Package 'COST'

January 20, 2025

Type Package Title Copula-Based Semiparametric Models for Spatio-Temporal Data Version 0.1.0 Author Yanlin Tang, Huixia Judy Wang Maintainer Yanlin Tang <yanlintang2018@163.com> Description Parameter estimation, one-step ahead forecast and new location prediction methods for spatio-temporal data. Depends copula, mvtnorm License GPL **Encoding** UTF-8 LazyData true RoxygenNote 6.1.1 ByteCompile yes NeedsCompilation no **Repository** CRAN Date/Publication 2019-01-04 11:00:24 UTC

Contents

Data.COST	2
example.forecast	3
example.prediction	5
Forecasts.CF	6
Forecasts.COST.G	7
Forecasts.COST.t	8
Forecasts.GP	9
location	0
logL.CF	1
logL.COST.G	
logL.COST.t	
logL.GP	3

Predictions.COST.G	. 14
Predictions.COST.t	. 15
Predictions.GP	. 16
rank.multivariate	. 17
Wind6month	. 17
	19

Data.COST

Index

Data Generation

Description

Generating data from COST DGP, assuming Markov process of order one

Usage

Data.COST(n,n.total,seed1,coord,par.t)

Arguments

n	number of time points for parameter estimation
n.total	number of total time points, with a burning sequence
seed1	random seed to generate a data set, for reproducibility
coord	coordinates of the locations
par.t	the true copula parameters

Value

Y.all	data from all locations and time points, may include data at time point n+1, or data from new locations
mean.true	true conditional mean of observed locations at time point n+1

Author(s)

Yanlin Tang, Huixia Judy Wang

References

example.forecast

Examples

```
library(COST)
n = 500
n.total = 1001
seed1 = 22222
coord = cbind(rep(c(1,3,5)/6,each=3),rep(c(1,3,5)/6,3))
par.t = c(0,1,1,0.5,1.5,100)
dat = Data.COST(n,n.total,seed1,coord,par.t)
#it returns a data set with dimension 501*9
```

example.forecast example for one-step ahead forecast

Description

Example for one-step ahead forecast for Gaussian Process and our COST method with Gaussian and t copulas, where the data are generated from COST DGP, where the parameters are assumed to be known; the parameters can be obtained by the "optim" function. Assuming that data are observed at d=9 locations, and n+1 time points, where the last time point is for validation.

Usage

```
example.forecast(n,n.total,seed1)
```

Arguments

n	number of time points for parameter estimation
n.total	number of total time points, with a burning sequence
seed1	random seed to generate a data set, for reproducibility

Value

COST.t.fore.ECP		
	a vector of length d, with value 1 or 0, 1 means the verifying value from the corresponding location lies in the 95% forecast interval, 0 means not	
COST.t.fore.ML	a vector of length d, each element is the length of forecast interval of the corresponding location	
COST.t.fore.ran	k	
	multivariate rank of the verifying vector by t copula	
COST.G.fore.ECP		
	same as COST.t.fore.ECP	
COST.G.fore.ML COST.G.fore.ran	same as COST.t.fore.ML k	
	multivariate rank of the verifying vector by Gaussian copula	
GP.fore.ECP	same as COST.t.fore.ECP	
GP.fore.ML	same as COST.t.fore.ML	
GP.fore.rank	multivariate rank of the verifying vector by Gaussian process method	

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Examples

```
library(COST)
#settings
seed1 = 2222222
n.total = 101 #number of total time points, including the burning sequence
n = 50 #number of time points we observed
example.forecast(n,n.total,seed1)
#OUTPUTS
# $COST.t.fore.ECP #whether the forecast interval includes the true value at n+1
# [1] 1 1 1 1 1 1 1 1 1
#
# $COST.t.fore.ML #length of the forecast interval
# [1] 0.7036 4.1318 4.8749 2.7615 3.7398 5.8186 4.4532 4.9251 6.3757
#
# $COST.t.fore.rank #multivariate rank
# [1] 162
#
#
# $COST.G.fore.ECP #whether the forecast interval includes the true value at n+1
# [1] 1 1 1 1 1 1 1 1 1
#
# $COST.G.fore.ML #length of the forecast interval
# [1] 0.7035 4.1316 4.8656 2.7611 3.7388 5.7913 4.4458 4.9036 6.3727
#
# $COST.G.fore.rank #multivariate rank
# [1] 186
#
# $GP.fore.ECP #whether the forecast interval includes the true value at n+1
# [1] 1 0 0 1 1 1 1 1 1
# $GP.fore.ML #length of the forecast interval
# [1] 0.4879 2.0449 3.4436 2.2107 2.9170 4.4537 4.2169 5.5789 7.3689
#
# $GP.fore.rank #multivariate rank
# [1] 17
```

Description

Example for new location prediction, Gaussian process method, and our COST method with Gaussian and t copulas, where the parameters are assumed to be known; the parameters can be obtained by the "optim" function. Data are generated at 13 locations and n time points, and assume that 9 locations are observed, and 4 new locations need prediction at time n, conditional on 9 locations at time points n-1 and n.

Usage

```
example.prediction(n,n.total,seed1)
```

Arguments

n	number of time points for parameter estimation
n.total	number of total time points, with a burning sequence
seed1	random seed to generate a data set, for reproducibility

Value

COST.t.pre.ECP	a vector of length K=4 (number of new locations), with value 1 or 0, 1 means the verifying value from the corresponding location lies in the 95% prediction interval, 0 means not	
COST.t.pre.ML	a vector of length K=4, each element is the length of prediction interval of the corresponding location	
COST.t.pre.med.error		
	prediction error based on conditional median	
COST.G.pre.ECP	same as COST.t.pre.ECP	
COST.G.pre.ML	same as COST.t.pre.ML	
COST.G.pre.med.error		
	same as COST.t.pre.med.error	
GP.pre.ECP	same as COST.t.pre.ECP	
GP.pre.ML	same as COST.t.pre.ML	
GP.pre.med.error		
	same as COST.t.pre.med.error	

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Examples

```
library(COST)
#settings
n.total = 101 #number of total time points, including the burning sequence
n = 50 #number of time points we observed
seed1 = 22222
example.prediction(n,n.total,seed1)
#OUTPUTS
# $COST.t.pre.ECP #whether the prediction interval includes the true value, time point n
# [1] 1 1 1 1
#
# $COST.t.pre.ML #length of the prediction interval
# [1] 1.445576 2.146452 2.260688 2.706681
#
# $COST.t.pre.med.error #point prediction error, using conditional median
# [1] 0.01127162 -0.03222058 -0.22081051 0.57831480
#
# $COST.G.pre.ECP #whether the prediction interval includes the true value, time point n
# [1] 1 1 1 1
#
# $COST.G.pre.ML #length of the prediction interval
# [1] 1.445576 2.432646 2.260688 2.914887
# $COST.G.pre.med.error #point prediction error, using conditional median
# [1] 0.01127162 -0.03222058 -0.22081051 0.57831480
# $GP.pre.ECP #whether the prediction interval includes the true value, time point n
# [1] 1 1 1 1
# $GP.pre.ML #length of the prediction interval
# [1] 0.8345359 1.4096642 1.5948724 2.3419428
#
# $GP.pre.med.error #point prediction error, using conditional median
# [1] 0.09447685 -0.05889409 -0.08923935 0.58494684
```

Forecasts.CF one-step ahead forecast by separate time series analysis

Description

one-step ahead forecast, analyzing the time series at each location separately with a t copula, including: (i) point forecast, either conditional median or mean; (ii) 95% forecast intervals, which

Forecasts.COST.G

can also be adjusted by the users; (iii) m (m=500 by default) random draws from the conditional distribution for each location, can be used for multivariate rank after combining all the locations together

Usage

```
Forecasts.CF(par,Y,seed1,m)
```

Arguments

par	parameters in the copula function
Υ	observed data
seed1	random seed used to generate random draws from the conditional distribution, for reproducibility
m	number of random draws to approximate the conditional distribution

Value

y.qq	$0.025\mathchar`-$, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each location
mean.est	conditional mean estimate for each location
y.draw.random	m random draws from the conditional distribution

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Forecasts.COST.G one-step ahead forecast by Gaussian copula

Description

one-step ahead forecast by Gaussian copula, including: (i) point forecast, either conditional median or mean; (ii) 95% forecast intervals, which can also be adjusted by the users; (iii) m (m=500 by default) random draws from the conditional distribution, can be used for multivariate rank

Usage

Forecasts.COST.G(par,Y,s.ob,seed1,m,isotropic)

Arguments

par	parameters in the copula function
Υ	observed data
s.ob	coordinates of observed locations
seed1	random seed used to generate random draws from the conditional distribution, for reproducibility
m	number of random draws to approximate the conditional distribution
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

y.qq	0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each location
mean.est	conditional mean estimate for each location
y.draw.random	m random draws from the conditional distribution

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Forecasts.COST.t *one-step ahead forecast by t copula*

Description

one-step ahead forecast by t copula, including: (i) point forecast, either conditional median or mean; (ii) 95% forecast intervals, which can also be adjusted by the users; (iii) m (m=500 by default) random draws from the conditional distribution, can be used for multivariate rank

Usage

Forecasts.COST.t(par,Y,s.ob,seed1,m,isotropic)

Forecasts.GP

Arguments

par	parameters in the copula function
Υ	observed data
s.ob	coordinates of observed locations
seed1	random seed used to generate random draws from the conditional distribution, for reproducibility
m	number of random draws to approximate the conditional distribution
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

y.qq	0.025 -, 0.975 - and 0.5 -th conditional quantiles of the conditional distribution for each location
mean.est	conditional mean estimate for each location
y.draw.random	m random draws from the conditional distribution

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Forecasts.GP

one-step ahead forecast by Gaussian process fitting

Description

one-step ahead forecast by Gaussian process fitting, including: (i) point forecast, either conditional mean; (ii) 95% forecast intervals, which can also be adjusted by the users; (iii) m (m=500 by default) random draws from the conditional distribution, can be used for multivariate rank

Usage

Forecasts.GP(par,Y,s.ob,seed1,m,isotropic)

location

Arguments

par	parameters in the copula function
Y	observed data
s.ob	coordinates of observed locations
seed1	random seed used to generate random draws from the conditional distribution, for reproducibility
m	number of random draws to approximate the conditional distribution
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

y.qq	0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each location
mean.est	conditional mean estimate for each location
y.draw.random	m random draws from the conditional distribution

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

location

Locations of 10 sites

Description

Locations of 10 sites.

Usage

data(location)

Format

Locations of 10 sites, 10*2 matrix in Cartesian coordinate system

Source

https://transmission.bpa.gov/business/operations/wind/MetData/default.aspx

logL.CF

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Examples

s.ob = location[-3,2:3]
s.new = location[3,2:3]

logL.CF

negtive log-likelihood for separate time series analysis

Description

negtive log-likelihood for separate time series analysis, copula-based semiparametric method from Chen and Fan (2006), assuming t copula for each time series and Markov process of order one, with marginal distribution estimated by espirical CDF, and it is for correlation parameter estimation

Usage

logL.CF(par,Yk,dfs)

Arguments

par	correlation parameter in the t copula function, will be obtained by minimizing the negtive log-likelihood
Yk	observed data from k-th location
dfs	degrees of freedom for the t copula, obtained from COST method with t copula

Value

the negative log-likelihood

Author(s)

Yanlin Tang and Huixia Judy Wang

References

1.Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric time series models. Journal of Econometrics 130, 307–335.\ 2.Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

logL.COST.G

Description

gives the negtive log-likelihood of the Gaussian copula, with empirical CDF plugin, and it is for parameter estimation in the correlation matrix

Usage

logL.COST.G(par,Y,s.ob)

Arguments

par	parameters in the copula function, will be obtained by minimizing the negtive log-likelihood
Y	the data set from observed locations, used for parameter estimation
s.ob	coordinates of observed locations

Value

the negative log-likelihood

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

logL.COST.t negtive log-likelihood for t copula

Description

gives the negtive log-likelihood of the t copula, with empirical CDF plugin, and it is for parameter estimation in the correlation matrix

Usage

logL.COST.t(par,Y,s.ob)

logL.GP

Arguments

par	parameters in the copula function, will be obtained by minimizing the negtive log-likelihood
Υ	the data set from observed locations, used for parameter estimation
s.ob	coordinates of observed locations

Value

the negative log-likelihood

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

logL.GP

negtive log-likelihood of Gaussian process

Description

negtive log-likelihood of Gaussian process, with mean vector and variance vector obtained by the empirical version, and it is for parameter estimation in the correlation matrix

Usage

logL.GP(par,Y,s.ob)

Arguments

par	parameters in the copula function, will be obtained by minimizing the negtive log-likelihood
Υ	the data set from observed locations, used for parameter estimation
s.ob	coordinates of observed locations

Value

the negative log-likelihood

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Predictions.COST.G new location prediction by Gaussian copula

Description

new location prediction by Gaussian copula, where the copula dimension is extended, and the marginal CDF of the new location is estimated by neighboring information; it gives 0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n, conditional on observed locations at time n-1 and n; both point and interval predictions are provided

Usage

Predictions.COST.G(par,Y,s.ob,s.new,isotropic)

Arguments

par	parameters in the copula function
Υ	observed data
s.ob	coordinates of observed locations
s.new	coordinates of new locations
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Description

new location prediction by t copula, where the copula dimension is extended, and the marginal CDF of the new location is estimated by neighboring information; it gives 0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n, conditional on observed locations at time n-1 and n; both point and interval predictions are provided

Usage

Predictions.COST.t(par,Y,s.ob,s.new,isotropic)

Arguments

par	parameters in the copula function
Υ	observed data
s.ob	coordinates of observed locations
s.new	coordinates of new locations
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Predictions.GP

Description

new location prediction by Gaussian process method, and the marginal mean and variance of the new location is estimated by neighboring information; it gives 0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n, conditional on observed locations at time n-1 and n; both point and interval predictions are provided

Usage

Predictions.GP(par,Y,s.ob,s.new,isotropic)

Arguments

par	parameters in the copula function
Υ	observed data
s.ob	coordinates of observed locations
s.new	coordinates of new locations
isotropic	indicator, True for isotropic correlation matrix, False for anisotropic correlation matrix, and we usually choose False for flexibility

Value

0.025-, 0.975- and 0.5-th conditional quantiles of the conditional distribution for each new location, at time n

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Description

calculating the multivariate rank of a vector among a set of vectors, used to evaluate the performance of conditional distribution, and the rank would be uniform when the conditional distribution is estimated well

Usage

rank.multivariate(y.test,y.random,seed1)

Arguments

y.test	the observed (verifying) vector at time n+1
y.random	m random draws from the conditional distribution
seed1	random seed to solve tie at random

Value

the multivariate rank of the observed (verifying) vector at time n+1

Author(s)

Yanlin Tang and Huixia Judy Wang

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Wind6month

Wind speed data from 10 sites

Description

The data set is a subset of the data we used in the paper, with 10 sites and 6-month long time series.

Usage

data(Wind6month)

Format

A 4320*10 matrix from 10 locations, date ranges from Sep 22, 2014 to Dec 20, 2014, 180 days

BiddleButte wind speed from site BiddleButte ForestGrove wind speed from site ForestGrove HoodRiver wind speed from site HoodRiver HorseHeaven wind speed from site HorseHeaven Megler wind speed from site Megler NaselleRidge wind speed from site NaselleRidge Roosevelt wind speed from site Roosevelt Shaniko wind speed from site Shaniko Sunnyside wind speed from site Sunnyside Tillamook wind speed from site Tillamook

Source

https://transmission.bpa.gov/business/operations/wind/MetData/default.aspx

References

Yanlin Tang, Huixia Judy Wang, Ying Sun, Amanda Hering. Copula-based semiparametric models for spatio-temporal data.

Examples

```
data(Wind6month)
Y.ob = Wind6month[,-3]
Y.newloc = Wind6month[,3]
dim(Y.ob) #4320*9, data at 9 locations, with length 4320 (hours)
length(Y.newloc) #4320, time series at the new location
```

18

Index

* datasets location, 10Wind6month, 17 Data.COST, 2 example.forecast, 3example.prediction, 5 Forecasts.CF, 6 Forecasts.COST.G,7 Forecasts.COST.t,8 Forecasts.GP, 9 location, 10logL.CF, 11logL.COST.G, 12logL.COST.t, 12 logL.GP, 13Predictions.COST.G, 14 Predictions.COST.t, 15 Predictions.GP, 16rank.multivariate,17 Wind6month, 17