.

Usage

```
calibrate_me_CV_errors(actual, predicted, model_idx, folds = 10, n_seeds,
nCores)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
model_idx	which calibration models should be implemented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS
folds	number of folds in the cross-validation, Default: 10
n_seeds	n_seeds determines how often random data set partition is repeated with vary- ing seed
nCores	nCores how many cores should be used during parallelisation. Default: 4

Details

parallised execution over n_seeds

Value

returns all trained calibration models that were built during the n_seeds-times repeated folds-CV. Error values for each of the n_seeds CV runs are given.

compare_models_visual compare_models_visual

Description

FUNCTION_DESCRIPTION

Usage

```
compare_models_visual(models, seq = NULL)
```

Arguments

models	PARAM_DESCRIPTION
seq	sequence for which the calibrated predictions should be plotted, Default: NULL

Details

DETAILS

Value

OUTPUT_DESCRIPTION

See Also

ggplot,geom_line,aes,ylim,theme,labs,scale_color_brewer melt

evaluate_discrimination

evaluate_discrimination

Description

computes various discrimination error values, namely: sensitivity, specificity, accuracy, positive predictive value (ppv), negative predictive value (npv) and AUC

Usage

```
evaluate_discrimination(actual, predicted, cutoff = NULL)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
cutoff	cut-off to be used for the computation of npv, ppv, sensitivity and specificity, Default: value that maximizes sensitivity and specificity (Youden-Index)

Value

list object with the following components:

	sens	sensitivity
	spec	specificity
	асс	accuracy
	ррν	positive predictive value
	npv	negative predictive value
	cutoff	cut-off that was used to compute the error values
	auc	AUC value
See	Also	
	roc	
e	example	example

Description

list object containing 1) the simulated classifiers for two classes. Distributions are simulated from Gaussian distributions with Normal(mean=1.5, sd=0) for class 1 and Normal(mean=0, sd=0) for class 0 instances. Each class consists of 100 instances. and 2) A test set of 100 instances

Usage

data(example)

Format

predicted=vector of 200 simulated classifier values; actual=their respective true class labels (0/1)

format_values format_values

Description

returns formatted input. If specified, the uncalibrated input is mapped to the [0;1] range using scaling (scale_me) or transforming (transform_me)

Usage

```
format_values(cases, control, input, min = NULL, max = NULL, mean = NULL)
```

10

getECE

Arguments

cases	instances from class 1
control	instances from class 0
input	single integer (0, 1 or 2). specify if the input should be formatted (=0), formatted and scaled (=1) or formatted and transformed (=2)
min	min value of the original data set, default=calculated on input
max	max value of the original data set, default=calculated on input
mean	mean value of the original data set, default=calculated on input

Value

list object with the following components:

formated_value	S
	formatted input. If input is set to 1 (2), the input is additionally scaled (transformed) using the method scale_me (transform_me)
min	minimum value among all instances
max	maximum value among all instances
mean	mean value among all instances

|--|--|--|

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by emperical frequency of elements in bin i

Usage

```
getECE(actual, predicted, n_bins = 10)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
n_bins	number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency ECE value

getMCE

Description

Maximum Calibration Error (MCE), returns maximum calibration error for equal-frequency binning model

Usage

getMCE(actual, predicted, n_bins = 10)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
n_bins	number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency MCE value

Description

calculates the root of mean square error (RMSE) in the test set of calibrated predictions

Usage

getRMSE(actual, predicted)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions

Value

RMSE value

get_Brier_score get_Brier_score

Description

FUNCTION_DESCRIPTION

Usage

get_Brier_score(actual, predicted)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions

Details

DETAILS

Value

OUTPUT_DESCRIPTION

get_CLE_class get_CLE_class

Description

calculates the class-specific classification error CLE in the test set. The method computes the deviation of the calibrated predictions of class 1 instances from their true value 1. For class 0 instances, get_CLE_class computes the deviation from 0. Class 1 CLE is 0 when all class 1 instances have a calibrated prediction of 1 regardless of potential miscalibration of class 0 instances. CLE calculation is helpful when miscalibration and -classification is more cost-sensitive for one class than for the other.

Usage

get_CLE_class(actual, predicted, bins = 10)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
bins	number of bins for the equal-width binning model, default=10

Value

object of class list containing the following components:

class_1	CLE of class 1 instances
class_0	CLE of class 0 instances

See Also

melt ggplot,geom_line,aes,position_dodge,labs,scale_colour_manual

get_CLE_comparison get_CLE_comparison

Description

visualises how class 1 and class 0 classification error (CLE) differs in each trained calibration model. Comparing class-specific CLE helps to choose a calibration model for applications were classification error is cost-sensitive for one class. See get_CLE_class for details on the implementation.

Usage

get_CLE_comparison(list_models)

Arguments

list_models	list object that contains all error values for all trained calibration models. For
	the specific format, see the calling function visualize_calibratR.

Value

ggplot2

get_ECE_equal_width get_ECE_equal_width

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by emperical frequency of elements in bin i

Usage

```
get_ECE_equal_width(actual, predicted, bins = 10)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
bins	number of bins for the equal-width binning model

Value

equal-width ECE value

get_MCE_equal_width get_MCE_equal_width

Description

Maximum Calibration Error (MCE), returns maximum calibration error for equal-width binning model

Usage

```
get_MCE_equal_width(actual, predicted, bins = 10)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
bins	number of bins for the binning model

Value

equal-width MCE value

GUESS_CV

GUESS_CV

Description

trains and evaluates the GUESS calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A GUESS model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

```
GUESS_CV(actual, predicted, n_folds = 10, method_of_prediction = 2, seed,
input)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
n_folds	number of folds for the cross-validation, Default: 10
<pre>method_of_pred</pre>	iction
	PARAM_DESCRIPTION, Default: 2
seed	random seed to alternate the split of data set partitions
input	specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error	list object that summarizes discrimination and calibration errors obtained during the CV
type	"GUESS"
pred_idx	which prediction method was used during CV
probs_CV	vector of calibrated predictions that was used during the CV
actual_CV	respective vector of true values (0 or 1) that was used during the CV
pred_idx probs_CV	which prediction method was used during CV vector of calibrated predictions that was used during the CV

hist_binning_CV hist_binning_CV

Description

trains and evaluates the histogram binning calibration model repeated folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A histogram binning model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

```
hist_binning_CV(actual, predicted, n_bins = 15, n_folds = 10, seed, input)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
n_bins	number of bins used in the histogram binning scheme, Default: 15
n_folds	number of folds in the cross-validation, Default: 10
seed	random seed to alternate the split of data set partitions
input	specify if the input was scaled or transformed, scaled=1, transformed=2

16

Value

list object containing the following components:

error	list object that summarizes discrimination and calibration errors obtained during the CV
type	"hist"
probs_CV	vector of calibrated predictions that was used during the CV
actual_CV	respective vector of true values (0 or 1) that was used during the CV

```
plot_class_distributions
```

plot_class_distributions

Description

plots the returned conditional class probabilities P(x|C) of GUESS_1 or GUESS_2 models. Which GUESS model is plotted can be specified in pred_idx.

Usage

plot_class_distributions(build_guess_object, pred_idx)

Arguments

build_guess_object	
	output from build_GUESS()
pred_idx	if pred_idx=1 GUESS_1 is plotted; if pred_idx=2 GUESS_2 is plotted

Value

ggplot object that visualizes the returned calibrated predicition estimates by GUESS_1 or GUESS_2

See Also

melt ggplot,geom_line,aes,scale_colour_manual,theme,labs,geom_vline,geom_text

plot_model

Description

this methods visualizes all implemented calibration models as a mapping function between original ML scores (x-axis) and calibrated predictions (y-axis)

Usage

plot_model(calibration_model, seq = NULL)

Arguments

calibration_model

output from the calibrate method.

seq sequence of ML scores over which the mapping function should be evaluated, Default: 100 scores from the minimum to the maximum of the original ML scores

Value

ggplot object

See Also

melt ggplot,geom_line,aes,ylim,scale_colour_manual,theme,labs,geom_text,geom_vline

predict_BBQ predict_BBQ

Description

FUNCTION_DESCRIPTION

Usage

predict_BBQ(bbq, new, option)

Arguments

bbq	output from the build_BBQ method
new	vector of uncalibrated probabilities
option	either 1 or 0; averaging=1, selecting=0

Details

Based on the paper (and matlab code) : "Obtaining Well Calibrated Probabilities Using Bayesian Binning" by Naeini, Cooper and Hauskrecht: ; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

a list object containing the following components:

predictions	contains a vector of calibrated predictions	
pred_idx	which option was used (averaging or selecting)	
significance_test_set		
	the percentage of new instances that was evaluated using significant prediction estimates	
pred_per_bin	number of instances new in each bin of the selected model	

predict_calibratR predict_calibratR

Description

maps the uncalibrated predictions new into calibrated predictions using the passed over calibration models $% \left(\mathcal{A}_{n}^{\prime}\right) =\left(\mathcal{A}_{n}^{\prime}\right) \left(\mathcal{A}_$

Usage

```
predict_calibratR(calibration_models, new = NULL, nCores = 4)
```

Arguments

calibration_mo	odels
	list of trained calibration models that were constructed using the calibrate method. The list components calibration_models from the calibrate output can be used directly.
new	vector of new uncalibrated instances. Default: 100 scores from the minimum to the maximum of the original ML scores
nCores	nCores how many cores should be used during parallelisation. Default: 4

Details

if no new value is given, the function will evaluate a sequence of numbers ranging from the minimum to the maximum of the original values in the training set

Value

list object with the following components:

predictions	a list containing the calibrated predictions for each calibration model	
significance_test_set		
	a list containing the percentage of new instances for which prediction estimates are statistically significant	
pred_per_bin	a list containing the number of instances in each bin for the binning models	

Author(s)

Johanna Schwarz

Examples

Loading dataset in environment
data(example)
test_set <- example\$test_set
calibration_model <- example\$calibration_model</pre>

```
## Predict for test set
predictions <- predict_calibratR(calibration_model$calibration_models, new=test_set, nCores = 2)</pre>
```

predict_GUESS predict_GUESS

Description

returns calibrated predictions for the instances new using the trained GUESS calibration model build_guess_object. Two different evaluation methods are available. Method 1: returns the p-value for the score new under the distribution that is handed over in the build_guess_object Method 2: returns the probability density value for the score new under the distribution that is handed over in the build_guess_object

Usage

```
predict_GUESS(build_guess_object, new, density_evaluation = 2,
  return_class_density = FALSE)
```

Arguments

build_guess_c	bject	
	output from the build_GUESS method	
new	vector of uncalibrated probabilities	
density_evaluation		
	which density evaluation method should be used to infer calculate probabilities,	
	Default: 2	

return_class_density if set to TRUE, class densities p(xlclass) are returned, Default: FALSE

Details

dens_case and dens_control are only returned when return_class_density is set to TRUE

Value

a list object containing the following components:		
predictions	contains a vector of calibrated predictions	
pred_idx	which density evaluation method was used	
significance_test_set		
	the percentage of new instances that was evaluated using significant prediction estimates	
dens_case	a vector containing the p(xlcase) values	
dens_control	a vector containing the p(xlcontrol) values	

predict_hist_binning predict_hist_binning

Description

predict for a new element using histogram binning

Usage

```
predict_hist_binning(histogram, new)
```

Arguments

histogram	the output of build_hist_binning
new	vector of uncalibrated probabilities

Value

a list object containing the following components

predictions	contains a vector of calibrated predictions	
significance_test_set		
	the percentage of new instances that was evaluated using significant prediction estimates	
pred_per_bin	a table containing the number of instances from new for each bin of the final binning scheme of $\verb+histogram$	

predict_model predict_model

Description

calibrates the uncalibrated predictions new using calibration_model.

Usage

```
predict_model(new, calibration_model, min, max, mean, inputtype)
```

Arguments

new	vector of uncalibrated predictions
calibration_model	
	calibration model to be used for the calibration. Can be the output of build_BBQ,build_hist_binning or build_GUESS.
min	minimum value of the original data set
max	maximum value of the original data set
mean	mean value of the original data set
inputtype	specify if the model was build on original (=0), scaled(=1) or transformed (=2) data

Value

vector of calibrated predictions

rd_multiple_runs rd_multiple_runs

Description

This functions plots all n reliability diagrams that were constructed during n-times repeated mfold cross-validation (CV). During calibration model evaluation, CV is repeated n times, so that eventually n reliability diagrams are obtained.

Usage

```
rd_multiple_runs(list_models)
```

Arguments

list_models list object that contains n-times the output from the reliability_diagramm. method.

Value

a list object that contains a reliability diagram that visualises all reliability diagrams that were constructed during n-times repeated m-fold cross-validation.

See Also

melt ggplot,geom_line,aes,geom_abline,ylab,xlab,xlim,ylim,coord_fixed,geom_text,scale_color_discrete,ggti

reliability_diagramm reliability_diagramm

Description

Reliability curves allow checking if the predicted probabilities of a

Usage

```
reliability_diagramm(actual, predicted, bins = 10, plot_rd = TRUE)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
bins	number of bins in the reliability diagram, Default: 10
plot_rd	should the reliability diagram be plotted, Default: TRUE

Value

a list object containing the following elements

calibration_error

discrimination_error

rd_breaks histogram_plot diagram_plot mean_pred_per_bin

accuracy_per_bin

freq_per_bin
sign

See Also

ggplot,stat_bin,aes,scale_fill_manual,theme,labs,geom_point,xlim,ylim,geom_abline,geom_line,geom_text,geom_bine,geom_bin

scale_me

Description

maps all instances in x to the [0;1] range using the equation: y = (x-min)/(max-min)If no values for min and max are given, they are calculated per default as min=min(x) and max=max(x)

Usage

scale_me(x, min = NULL, max = NULL)

Arguments

Х	vector of predictions
min	minimum of x, Default: NULL
max	maximum of x, Default: NULL

Details

if x is greater (smaller) than max (min), its calibrated prediction is set to 1 (0) and warning is triggered.

Value

scaled values of x

statistics_calibratR statistics_calibratR

Description

this method offers a variety of statistical evaluation methods for the output of the calibrate method. All returned error values represent mean error values over the n_seeds times repeated 10-fold CV.

Usage

```
statistics_calibratR(calibrate_object, t.test_partitions = TRUE,
    significance_models = TRUE)
```

Arguments

calibrate_object

list that is returned from the calibrate function. The parameter n_seeds is available as a list component of the calibrate_object

t.test_partitions

Performs a paired two sided t.test over the error values (ECE, CLE1, CLE0, MCE, AUC, sensitivity and specificity) from the random partition splits comparing a possible significant difference in mean among the calibration models. All models and the original, scaled and transformed values are tested against each other. The p_value and the effect size of the t.test are returned to the user. Can only be performed, if the calibrate_object contains a summary_CV list object, else, an error is returned. Default: TRUE

significance_models

returns important characteristics of the implemented calibration models, Default: TRUE

Details

DETAILS

Value

An object of class list, with the following components:

mean_calibration

mean of calibration error values (ECE_equal_width, MCE_equal_width, ECE_equal_freq, MCE_equal_freq, RMSE, Class 1 CLE, Class 0 CLE, Brier Score, Class 1 Brier Score, Class 0 Brier Score) over n_seeds times repeated 10-fold CV. ECE and MCE are computed once using equal-width and once using equal-frequency binning for the construction of the underlying binning scheme. Only returned, if calibrate_object contains a summary_CV list object.

standard_deviation

standard deviation of calibration error values over n_seeds times repeated 10fold CV. Only returned, if calibrate_object contains a summary_CV list object.

var_coeff_calibration

variation coefficient of calibration error values over n_seeds times repeated 10fold CV. Only returned, if calibrate_object contains a summary_CV list object.

mean_discrimination

mean of discrimination error (sensitivity, specificity, AUC, positive predictive value, negative predictive value, accuracy) values over n_seeds times repeated 10-fold CV. The "cut-off" is the cut-off value that maximizes sensitivity and specificity. Only returned, if calibrate_object contains a summary_CV list object.

sd_discrimination

standard deviation of discrimination error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.

<pre>var_coeff_disc</pre>	rimination
	variation coefficient of discrimination error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.
t.test_calibra	tion
	=list(p_value=t.test.calibration, effect_size=effect_size_calibration), only returned if t.test=TRUE
t.test_discrim	ination
	=list(p_value=t.test.discrimination, effect_size=effect_size_discrimination), only returned if t.test=TRUE
significance_mo	odels
	only returned if significance_models=TRUE
n_seeds	number of random data set partitions into training and test set for folds-times CV
original_values	3
	list object that consists of the actual and predicted values of the original scores

Author(s)

Johanna Schwarz

See Also

t.test,friedman.test

Examples

Loading dataset in environment
data(example)
calibration_model <- example\$calibration_model</pre>

statistics <- statistics_calibratR(calibration_model)</pre>

transform_me transform_me

Description

maps all instances in x_unscaled to the [0;1] range using the equation: y=exp(x)/(1+exp(x))

Usage

transform_me(x_unscaled, mean)

uncalibrated_CV

Arguments

x_unscaled	vector of predictions
mean	mean of x

Details

values greater then exp(700)/ or smaller then exp(-700) are returned as "Inf". To avoid NaN values, these "Inf." values are turned into min(y) or max(y).

Value

transformed values of x_unscaled

uncalibrated_CV uncalibrated_CV

Description

performs n_folds-CV but with only input-preprocessing the test set. No calibration model is trained and evaluated in this method. The predicted values are partitioned into n subsets. The training set is constructed on (n-1) subsets; the remaining set is used for testing. Since no calibration model is used in this method, the test set predictions are only input-preprocessed (either scaled or transformed, depending on input). All test set predictions are merged and used to compute error metrics for the input-preprocessing methods.

Usage

uncalibrated_CV(actual, predicted, n_folds = 10, seed, input)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
n_folds	number of folds for the cross-validation, Default: 10
seed	random seed to alternate the split of data set partitions
input	specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error	list object that summarizes discrimination and calibration errors obtained during the CV
type	"uncalibrated"
probs_CV	vector of input-preprocessed predictions that was used during the CV
actual_CV	respective vector of true values (0 or 1) that was used during the CV

```
visualize_calibrated_test_set
```

visualize_calibrated_test_set

Description

plots a panel for all calibrated predictions from the respective calibration model. Allows visual comparison of the models output and their optimal cut off

Usage

```
visualize_calibrated_test_set(actual, predicted_list, cutoffs)
```

Arguments

actual	vector of observed class labels (0/1)
predicted_list	predict_calibratR\$predictions object (list of calibrated predictions from calibration models)
cutoffs	vector of optimal cut-off thresholds for each calibration model

Value

ggplot2 element for visual comparison of the evaluated calibration models

See Also

ggplot,geom_point,scale_colour_manual,xlab,ylab,geom_hline,ylim

visualize_calibratR visualize_calibratR

Description

this method offers a variety of visualisations to compare implemented calibration models

Usage

```
visualize_calibratR(calibrate_object, visualize_models = FALSE,
    plot_distributions = FALSE, rd_partitions = FALSE,
    training_set_calibrated = FALSE)
```

Arguments

calibrate_object

the list component calibration_models from the calibrate method

visualize_models
returns the list components plot_calibration_models and plot_single_models
plot_distributions
returns a density distribution plot of the calibrated predictions after CV (External) or without CV (internal)
rd_partitions returns a reliability diagram for each model
training_set_calibrated
returns a list of ggplots. Each plot represents the calibrated predictions by the
respective calibration model of the training set. If the list object predictions

respective calibration model of the training set. If the list object predictions in the calibrate_object is empty, training_set_calibrated is returned as NULL.

Value

An object of class list, with the following components:

histogram_distribution

returns a histogram of the original ML score distribution

density_calibration_internal

returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions of the training set. In this case, training and test set values are identical, so be careful to evaluate the plots.

density_calibration_external

returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions, that were returned during Cross Validation. If more than one repetition of CV was performed, run number 1 is evaluated

plot_calibration_models

maps the original ML scores to their calibrated prediction estimates for each model. This enables easy model comparison over the range of ML scores See also compare_models_visual.

```
plot_single_models
```

returns a list of ggplots for each calibration model, also mapping the original ML scores to their calibrated prediction. Significance values are indicated. See also plot_model

rd_plot returns a list of reliability diagrams for each of the implemented calibration models and the two input-preprocessing methods "scaled" and "transformed". The returned plot visualises the calibrated predictions that were returned for the test set during each of the n run of the n-times repeated CV. Each grey line represents one of the n runs. The blue line represents the median of all calibrated bin predictions. Insignificant bin estimates are indicated with "ns". If no CV was performed during calibration model building using the calibrate method, rd_plot is returned as NULL

calibration_error

returns a list of boxplots for the calibration error metrics ECE, MCE, CLE and RMSE. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the calibrate method, calibration_error is returned as NULL

discrimination_error

returns a list of boxplots for the discrimination error AUC, sensitivity and specificity. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the calibrate method, discrimination_error is returned as NULL

cle_class_specific_error

If no CV was performed during calibration model building using the calibrate method, cle_class_specific_error is returned as NULL

training_set_calibrated

returns a list of ggplots. Each plot represents the calibrated predictions by the respective calibration model of the training set. If the list object predictions in the calibrate_object is empty, training_set_calibrated is returned as NULL.

GUESS_1_final_model

plots the the returned conditional probability p(xlClass) values of the GUESS_1 model

GUESS_2_final_model

plots the the returned conditional probability p(x|Class) values of the GUESS_2 model

Author(s)

Johanna Schwarz

See Also

```
ggplot,geom_density,aes,scale_colour_manual,scale_fill_manual,labs,geom_point,geom_hline,theme,element_t
melt
```

Examples

```
## Loading dataset in environment
   data(example)
   calibration_model <- example$calibration_model
   visualisation <- visualize_calibratR(calibration_model, plot_distributions=FALSE,
   rd_partitions=FALSE, training_set_calibrated=FALSE)</pre>
```

visualize_distribution

visualize_distribution

Description

FUNCTION_DESCRIPTION

Usage

visualize_distribution(actual, predicted)

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions

Value

list object containing the following components:

plot_distribution	
	ggplot histogram that visualizes the observed class distributions
parameter	list object that summarizes all relevant parameters (mean, sd, number) of the observed class distributions

See Also

ggplot,geom_histogram,aes,scale_colour_manual,scale_fill_manual,labs

visualize_error_boxplot

visualize_error_boxplot

Description

compares error values among different calibration models. A boxplots is created from the n error values that were obtained during the n-times repeated Cross-Validation procedure. Different error values are implemented and can be compared:

discrimination error = sensitivity, specificity, accuracy, AUC (when discrimination=TRUE) calibration error = ece, mce, rmse, class 0 cle, class 1 cle (when discrimination=FALSE) For the calculation of the errors, see the respective methods listed in the "see also" section

Usage

```
visualize_error_boxplot(list_models, discrimination = TRUE)
```

Arguments

list_models	list object that contains all error values for all trained calibration models. For the specific format, see the calling function visualize_calibratR.
discrimination	boolean (TRUE or FALSE). If TRUE, discrimination errors are compared be- tween models; if FALSE calibration error is compared, Default: TRUE

Value

An object of class list, with the following components: if discrimination=TRUE

sens	ggplot2 boxplot that compares all evaluated calibration models with regard to sensitivity.
spec	ggplot2 boxplot that compares all evaluated calibration models with regard to specificity
асс	ggplot2 boxplot that compares all evaluated calibration models with regard to accuracy
auc	ggplot2 boxplot that compares all evaluated calibration models with regard to AUC
list_errors	list object that contains all discrimination error values that were used to con- struct the boxplots

if discrimination=FALSE

ece	ggplot2 boxplot that compares all evaluated calibration models with regard to expected calibration error
mce	ggplot2 boxplot that compares all evaluated calibration models with regard to maximum expected calibration error (MCE)
rmse	ggplot2 boxplot that compares all evaluated calibration models with regard to root mean square error (RMSE)
cle_0	ggplot2 boxplot that compares all evaluated calibration models with regard to class 0 classification error (CLE)
cle_1	ggplot2 boxplot that compares all evaluated calibration models with regard to class 1 classification error (CLE)
list_errors	list object that contains all calibration error values that were used to construct the boxplots

See Also

ggplot,aes,ggtitle,scale_x_discrete,geom_boxplot,theme,element_text melt,get_CLE_class,getECE,getMCE,getF evaluate_discrimination

Index

* datasets example, 10 aes, 9, 14, 17, 18, 23, 30-32 BBQ_CV, 2 binom_for_histogram, 3 build_BBQ, 4, 18, 22 build_GUESS, 4, 20, 22 build_hist_binning, 5, 21, 22 calibrate, 5, 18, 19, 24, 25, 29, 30 calibrate_me, 7 calibrate_me_CV_errors, 8 compare_models_visual, 9, 29 coord_fixed, 23 denscomp, 5 element_text, 30, 32 evaluate_discrimination, 9, 32 example, 10 format_values, 10 friedman.test, 26 geom_abline, 23 geom_boxplot, 32 geom_density, 30 geom_histogram, 31 geom_hline, 28, 30 geom_label, 23 geom_line, 9, 14, 17, 18, 23 geom_point, 23, 28, 30 geom_text, 17, 18, 23 geom_vline, 17, 18 get_Brier_score, 13 get_CLE_class, 13, 14, 32 get_CLE_comparison, 14 get_ECE_equal_width, 14 get_MCE_equal_width, 15

getECE, 11, 32 getMCE, 12, 32 getRMSE, 12, 32 ggplot, 9, 14, 17, 18, 23, 28, 30-32 ggtitle, 23, 32 GUESS_CV, 15 hist_binning_CV, 16 labs, 9, 14, 17, 18, 23, 30, 31 melt, 9, 14, 17, 18, 23, 30, 32 plot_class_distributions, 17 plot_model, 18, 29 position_dodge, 14 predict_BBQ, 18 predict_calibratR, 5, 6, 19 predict_GUESS, 4, 20 predict_hist_binning, 5, 21 predict_model, 22 rd_multiple_runs, 22 reliability_diagramm, 22, 23 roc, 10 scale_color_brewer, 9 scale_color_discrete, 23 scale_colour_manual, 14, 17, 18, 28, 30, 31 scale_fill_manual, 23, 30, 31 scale_me, 10, 11, 24 scale_x_discrete, 32 stat_bin, 23 statistics_calibratR, 24 t.test, 26 theme, 9, 17, 18, 23, 30, 32 transform_me, 10, 11, 26 uncalibrated_CV, 27

visualize_calibrated_test_set, 28

INDEX

visualize_calibratR, 14, 28, 32
visualize_distribution, 31
visualize_error_boxplot, 31

xlab, 23, 28 xlim, 23

ylab, 23, 28 ylim, 9, 18, 23, 28

34