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Abstract

This is a vignette for the R package CARBayes version 6.1.1, and is an updated version
of a paper in the Journal of Statistical Software in 2013 Volume 55 Issue 13 by the same
author. The package implements univariate and multivariate spatial generalised linear
mixed models for areal unit data, with inference in a Bayesian setting using Markov chain
Monte Carlo (MCMC) simulation using a single or multiple Markov chains.. The response
variable can be binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP),
and spatial autocorrelation is modelled by a set of random effects that are assigned a
conditional autoregressive (CAR) prior distribution. A number of different models are
available for univariate spatial data, including models with no random effects as well as
random effects modelled by different types of CAR prior. Additionally, a multivariate
CAR (MCAR) model for multivariate spatial data is available, as is a two-level hierar-
chical model for modelling data relating to individuals within areas. The initial creation
of this package was supported by the Economic and Social Research Council (ESRC)
grant RES-000-22-4256, and on-going development has been supported by the Engineer-
ing and Physical Science Research Council (EPSRC) grant EP/J017442/1, ESRC grant
ES/K006460/1, Innovate UK / Natural Environment Research Council (NERC) grant
NE/N007352/1, and the TB Alliance. The new functionality in version 6.0 is that you
can now generate multiple MCMC chains in one model run using the n.chains argument,
and the multiple chains can either be run in parallel (if n.cores > 1) for increased com-
putational speed or in series (n.cores=1) if you do not want to use multiple cores.
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1. Introduction

Data relating to a set of non-overlapping spatial areal units are prevalent in many fields,
including agriculture (Besag and Higdon 1999), ecology (Brewer and Nolan 2007), education
(Wall 2004), epidemiology (Lee 2011) and image analysis (Gavin and Jennison 1997). There
are numerous motivations for modelling such data, including ecological regression (see Wake-
field 2007 and Lee et al. 2009), disease mapping (see Green and Richardson 2002 and Lee
2011) and Wombling (see Lu et al. 2007, Ma and Carlin 2007). The set of areal units on
which data are recorded can form a regular lattice or differ largely in both shape and size,
with examples of the latter including the set of electoral wards or census tracts corresponding
to a city or country. In either case such data typically exhibit spatial autocorrelation, with
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observations from areal units close together tending to have similar values. A proportion of
this spatial autocorrelation may be modelled by known covariate risk factors in a regression
model, but it is common for spatial structure to remain in the residuals after accounting for
these covariate effects. This residual spatial autocorrelation can be induced by unmeasured
confounding, neighbourhood effects, and grouping effects.

The most common remedy for this residual autocorrelation is to augment the linear
predictor with a set of spatially autocorrelated random effects, as part of a Bayesian hierarchi-
cal model. These random effects are typically represented with a conditional autoregressive
(CAR, Besag et al. 1991) prior, which induces spatial autocorrelation through the adjacency
structure of the areal units. A number of CAR priors have been proposed in the literature,
including the intrinsic and Besag-York-Mollié (BYM) models (both Besag et al. 1991), as well
as the alternative developed by Leroux et al. (2000).

However, these CAR priors force the random effects to exhibit a single global level
of spatial autocorrelation, ranging from independence through to strong spatial smoothness.
Such a uniform level of spatial autocorrelation for the entire region maybe unrealistic for real
data, which instead may exhibit sub-regions of spatial autocorrelation separated by disconti-
nuities. A number of approaches have been proposed for extending the class of CAR priors to
deal with localised spatial smoothing amongst the random effects, including Lee and Mitchell
(2012), and Lee and Sarran (2015).

The models described above are typically implemented in a Bayesian setting, where in-
ference is based on Markov chain Monte Carlo (MCMC) simulation. The most commonly used
software to implement this class of models is the BUGS project (Lunn et al. 2009, WinBUGS

and OpenBUGS), which has in-built functions to implement the intrinsic and BYM models.
CAR models can also be implemented in R using Integrated Nested Laplace Approximations
(INLA, http://www.r-inla.org/ ), using the package INLA (Rue et al. 2009).

CARBayes (Lee 2013) is the premier R package for modelling spatial areal unit data
with conditional autoregressive type spatial autocorrelation structures in a Bayesian setting
using MCMC simulation. Its main advantages are firstly ease of use because: (1) the spatial
adjacency information is easy to specify as a neighbourhood (adjacency) matrix; and (2) given
the neighbourhood matrix, models can be implemented by a single function call. Secondly,
CARBayes can implement a much wider class of spatial areal unit models than say WinBUGS,
and the univariate or multivariate response data can follow binomial, Gaussian, multinomial,
Poisson or zero-inflated Poisson (ZIP) distributions, while a range of CAR priors can be
specified for the random effects. Additionally, a two-level hierarchical model is available for
modelling data relating to individuals within areas. Spatio-temporal models for areal unit
data using CAR type priors can be implemented using the sister package CARBayesST (Lee
et al. 2018).

The aim of this vignette is to present CARBayes, by outlining the class of models that
it can implement and illustrating its use by means of 2 worked examples. Section 2 outlines
the general Bayesian hierarchical model that can be implemented in the CARBayes package,
while Section 3 details the inputs and outputs for the software. Sections 4 to 5 give two
worked examples of using the software, including how to create the neighbourhood matrix
and produce spatial maps of the results. Finally, Section 7 contains a concluding discussion,
and outlines areas for future development.



Duncan Lee 3

2. Spatial models for areal unit data

This section outlines the class of spatial generalised linear mixed models for areal unit data
that can be implemented in CARBayes. Inference for all models is set in a Bayesian framework
using MCMC simulation. The majority of the models in CARBayes relate to univariate spatial
data and are described in Section 2.1, while models for multivariate spatial data and two-level
data relating to individuals within areas are described in Sections 2.2 and 2.3.

2.1. Univariate spatial data models

The study region S is partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
which are linked to a corresponding set of responses Y = (Y1, . . . , YK), and a vector of known
offsets O = (O1, . . . , OK). Missing, NA, values are allowed in the response Y except for
the S.CARlocalised() function, which does not allow them due to model complexity and
corresponding poor predictive performance. These missing values are treated as additional
unknown parameters, and are updated in the MCMC algorithm using a data augmentation
approach Tanner and Wong (1987). The spatial variation in the response is modelled by a
matrix of covariates X = (x1, . . . ,xK) and a spatial structure component ψ = (ψ1, . . . , ψK),
the latter of which is included to model any spatial autocorrelation that remains in the data
after the covariate effects have been accounted for. The vector of covariates for areal unit
Sk are denoted by xk = (1, xk1, . . . , xkp), the first of which corresponds to an intercept term.
The general spatial generalised linear mixed model is given by

Yk|µk ∼ f(yk|µk, ν
2) for k = 1, . . . ,K (1)

g(µk) = x⊤

k β +Ok + ψk

β ∼ N(µβΣβ)

ν2 ∼ Inverse-Gamma(a, b).

The expected value of Yk is denoted by E(Yk) = µk, while ν2 is an additional scale parameter
that is required if the Gaussian family is used. The latter is assigned a conjugate inverse-
gamma prior distribution, where the default specification is ν2 ∼ Inverse-Gamma(1, 0.01).
The vector of regression parameters are denoted by β = (β1, . . . , βp), and non-linear covari-
ate effects can be incorporated into the above model by including natural cubic spline or
polynomial basis functions of the covariates in X. A multivariate Gaussian prior is assumed
for β, and the mean µβ and diagonal variance matrix Σβ can be chosen by the user. Default
values specified by the software are a constant zero-mean vector and diagonal elements of Σβ

equal to 100,000. The expected values of the responses are related to the linear predictor via
an invertible link function g(.), and CARBayes can fit the following data likelihood models:

• Binomial - Yk ∼ Binomial(nk, θk) and ln(θk/(1 − θk)) = x⊤

k β +Ok + ψk.

• Gaussian - Yk ∼ N(µk, ν
2) and µk = x⊤

k β +Ok + ψk.

• Poisson - Yk ∼ Poisson(µk) and ln(µk) = x⊤

k β +Ok + ψk.

• ZIP - Yk ∼ ZIP(µk, ωk). The zero-inflated Poisson model is used to represent data
containing an excess of zeros, and is a mixture of a point mass distribution based at
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Model Equation Description

S.glm() fits a model with no random effects and thus is a generalised
linear model. This model can be implemented with binomial,
Gaussian, Poisson and ZIP data likelihoods.

S.CARbym() (2) fits the convolution or Besag-York-Mollie (BYM) CAR model
outlined in Besag et al. (1991). This model can be imple-
mented with binomial, Poisson and zip data likelihoods.

S.CARleroux() (3) fits the CAR model proposed by Leroux et al. (2000). This
model can also fit the intrinsic CAR model proposed by Be-
sag et al. (1991), as well as a model with independent random
effects. This model can be implemented with binomial, Gaus-
sian, Poisson and ZIP data likelihoods.

S.CARdissimilarity() (5) - (6) fits the localised spatial autocorrelation model proposed by
Lee and Mitchell (2012). This model can be implemented
with binomial, Gaussian and Poisson data likelihoods.

S.CARlocalised() (7) fits the localised spatial autocorrelation model proposed by
Lee and Sarran (2015). This model can be implemented with
binomial and Poisson data likelihoods.

Table 1: Summary of the univariate models available in the CARBayes package together with
the equation numbers defining them mathematically in this vignette.

zero and a Poisson distribution with mean µk. The probability that observation Yk is in
the point mass distribution based at zero (called a structural zero) is ωk, and (µk, ωk)
are modelled by

ln(µk) = x⊤

k β +Ok + ψk ln

(

ωk

1 − ωk

)

= v⊤

k δ +O
(2)
k .

Here (vk, O
(2)
k ) are respectively covariates and an offset term that determine the proba-

bility that observation Yk is in the point mass distribution, while δ are the corresponding
regression parameters. In implementing the model a binary random variable Zk is sam-
pled for each observation Yk such that Yk = 0, where Zk = 1 if Yk comes from the
point mass distribution, and Zk = 0 if Yk comes from the Poisson distribution. Further
details about ZIP models are given by Ugarte et al. (2004).

In the binomial model above nk is the number of trials in the kth area, while θk is
the probability of success in a single trial. CARBayes can implement a number of different
spatial random effects models for ψ, and they are summarised in Table 1. In most cases the
spatial structure component ψ includes a set of random effects φ = (φ1, . . . , φK), which come
from a conditional autoregressive model. These models can be written in the general form
φ ∼ N(0, τ2Q(W)−1), where Q(W) is the precision matrix that may be singular (e.g. the
intrinsic model). This matrix controls the spatial autocorrelation structure of the random
effects, and is based on a non-negative symmetric K × K neighbourhood (or adjacency)
matrix W. The kjth element of the neighbourhood matrix wkj represents the spatial closeness
between areas (Sk,Sj), with positive values denoting geographical closeness and zero values
denoting non-closeness. Additionally, diagonal elements wkk = 0.



Duncan Lee 5

A binary specification for W based on geographical contiguity is most commonly used,
where wkj = 1 if areal units (Sk,Sj) share a common border (denoted k ∼ j), and is zero
otherwise. This specification forces (φk, φj) relating to geographically adjacent areas (that is
where wkj = 1) to be autocorrelated, whereas random effects relating to non-contiguous areal
units (that is where wkj = 0) are conditionally independent given the values of the remaining
random effects. A binary specification is not necessary in CARBayes except for the function
S.CARdissimilarity(), as the only requirement is that W is non-negative and symmetric.
However, each area must have at least one positive element {wkj}, meaning the row sums of
W must be positive. CAR priors are commonly specified as a set of K univariate full con-
ditional distributions f(φk|φ−k) for k = 1, . . . ,K, where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φK),
which is how they are presented below. We now outline the five models that CARBayes can fit.

A model with no random effects

S.glm()

The simplest model that CARBayes can implement is a generalised linear model, which is
based on (1) with the simplification that ψk = 0 for all areas k.

Globally smooth CAR models

S.CARbym()

The convolution or Besag-York-Mollie (BYM) CAR model outlined in Besag et al. (1991)
contains both spatially autocorrelated and independent random effects and is given by

ψk = φk + θk (2)

φk|φ−k,W, τ2 ∼ N

(

∑K
i=1wkiφi
∑K

i=1wki

,
τ2

∑K
i=1wki

)

θk ∼ N(0, σ2)

τ2, σ2 ∼ Inverse-Gamma(a, b).

Here θ = (θ1, . . . , θK) are independent random effects with zero mean and a constant vari-
ance, while spatial autocorrelation is modelled via random effects φ = (φ1, . . . , φK). For the
latter the conditional expectation is the average of the random effects in neighbouring areas,
while the conditional variance is inversely proportional to the number of neighbours. This is
appropriate because if the random effects are strongly spatially autocorrelated, then the more
neighbours an area has the more information there is from its neighbours about the value of
its random effect, hence the uncertainty reduces. In common with the other variance param-
eters the default prior specification for (τ2, σ2) has (a = 1, b = 0.01). This model contains
two random effects for each data point, and as only their sum is identifiable from the data
only ψk = φk + θk is returned to the user.

S.CARleroux()

Leroux et al. (2000) proposed the following alternative CAR prior for modelling varying
strengths of spatial autocorrelation using only a single set of random effects.
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ψk = φk (3)

φk|φ−k,W, τ2, ρ ∼ N

(

ρ
∑K

i=1wkiφi

ρ
∑K

i=1wki + 1 − ρ
,

τ2

ρ
∑K

i=1wki + 1 − ρ

)

τ2 ∼ Inverse-Gamma(a, b)

ρ ∼ Uniform(0, 1).

Here ρ is a spatial dependence parameter taking values in the unit interval, and can be fixed
(using the argument rho) if required. specifically, ρ = 1 corresponds to the intrinsic CAR
model (defined for φ in the BYM model above), while ρ = 0 corresponds to independence
(φk ∼ N(0, τ2)).

Locally smooth CAR models

The CAR priors described above enforce a single global level of spatial smoothing for the set
of random effects, which for model (3) is controlled by ρ. This is illustrated by the partial
autocorrelation structure implied by that model, which for (φk, φj) is given by

COR(φk, φj |φ−kj ,W, ρ) =
ρwkj

√

(ρ
∑K

i=1wki + 1 − ρ)(ρ
∑K

i=1wji + 1 − ρ)
. (4)

For non-neighbouring areal units (where wkj = 0) the random effects are conditionally inde-
pendent, while for neighbouring areal units (where wkj = 1) their partial autocorrelation is
controlled by ρ. This representation of spatial smoothness is likely to be overly simplistic in
practice, as the random effects surface is likely to include sub-regions of smooth evolution as
well as boundaries where abrupt step changes occur. Therefore CARBayes can implement
the localised spatial autocorrelation models proposed by Lee and Mitchell (2012) and Lee and
Sarran (2015) described below.

S.CARdissimilarity()

Lee and Mitchell (2012) proposed a method for capturing localised spatial autocorrelation
and identifying boundaries in the random effects surface. The underlying idea is to model
the elements of W corresponding to geographically adjacent areal units as random quantities,
rather than assuming they are fixed at one. Conversely, if areal units (Sk,Sj) are not adjacent
as specified by W, then wkj is fixed at zero. From (4), it is straightforward to see that if wkj

is estimated as one then (φk, φj) are spatially autocorrelated and are smoothed over in the
modelling process, whereas if wkj is estimated as zero then no smoothing is imparted between
(φk, φj) as they are modelled as conditionally independent. In this case a boundary is said to
exist in the random effects surface between areal units (Sk,Sj). We note that for this model
W must be binary.

The model is based on (3) with ρ fixed at 0.99, which ensures that the random effects
exhibit strong spatial smoothing globally, which can be altered locally by estimating {wkj |k ∼
j}. They model each wkj as a function of the dissimilarity between areal units (Sk,Sj),
because large differences in the response are likely to occur where neighbouring populations
are very different. This dissimilarity is captured by q non-negative dissimilarity metrics
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zkj = (zkj1, . . . , zkjq), which could include social or physical factors, such as the absolute
difference in smoking rates, or the proportion of the shared border that is blocked by a
physical barrier (such as a river or railway line) and cannot be crossed. Using these measures
of dissimilarity two distinct models are proposed for {wkj |k ∼ j}.

Binary model

wkj(α) =

{

1 if exp(−∑q
i=1 zkjiαi) ≥ 0.5 and k ∼ j

0 otherwise
(5)

αi ∼ Uniform(0,Mi) for i = 1, . . . , q.

Non-binary model

wkj(α) = exp

(

−
q
∑

i=1

zkjiαi

)

(6)

αi ∼ Uniform(0, 50) for i = 1, . . . , q.

The q regression parameters α = (α1, . . . , αq) determine the effects of the dissimilarity met-
rics on {wkj |k ∼ j}, and for the binary model if αi < − ln(0.5)/max{zkji}, then the ith
dissimilarity metric has not solely identified any boundaries because exp(−αizkji) > 0.5 for
all k ∼ j. The upper limits Mi for the priors for αi in the binary model depend on the
distribution of zkji, and are chosen to be weakly informative and fixed in the software. Users
can choose between (5) and (6) by the logical argument W.binary, where TRUE corresponds
to (5), while FALSE corresponds to (6).

S.CARlocalised()

An alternative to the above is to augment the set of spatially smooth random effects with a
piecewise constant intercept model, thus allowing large jumps in the mean surface between
adjacent areal units with different intercepts. Lee and Sarran (2015) proposed a model that
partitions the K areal units into a maximum of G groups, each with their own intercept term
(λ1, . . . , λG). The model is given by

ψk = φk + λZk
(7)

φk|φ−k,W, τ2 ∼ N

(

∑K
i=1wkiφi
∑K

i=1wki

,
τ2

∑K
i=1wki

)

τ2 ∼ Inverse-Gamma(a, b)

λi ∼ Uniform(λi−1, λi+1) for i = 1, . . . , G

f(Zk) =
exp(−δ(Zk −G∗)2)

∑G
r=1 exp(−δ(r −G∗)2)

δ ∼ Uniform(1,M).

The group means (λ1, . . . , λG) are ordered so that λ1 < λ2 < . . . < λG, which prevents the
label switching problem common in mixture models, and for completeness λ0 = −∞ and
λG+1 = ∞. Area k is assigned to one of the G intercepts by Zk ∈ {1, . . . , G}, and G is
the maximum number of different intercept terms. Here we penalise Zk towards the middle
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intercept value, so that the extreme intercept classes (e.g. 1 or G) may be empty. This is
achieved by the penalty term δ(Zk − G∗)2 in the prior for Zk, where G∗ = (G + 1)/2 if G
is odd and G∗ = G/2 if G is even, and is the middle group. A weakly informative uniform
prior is specified for the penalty parameter δ ∼ Uniform(1,M) (by default M = 10), so that
the data play the dominant role in estimating its value. Note, a Gaussian likelihood is not
allowed with this model because of a lack of identifiability among the parameters, and missing
values are not allowed in the response for the same reasons.

2.2. Multivariate spatial data models

The study region S is again partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
and each unit contains J response variables Yk = (Yk1, . . . , YkJ) and J corresponding offsets
Ok = (Ok1, . . . , OkJ). The model therefore has to represent both spatial autocorrelation and
between variable correlation, and the general multivariate spatial mixed model is given by

Ykj |µkj ∼ f(ykj |µkj , ν
2
j ) for k = 1, . . . ,K, j = 1, . . . , J (8)

g(µkj) = x⊤

k βj +Okj + ψkj

βj ∼ N(µβ,Σβ)

ν2 ∼ Inverse-Gamma(a, b).

In common with the univariate models x⊤

k is a vector of p covariates, and the same covariates
are used for each of the J response variables. The regression coefficients βj vary by response
variable j, and Gaussian priors are assumed for the regression parameters βj as before. The
following data likelihood models are allowed:

• Binomial - Ykj ∼ Binomial(nkj , θkj) and ln(θkj/(1 − θkj)) = x⊤

k βj +Okj + ψkj .

• Gaussian - Ykj ∼ N(µkj , ν
2
j ) and µkj = x⊤

k βj +Okj + ψkj .

• Multinomial - For this model the response variables are the J > 2 multinomial
categories of a single variable, where as for the other data likelihood models the J
variables are distinct from each other. The data likelihood model is:

Yk = (Yk1, . . . , YkJ) ∼ Multinomial(nk, θk1, . . . , θkJ)

ln(θkj/θk1) = x⊤

k βj +Okj + ψkj for j = 2, . . . , J,

where nk =
∑J

j=1 Ykj . The above holds for categories j = 2, . . . , J , and thus category
j = 1 is a baseline and has no regression parameters or random effects or offset terms
(they are all zero). Here θkj is the probability of a single outcome in area k being in
category j, and hence

∑J
j=1 θkj = 1.

• Poisson - Ykj ∼ Poisson(µkj) and ln(µkj) = x⊤

k βj +Okj + ψkj .
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When fitting these models the response variable and offset should be K × J matrices, while
each covariate should be a K × 1 vector. As the multinomial model models the first category
as a baseline there will be J−1 different regression parameter sets and random effect surfaces,
where as for the other data likelihood models there will be J regression parameter sets and
random effect surfaces. The set of random effects are denoted by ψ = (ψ1, . . . ,ψK), where
ψk = (ψk1, . . . , ψkJ) are the set of J values (J − 1 for the multinomial model as ψk1 = 0)
for area k. The random effects need to model both spatial autocorrelation and between vari-
able correlation, and this is achieved using a multivariate conditional autoregressive (MCAR)
model, for details see Gelfand and Vounatsou (2003). CARBayes can fit the following multi-
variate data models.

S.glm()

The S.glm() function discussed earlier can also be applied to multinomial data, where in the
above equation ψkj = 0 for all (k, j).

MVS.CARleroux()

This model can be implemented with binomial, Gaussian, multinomial and Poisson data
likelihoods. The random effects ψ are equal to a single component φ (e.g. ψ = φ), and are
modelled using the approach outlined in Kavanagh et al. (2016) given by:

φ ∼ N

(

0,
[

Q(W, ρ) ⊗ Σ−1
]−1

)

. (9)

Here Q(W, ρ) = ρ[diag(W1) − W] + (1 −ρ)I is the precision matrix for the joint distribution
corresponding to the CAR prior proposed by Leroux et al. (2000) and described above, while
ΣJ×J is a cross variable covariance matrix. In common with the univariate models, the
correlation structure imposed by (9) is more easily seen by its full conditional form, that is:

φk|φ−k,W,Σ, ρ ∼ N

(

ρ
∑K

i=1wkiφi

ρ
∑K

i=1wki + 1 − ρ
,

Σ

ρ
∑K

i=1wki + 1 − ρ

)

Σ ∼ Inverse-Wishart(df,Ω)

ρ ∼ Uniform(0, 1),

where φ−k denotes the vector of random effects except those relating to the kth areal unit.
We specify the marginally weakly-informative prior for Σ that was designed for covariance
matrices by Huang and Wand (2013), which comes from the Inverse-Wishart family with
degrees of freedom df = ν + J − 1 and scale Ω = 2νdiag(1/A1, . . . , 1/AJ), where J is the
number of outcome variables being modelled. Here, diag(1/A1, . . . , 1/AJ) denotes a diagonal
matrix with diagonal entries (A1, . . . , AJ). Thus in the prior specification the user can specify
the degrees of freedom ν via the scalar argument prior.Sigma.df, while the vector of scales
(A1, . . . , AJ) are specified by the vector argument prior.Sigma.scale in the function call.
This prior is chosen because Huang and Wand (2013) show that it is marginally weakly-
informative, in the sense that:

• The standard deviation of the jth vector of random effects
√

Σjj is modelled by a zero
centred half-t(ν,Aj) distribution with degrees of freedom ν and scale Aj . The default
value used by the software is Aj = 100, 000, so that the prior is only weakly informative.
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• The correlation parameters Σij/
√

ΣiiΣjj , where i 6= j are modelled with a non-
informative Uniform(−1, 1) prior as long as ν = 2, which is the default value used
by the software.

Finally, in common with the univariate model S.CARleroux(), the spatial autocorrelation
parameter ρ can be fixed to any value in the unit interval using the argument rho.

2.3. Two-level spatial data models

The study region S is again partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
and data are available on mk individuals within area k. Thus for areal unit Sk there are mk

different response variables being modelled, leading to both spatial variation and individual-
level variation. The general likelihood model allowed for these data is given by

Ykj |µkj ∼ f(ykj |µkj , ν
2) for k = 1, . . . ,K, j = 1, . . . ,mk, (10)

g(µkj) = x⊤

kjβ +Okj + ψk,

β ∼ N(µβ,Σβ)

ν2 ∼ Inverse-Gamma(a, b).

In common with the univariate models (x⊤

kj , Okj) are respectively a vector of p covariates and
an offset for individual j within area k. For this model the response and each covariate vector
is of length m =

∑K
k=1mk. Gaussian priors are again assumed for the regression parameters

β. Binomial, Gaussian and Poisson data likelihood models are allowed, that is:

• Binomial - Ykj ∼ Binomial(nkj , θkj) and ln(θkj/(1 − θkj)) = x⊤

kjβ +Okj + ψk.

• Gaussian - Ykj ∼ N(µkj , ν
2) and µkj = x⊤

kjβ +Okj + ψk.

• Poisson - Ykj ∼ Poisson(µkj) and ln(µkj) = x⊤

kjβ +Okj + ψk.

CARBayes can only fit the following model for ψk.

S.CARmultilevel()

This model can be implemented with binomial, Gaussian and Poisson data likelihoods and
has the following random effects structure:

ψkj = φk, (11)

φk|φ−k ∼ N

(

ρ
∑K

j=1wkjφj

ρ
∑K

j=1wkj + 1 − ρ
,

τ2

ρ
∑K

j=1wkj + 1 − ρ

)

,

τ2 ∼ Inverse-Gamma(a, b).

ρ ∼ Uniform(0, 1).

The spatial variation is modelled by φ = (φ1, . . . , φK), which is common to all individuals
within each area and is modelled by the CAR prior proposed by Leroux et al. (2000). Again
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ρ can be fixed to any value in the unit interval using the argument rho. The ordering of
the response and covariate data vectors are not constrained to have all individuals in area 1
followed by all individuals in area 2, etc. Instead, the S.CARmultilevel() function requires
the ind.area argument to be specified, which is a vector of length m. Each element in
that vector must be an integer between 1 and K (where K is the number of areas), and
denotes which area an individual belongs to as ordered by the W matrix. For example, if
the rth element of ind.area is 5, then the rth element in each response and covariate data
vector refers to an individual in area 5, that is the area represented by the 5th row of the
neighbourhood matrix W.

2.4. Inference

All models in this package are fitted in a Bayesian setting using MCMC simulation, and the
new functionality in version 6.0 is that you can now generate multiple MCMC chains in one
model run. This can be done by setting the n.chains argument to be greater than 1, and
the multiple chains can either be run in parallel (if n.cores > 1) for increased computational
speed or in series (n.cores=1) if you do not want to use multiple cores. The MCMC samples
are generated via a combination of Gibbs sampling (when the appropriate full conditional
distributions are proportional to standard distributions) and Metropolis-Hastings steps. The
Metropolis-Hastings steps for the regression parameters use simple random walk Metropolis
steps by setting MALA=FALSE in the function call, or the Metropolis adjusted Langevin al-
gorithm (MALA, Roberts and Rosenthal 1998) if you set MALA=TRUE, the latter being the
default. The overall functions that implement the MCMC algorithms are written in R, while
the computationally intensive updating steps are written as computationally efficient C++

routines using the R package Rcpp (Eddelbuettel and Francois 2011). Additionally, the spar-
sity of the neighbourhood matrix W is utilised via its triplet form when updating the random
effects within the algorithms, which increases the computational efficiency of the software.
Additionally, matrix identities and Kronecker product forms are used to speed up the compu-
tation where possible. Missing values are allowed in the response variable Y for most models
(not the S.CARlocalised() model), and are treated as additional parameters to be updated
in the MCMC algorithm using a data augmentation approach (Tanner and Wong 1987).

3. Loading and using the software

3.1. Loading the software

CARBayes is an add-on package to the statistical software R, and is freely available to down-
load from the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/) for
Windows, Linux and Apple platforms. The package requires R (≥ 3.5.0) and depends on
packages MASS (Venables and Ripley 2002), and Rcpp (≥ 0.11.5). Additionally, it imports
functionality from the following other packages: CARBayesdata (Lee 2022), coda (Plummer
et al. 2006), mapview (Appelhans et al. 2022), matrixcalc (Novomestky 2012), MCMCpack

(Martin et al. 2011), parallel, RColorBrewer (Neuwirth 2022), sf (Pebesma 2018), spam (Fur-
rer and Sain 2010), spdep (Bivand et al. 2013), stats, truncnorm (Trautmann et al. 2014)
and utils. Once installed it can be loaded using the command library(CARBayes). Note,
certain functionality from the packages listed in the previous paragraph are automatically
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loaded upon loading CARBayes, but only for use within the package. However, a complete
spatial analysis will typically also include the creation of the neighbourhood matrix W from
a shapefile, the production of spatial maps of the fitted values and residuals, and tests for the
presence of spatial autocorrelation, which are achieved using the other packages.

3.2. Using the software

The software can fit seven models: S.glm(), S.CARbym(), S.CARleroux(), S.CARdissimilarity()

and S.CARlocalised() for univariate spatial data, MVS.CARleroux() for multivariate spatial
data, and S.CARmultilevel() for two-level data relating to individuals within areas. Full
details of the arguments required for each model are given in the help files. However, the
main common arguments that are required for a baseline analysis (for example using default
priors) are as follows.

• formula - A formula for the covariate part of the model using the same syntax as the
lm() function. Offsets can be included here using the offset() function.

• family - The data likelihood model which must be one of "binomial", "gaussian",
"multinomial", "poisson" or "zip".

• trials - This is only needed if family="binomial" or family="multinomial", and is
a vector the same length as the response containing the total number of trials for each
area.

• W - A K×K symmetric and non-negative neighbourhood matrix, whose row sums must
all be positive.

• burnin - The number of MCMC samples to discard as the burn-in period.

• n.sample - The number of MCMC samples to generate.

• thin - The level of thinning to apply to the MCMC samples to reduce their temporal
autocorrelation. Defaults to 1 (no thinning).

• n.chains - The number of MCMC chains to run when fitting the model. Defaults to 1.

• n.cores - The number of computer cores to run the MCMC chains on. Must be less
than or equal to n.chains. Defaults to 1.

When a model has been fitted in CARBayes, the software provides the following summary
extractor functions:

• fitted() - returns the fitted values based on the posterior mean.

• logLik() - returns the estimated loglikelihood based on the posterior mean.

• model.matrix() - returns the design matrix of covariates.

• print() - prints a summary of the fitted model to the screen, including both parameter
summaries and convergence diagnostics for the MCMC run.
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• residuals() - returns either the ‘response’ (raw) or ‘pearson’, residuals from the model
(based on posterior means).

If n.chains is greater than 1 and n.cores is greater than 1 then the software updates the
user on the progress of each model run by writing it to the file CARBayesprogress.txt in
the current working directory. In contrast, if either n.chains equals 1 or n.cores equals 1
then the progress of the current model run is written to the R console. However, using the
verbose=FALSE option will disable this feature. Once run, each model returns a list object
with the following components.

• summary.results - A summary table of selected parameters that is presented when
using the print() function. The table includes the posterior mean (Mean) and 95%
credible interval (2.5%, 97.5%), the acceptance rates of the Markov chains, the number
of samples generated after burnin and thinning, the effective number of independent
samples using the effectiveSize() function from the coda package (n.effective),
and a convergence diagnostic for the Markov chains also from the coda package. If
more than one chain is generated by the model (i.e. if n.chains is greater than 1) then
this diagnostic is the Upper C.I. of the potential scale reduction factor (PSRF, Gelman
et al. 2003), and a a value less than 1.1 is indicative of convergence. If only 1 Markov
chain is generated by the model (i.e. if n.chains equals 1) then this diagnostic is the
Z-score statistic proposed by Geweke (1992), and values within the range (-1.96, 1.96)
are indicative of convergence.

• samples - A list containing the MCMC samples generated from the model, where each
element in the list is a matrix. The names of these matrix objects correspond to the
parameters defined in Section 2 of this vignette, and each column of a matrix contains
the set of samples for a single parameter. This list includes samples from the posterior
distribution of the fitted values for each data point (fitted). Additionally, if the re-
sponse variable Y contains missing values, then samples from its posterior predictive
distribution obtained via data augmentation are available (Y).

• fitted.values - The fitted values based on the posterior mean from the model. For
the univariate data models this is a vector, while for the multivariate data models this
is a matrix.

• residuals - For the univariate data models this is a matrix with 2 columns, where each
column is a type of residual and each row relates to a single data point. The types are
response (raw) and pearson. For the multivariate data models this is a list with 2 K×J
matrix elements, where each matrix element is a type of residual (response or pearson).

• modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter et al. 2002) and its corresponding estimated effective number of parameters (p.d),
the Watanabe-Akaike Information Criterion (WAIC, Watanabe 2010) and its corre-
sponding estimated number of effective parameters (p.w), the Log Marginal Predictive
Likelihood (LMPL, Congdon 2005), and the loglikelihood. The best fitting model is
one that minimises the DIC and WAIC but maximises the LMPL. If the response data
contains missing data, the DIC is computed based on only the observed data (see Celeux
et al. 2006).
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• accept The acceptance probabilities for the parameters after burnin.

• localised.structure - This element is NULL except for the models S.CARdissimilarity()

and S.CARlocalised(). For S.CARdissimilarity it is a list containing two matrices,
W.posterior and W.border.prob. W.posterior contains posterior medians for each
element wkj of the K × K neighbourhood matrix W, while W.border.prob contains
posterior probabilities that each wkj element equals zero, which corresponds to the
posterior probability of a boundary in the random effects surface. The latter is only
present if W.binary=TRUE, otherwise it is missing (NA). In all cases elements of W that
correspond to non-neighbouring areas as determined by the original W matrix have
NA values. For S.CARlocalised() this element is a vector of length K, and gives the
posterior median class (Zk value) that each data point is assigned to.

• formula - The formula (as a text string) for the response, covariate and offset part of
the model.

• model- A text string describing the model that has been fitted.

• mcmc.info - A vector giving details of the numbers of MCMC samples generated.

• X - The design matrix of covariates inherited from the formula argument.

The remainder of this vignette illustrates the CARBayes software via 2 worked examples.

4. Example 1 - property prices in Greater Glasgow

The CARBayes software is illustrated by modelling the spatial pattern in average property
prices across Greater Glasgow, Scotland, in 2008. This is an ecological regression analysis,
whose aim is to identify the factors that affect property prices and quantify their effects.

4.1. Data and exploratory analysis

The data come from the Scottish Statistics database (http://statistics.gov.scot), but
are also included in the CARBayesdata R package. The study region is the Greater Glasgow
and Clyde health board (GGHB), which is split into 271 Intermediate zones (IZ). These IZs
are small areas that have a median population of 4,239. These data can be loaded into R

using the code below:

R> library(CARBayesdata)

R> library(sf)

R> data(pricedata)

R> data(GGHB.IZ)

Then the first 6 rows of each data set can be viewed using the following code.

R> head(pricedata)

http://statistics.gov.scot
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IZ price crime rooms sales driveshop type

1 S02000260 112.250 390 3 68 1.2 flat

2 S02000261 156.875 116 5 26 2.0 semi

3 S02000262 178.111 196 5 34 1.7 semi

4 S02000263 249.725 146 5 80 1.5 detached

5 S02000264 174.500 288 4 60 0.8 semi

6 S02000265 163.521 342 4 24 2.5 semi

R> head(GGHB.IZ)

Simple feature collection with 6 features and 4 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: 253239 ymin: 669235 xmax: 263842 ymax: 672791.6

Projected CRS: OSGB36 / British National Grid

IZ name geometry

1 S02000260 Auchinairn MULTIPOLYGON (((260718 6698...

2 S02000261 Woodhill East MULTIPOLYGON (((262047 6699...

3 S02000262 Woodhill West MULTIPOLYGON (((261158.7 67...

4 S02000263 Westerton East MULTIPOLYGON (((253771 6709...

5 S02000264 Bishopbriggs West and Cadder MULTIPOLYGON (((260183 6706...

6 S02000265 Westerton West MULTIPOLYGON (((253252 6710...

easting northing

1 261624.5 669657.4

2 262927.1 670027.8

3 262142.9 670428.0

4 254570.5 670593.8

5 261248.4 670928.0

6 253764.4 670982.6

The GGHB.IZ object is of type sf and contains the spatial information for the GGHB, which
is used to map the data, construct the neighbourhood matrix W, and conduct a test for
spatial autocorrelation. The pricedata object is a data.frame containing the property price
data for 270 of the 271 IZs in GGHB, because one area had outlying values and was hence
removed. The variables in pricedata are highlighted in the output above, and the IZ column
contains unique identifiers for each IZ. The data are summarised in Table 2, which displays
the percentiles of their distribution (with the exception of the categorical variable type).

The response variable in this study is the median price (in thousands, price) of all
properties sold in 2008 in each IZ. The table shows large variation in this variable, with
average prices ranging between £50, 000 and £372, 800 across the study region. The first
covariate in this study is the crime rate (crime) in each IZ, because areas with higher crime
rates are likely to be less desirable to live in. Crime rate is measured as the total number of
recorded crimes in each IZ per 10,000 people that live there, and the values range between
85 and 1994. Other covariates included in this study are the median number of rooms in a
property (rooms), the number of properties that sold in a year (sales), and the average time
taken to drive to the nearest shopping centre (driveshop). The latter is a proxy measure of
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Variable Percentiles

0% 25% 50% 75% 100%

Property price (in thousands) 50.0 95.0 121.8 159.2 372.8
Crime rate (per 10,000 population) 85.0 303.2 517.0 728.0 1994.0
Number of rooms (median) 3 3 4 4 6
Property sales 4 46 58 85 266
Drive time to a shop (minutes) 0.3 0.8 1.2 1.9 8.5

Table 2: Summary of the distribution of the data.

access to services which may affect property prices. Finally, a categorical variable measuring
the most prevalent property type in each area is available (type), with levels; ‘flat’ (68% of
areas), ‘terraced’ (7%), ‘semi-detached’ (13%) and ‘detached’ (12%).

Property prices are positive and skewed to the right, and an initial linear regression
model including all the covariates showed the residuals from this model were non-normal and
skewed to the right. Therefore we model property price on the natural log scale, and the log
transformed variable can be added to the data set using the code below.

R> library(dplyr)

R> pricedata <- pricedata %>% mutate(logprice = log(pricedata$price))

R> head(pricedata)

IZ price crime rooms sales driveshop type logprice

1 S02000260 112.250 390 3 68 1.2 flat 4.720729

2 S02000261 156.875 116 5 26 2.0 semi 5.055449

3 S02000262 178.111 196 5 34 1.7 semi 5.182407

4 S02000263 249.725 146 5 80 1.5 detached 5.520360

5 S02000264 174.500 288 4 60 0.8 semi 5.161925

6 S02000265 163.521 342 4 24 2.5 semi 5.096941

Then the relationships between these variables can be visualised using the GGally package
as follows, and the result is displayed in Figure 1.

R> library(GGally)

R> ggpairs(data = pricedata, columns = c(8, 3:7))

The figure shows a negative relationship between log property price and crime rate, while
positive relationships exist between log property price and both the number of rooms and the
sales rate. Additionally, property type has a strong relationship with log price, with areas
having the most detached properties having the highest prices. The next step is to produce a
map of property prices across the Greater Glasgow and Clyde region, but to do this the data
must be merged with the sf object GGHB.IB. This merging can be done as follows:

R> pricedata.sf <- merge(x=GGHB.IZ, y=pricedata, by="IZ", all.x=FALSE)

Then a spatial map of the price variable can be overlaid on a map of the region using the
functionality of the mapview package. However, first the pricedata.sf object needs to have
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Figure 1: Scatterplot showing the relationships in the data.

its coordinate reference system changed to longitude and latitude as this is what the mapview

package requires, which can be done using the following R code.

R> pricedata.sf <- st_transform(x=pricedata.sf,

+ crs='+proj=longlat +datum=WGS84 +no_defs')

Then a map of price can be drawn using the following code.

R> library(mapview)

R> library(RColorBrewer)

R> map1 <- mapview(pricedata.sf, zcol = "price", col.regions=brewer.pal(9, "YlOrRd"),

+ alpha.regions=0.6, layer.name="Price", lwd=0.5, col="grey90",

+ homebutton=FALSE)

R> removeMapJunk(map1, junk = c("zoomControl", "layersControl"))

The map is shown in Figure 2 and suggests that Glasgow has a number of property sub-
markets, whose prices are not related to those in neighbouring areas. An example of this is
the two groups of higher priced regions north of the river Clyde, which are the highly sought
after Westerton / Bearsden (northerly cluster) and Dowanhill / Hyndland (central cluster)
districts.

4.2. Non-spatial modelling

The natural log of the median property price is treated as the response and assumed to be
Gaussian, and an initial covariate only model is built in a frequentist framework using linear
models. A model with all the covariates is fitted to the data using the model below.
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Figure 2: Map showing the average property price in each IG (in thousands).

R> form <- logprice~crime+rooms+sales+factor(type) + driveshop

R> model <- lm(formula=form, data=pricedata.sf)

R> summary(model)

Call:

lm(formula = form, data = pricedata.sf)

Residuals:

Min 1Q Median 3Q Max

-0.9717 -0.1510 -0.0012 0.1672 0.8346

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.342e+00 1.540e-01 28.203 < 2e-16 ***

crime -2.248e-04 5.541e-05 -4.057 6.55e-05 ***

rooms 2.119e-01 2.890e-02 7.334 2.79e-12 ***

sales 2.264e-03 3.544e-04 6.388 7.61e-10 ***

factor(type)flat -2.948e-01 5.988e-02 -4.923 1.51e-06 ***

factor(type)semi -1.768e-01 5.747e-02 -3.077 0.002312 **

factor(type)terrace -3.251e-01 6.921e-02 -4.697 4.26e-06 ***

driveshop -4.848e-02 1.452e-02 -3.340 0.000961 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2273 on 262 degrees of freedom

Multiple R-squared: 0.6073, Adjusted R-squared: 0.5968

F-statistic: 57.88 on 7 and 262 DF, p-value: < 2.2e-16

From the model output above all of the covariates are significantly related to the response at
the 5% level, suggesting they all play an important role in explaining the spatial pattern in
median property price. To quantify the presence of spatial autocorrelation in the residuals
from this model we compute Moran’s I statistic (Moran 1950) and conduct a permutation
test to assess its significance. The permutation test has the null hypothesis of no spatial auto-
correlation and an alternative hypothesis of positive spatial autocorrelation, and is conducted
using the moran.mc() function from the spdep package. The test can be implemented using
the code below. Lines 2 and 3 turn pricedata.sf into a neighbourhood (nb) object and then
into a listw object, which is the required form of the binary spatial adjacency information
(based on border sharing) used by the moran.mc() function.

R> library(spdep)

R> W.nb <- poly2nb(pricedata.sf, row.names = pricedata.sf$IZ)

R> W.list <- nb2listw(W.nb, style="B")

R> moran.mc(x=residuals(model), listw=W.list, nsim=1000)

Monte-Carlo simulation of Moran I

data: residuals(model)

weights: W.list

number of simulations + 1: 1001

statistic = 0.30141, observed rank = 1001, p-value = 0.000999

alternative hypothesis: greater

The Moran’s I test has a p-value much less than 0.05, which suggests that the residuals contain
substantial positive spatial autocorrelation.

4.3. Spatial modelling with CARBayes

The residual spatial autocorrelation observed above can be accounted for by adding a set of
random effects to the model, and we apply the S.CARleroux() model (equations (1) and (3))
to the data to account for this. However, first we need to create the neighbourhood matrix
W as shown below.

R> W <- nb2mat(W.nb, style="B")

Then the model can be run with 3 parallel Markov chains on 3 processors of the same computer
as follows, which is much computationally quicker than running the 3 chains one after the
other.
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R> library(CARBayes)

R> chain <- S.CARleroux(formula=form, data=pricedata.sf, family="gaussian", W=W,

+ burnin=100000, n.sample=300000, thin=100, n.chains=3, n.cores=3)

In the above model run the covariate and offset component defined by formula is the same
as for the simple linear model fitted earlier, and the neighbourhood matrix W is binary and
defined by whether or not two areas share a common border. Inference for this model is
based on 3 parallel Markov chains, each of which has been run for 300,000 samples, the first
100,000 of which have been removed as the burn-in period. The remaining 200,000 samples
are thinned by 100 to reduce their temporal autocorrelation, resulting in 6,000 samples for
inference across the 3 Markov chains. A summary of the model output can be obtained using
the print() function as shown below.

R> print(chain1)

#################

#### Model fitted

#################

Likelihood model - Gaussian (identity link function)

Random effects model - Leroux CAR

Regression equation - logprice ~ crime + rooms + sales + factor(type) + driveshop

#################

#### MCMC details

#################

Total number of post burnin and thinned MCMC samples generated - 6000

Number of MCMC chains used - 3

Length of the burnin period used for each chain - 1e+05

Amount of thinning used - 100

############

#### Results

############

Posterior quantities and DIC

Mean 2.5% 97.5% n.effective PSRF (upper 95% CI)

(Intercept) 4.1337 3.8640 4.4063 6000.0 1

crime -0.0001 -0.0002 -0.0001 6000.0 1

rooms 0.2336 0.1816 0.2840 6000.0 1

sales 0.0023 0.0017 0.0029 6143.8 1

factor(type)flat -0.2946 -0.4066 -0.1862 5792.9 1

factor(type)semi -0.1714 -0.2676 -0.0721 5980.2 1

factor(type)terrace -0.3236 -0.4475 -0.2058 6000.0 1

driveshop 0.0036 -0.0309 0.0381 6015.6 1

nu2 0.0224 0.0114 0.0324 6000.0 1

tau2 0.0536 0.0243 0.0964 5822.4 1

rho 0.9110 0.7272 0.9906 6000.0 1
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DIC = -162.4 p.d = 104.7452 LMPL = 58.42

This model summary is presented in three parts, the first of which describes the model that
has been fitted while the second describes the number of MCMC samples generated. The third
part summarises the results, and includes the following information for selected parameters
(not the random effects): (i) posterior mean (Mean); (ii) 95% credible intervals (2.5%, 97.5%);
(iii) the effective number of independent samples (n.effective); and (iv) the potential scale
reduction factor (PSRF) upper C.I. proposed by Gelman et al. (2003). Finally, the DIC and
LMPL model fit criteria are displayed. In addition to producing the summary above, the
model returns a list object with the following components:

R> summary(chain1)

Length Class Mode

summary.results 77 -none- numeric

samples 7 -none- list

fitted.values 270 -none- numeric

residuals 2 data.frame list

modelfit 6 -none- numeric

accept 5 -none- numeric

localised.structure 0 -none- NULL

formula 3 formula call

model 2 -none- character

mcmc.info 4 -none- numeric

X 2160 -none- numeric

The first element is the summary results table used by the print() function. The next
element is a list containing matrices of the thinned and post burn-in MCMC samples for each
set of parameters. The next two elements in the list fitted.values and residuals contain
the fitted values and residuals from the model, while modelfit gives a selection of model fit
criteria. These criteria include the Deviance Information Criterion (DIC), the log Marginal
Predictive Likelihood (LMPL), the Watanabe-Akaike Information Criterion (WAIC), and
the log likelihood. For further details about Bayesian modelling and model fit criteria see
Gelman et al. (2003). The item accept contains the acceptance rates for the Markov chain,
while localised.structure is NULL for this model and is used for compatibility with the
other functions in the package. Finally, the formula and model elements are text strings
describing the formula used and the model fit, mcmc.info details the numbers of MCMC
samples generated, while X gives the design matrix corresponding to the formula object.

Before one can draw inference from the model, the convergence of the MCMC samples
needs to be assessed. This should be done for all parameters in the model, but as this is
impractical for the large number of random effects, a subset of the random effects is often
checked. The samples from the model run are stored in the samples element of the model
object, which is a list as shown below

R> summary(chain1$samples)
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Figure 3: Convergence of the Markov chains.

Length Class Mode

beta 3 mcmc.list list

phi 3 mcmc.list list

rho 3 mcmc.list list

tau2 3 mcmc.list list

nu2 3 mcmc.list list

fitted 3 mcmc.list list

Y 3 mcmc.list list

Each element of this list corresponds to a different group of parameters, and is stored as either
an mcmc object if n.chains equals 1 or an mcmc.list object if n.chains is greater than 1.
Both these object types come from the coda package. Here the Y object is NA as there are no
missing Yk observations in this data set. If there had been say m missing values, then the Y

component of the list would have contained m columns, with each one containing posterior
predictive samples for one of the missing observations. Before making inference from the
model you have to ensure the Markov chains appear to have converged, and as described
above the potential scale reduction factor (PSRF) is given in the model summary above
(PSRF (upper 95% CI)). As this is less than 1.1 in all cases then convergence is indicated.
Another method for assessing MCMC convergence is a traceplot comparing the results from
the multiple chains, which for the regression parameters (beta) can be produced as follows.

R> library(coda)

R> plot(beta.samples[ ,2:4])

A plot of the samples for the 2nd (crime) to the 4th (sales) regression parameters is shown in
Figure 3 and superficially shows good mixing between and convergence of the chains, as they
all have very similar means and show little trend from left to right.
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4.4. Inference

For this model inference centres around the regression parameters β, and the samples are
combined across all 3 Markov chains and summarised using the following code

R> summary.beta <- summary(chain$samples$beta, quantiles=c(0.025, 0.975))

Then from this summary output a table of posterior means and 95% credible intervals can
be computed as follows:

R> beta.mean <- summary.beta$statistics[ ,"Mean"]

R> beta.ci <- summary.beta$quantiles

R> beta.results <- cbind(beta.mean, beta.ci)

R> rownames(beta.results) <- colnames(chain$X)

R> round(beta.results, 5)

beta.mean 2.5% 97.5%

(Intercept) 4.13372 3.86401 4.40626

crime -0.00014 -0.00024 -0.00005

rooms 0.23364 0.18157 0.28404

sales 0.00231 0.00169 0.00294

factor(type)flat -0.29463 -0.40660 -0.18623

factor(type)semi -0.17144 -0.26762 -0.07206

factor(type)terrace -0.32364 -0.44746 -0.20580

driveshop 0.00355 -0.03087 0.03815

The results show a significant negative effect of crime rate on property price, while increases in
the number of rooms and sales rates increases property prices. Areas where the predominant
property type is ‘Detached’ (baseline level) have higher prices than the other three types,
because the latter all have significantly negative regression effects. Finally, the time taken to
drive to a shop has no significant effect on property prices because the 95% credible interval
contains zero.

5. Example 2 - identifying high-risk disease clusters

The third example illustrates the utility of the localised spatial autocorrelation model pro-
posed by Lee and Mitchell (2012), which can identify boundaries that represent step changes
in the (random effects) response surface between geographically adjacent areal units. The aim
of this analysis is to identify boundaries in the risk surface of respiratory disease in Greater
Glasgow, Scotland, in 2010, so that the spatial extent of high-risk clusters can be identified.
The identification of boundaries in spatial data is affectionately known as Wombling, after
the seminal paper by Womble (1951).

5.1. Data and exploratory analysis

The data again relate to the Greater Glasgow and Clyde health board, and are also freely
available to download from Scottish Statistics (http://statistics.gov.scot). However,

http://statistics.gov.scot
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the river Clyde partitions the study region into northern and southern sub-regions, and no
areal units on opposite banks of the river border each other. This means that boundaries
could not be identified across the river, and therefore here we only consider those areal units
that are on the northern side of the study region. This leaves K = 134 areal units in the
new smaller study region, and data on respiratory disease for this region are included in the
CARBayesdata package and can be loaded with the command:

R> library(CARBayesdata)

R> library(sf)

R> data(respiratorydata)

R> data(GGHB.IZ)

Then the first 6 rows of each data set can be viewed using the following code.

R> head(pricedata)

IZ price crime rooms sales driveshop type logprice

1 S02000260 112.250 390 3 68 1.2 flat 4.720729

2 S02000261 156.875 116 5 26 2.0 semi 5.055449

3 S02000262 178.111 196 5 34 1.7 semi 5.182407

4 S02000263 249.725 146 5 80 1.5 detached 5.520360

5 S02000264 174.500 288 4 60 0.8 semi 5.161925

6 S02000265 163.521 342 4 24 2.5 semi 5.096941

R> head(GGHB.IZ)

Simple feature collection with 6 features and 4 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: 253239 ymin: 669235 xmax: 263842 ymax: 672791.6

Projected CRS: OSGB36 / British National Grid

IZ name geometry

1 S02000260 Auchinairn MULTIPOLYGON (((260718 6698...

2 S02000261 Woodhill East MULTIPOLYGON (((262047 6699...

3 S02000262 Woodhill West MULTIPOLYGON (((261158.7 67...

4 S02000263 Westerton East MULTIPOLYGON (((253771 6709...

5 S02000264 Bishopbriggs West and Cadder MULTIPOLYGON (((260183 6706...

6 S02000265 Westerton West MULTIPOLYGON (((253252 6710...

easting northing

1 261624.5 669657.4

2 262927.1 670027.8

3 262142.9 670428.0

4 254570.5 670593.8

5 261248.4 670928.0

6 253764.4 670982.6
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The first column contains the unique Intermediate Zone codes (IZ), while the observed
(observed) and expected (expected) numbers of hospital admissions in 2010 in each IZ due
to respiratory disease (International Classification of Disease tenth revision codes J00-J99)
are stored columns 2 and 3 respectively. The latter is computed using indirect standardisa-
tion, and is included to control for varying population sizes and demographics across the IZs.
Column 4 contains a measure of the percentage of people defined to be income deprived (in
receipt of means tested benefits) in each IZ (incomedep), which is the mechanism by which
boundaries will be identified. Finally, the SMR column measures disease risk and is the ratio
of observed / expected. These data can be merged with the spatial IZ polygons to create a
sf object using the following code.

R> respiratorydata.sf <- merge(x=GGHB.IZ, y=respiratorydata, by="IZ", all.x=FALSE)

R> head(respiratorydata.sf)

Simple feature collection with 6 features and 8 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: 253239 ymin: 669235 xmax: 263842 ymax: 672791.6

Projected CRS: OSGB36 / British National Grid

IZ name easting northing observed expected

1 S02000260 Auchinairn 261624.5 669657.4 107 106.45661

2 S02000261 Woodhill East 262927.1 670027.8 23 50.97354

3 S02000262 Woodhill West 262142.9 670428.0 53 104.49236

4 S02000263 Westerton East 254570.5 670593.8 40 90.35747

5 S02000264 Bishopbriggs West and Cadder 261248.4 670928.0 60 140.16546

6 S02000265 Westerton West 253764.4 670982.6 25 63.93549

incomedep SMR geometry

1 22 1.0051044 MULTIPOLYGON (((260718 6698...

2 7 0.4512145 MULTIPOLYGON (((262047 6699...

3 6 0.5072141 MULTIPOLYGON (((261158.7 67...

4 5 0.4426861 MULTIPOLYGON (((253771 6709...

5 7 0.4280655 MULTIPOLYGON (((260183 6706...

6 6 0.3910191 MULTIPOLYGON (((253252 6710...

The next step is to map the SMR, but before this can be done the coordinate reference system
of respiratorydata.sf needs to be changed to longitude and latitude as follows.

R> respiratorydata.sf <- st_transform(x=respiratorydata.sf,

+ crs='+proj=longlat +datum=WGS84 +no_defs')

Then the map can be drawn using mapview via the following code, which is displayed in
Figure 4.

R> library(mapview)

R> library(RColorBrewer)

R> map2 <- mapview(respiratorydata.sf, zcol = "SMR", col.regions=brewer.pal(9, "YlOrRd"),
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Figure 4: Map displaying the SMR for each area.

+ alpha.regions=0.6, layer.name="SMR", lwd=0.5, col="grey90",

+ homebutton=FALSE)

R> removeMapJunk(map2, junk = c("zoomControl", "layersControl"))

Values of the SMR above one relate to areas exhibiting above average risks, while values below
one correspond to areas with below average risks. For example, an SMR of 1.2 corresponds
to a 20% increased risk relative to the expected numbers of respiratory disease cases. The
figure shows evidence of localised spatial structure, with numerous different locations where
high and low risk areas border each other. This in turn suggests that boundaries are likely to
be present in the risk surface, and their identification is the goal of this analysis. The method
proposed by Lee and Mitchell (2012) identifies these boundaries using dissimilarity metrics,
which are non-negative measures of the dissimilarity between all pairs of adjacent areas. In
this example we use the absolute difference in the percentage of people in each IZ who are
defined to be income deprived (incomedep), because it is well known that socio-economic
deprivation plays a large role in determining people’s health. However, before fitting the
model the spatial neighbourhood matrix W based on sharing a common border is computed
using the following code.

R> W.nb <- poly2nb(respiratorydata.sf, row.names = respiratorydata.sf$IZ)

R> W <- nb2mat(W.nb, style="B")

5.2. Spatial modelling with CARBayes

Let the observed and expected numbers of hospital admissions for all K IZs be denoted by
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Y = (Y1, . . . , YK) and e = (e1, . . . , eK) respectively. Then as the observed numbers of hospital
admissions are counts, the following Poisson log-linear model is suitable for these data

Yk ∼ Poisson(ekθk)

ln(θk) = β0 + φk,

where θk represents disease risk in areal unit Sk. For a general review of disease mapping see
Wakefield (2007). We note that when fitting this model in CARBayes the offset is specified
on the linear predictor scale rather than the expected value scale, so in this analysis the offset
is log(e) rather than e. The dissimilarity metric used here is the absolute difference in the
level of income deprivation between each pair of areal units, which can be created from the
vector of area level income deprivation scores using the following code.

R> income <- respiratorydata.sf$incomedep

R> Z.incomedep <- as.matrix(dist(income, diag=TRUE, upper=TRUE))

The first line pulls out the income deprivation covariate while the second line computes the
K ×K matrix of absolute differences in income deprivation levels between each pair of areal
units, that is Z.incomedepkj = |incomek - incomej |. The function to implement the localised
CAR model is called S.CARdissimilarity(), and it takes the same arguments as the other
CAR models except that it additionally requires the dissimilarity metrics. These are required
in the form of a list of K×K matrices, and for this example we only have a single dissimilarity
metric. Additionally, we add the argument W.binary=TRUE, so that the estimated elements
in W are ones or zeros (corresponding to (5)), the latter corresponding to boundaries. The
model is run using the following code.

R> formula <- observed ~ offset(log(expected))

R> chain1 <- S.CARdissimilarity(formula=formula, data=respiratorydata.sf,

+ family="poisson", W=W, Z=list(Z.incomedep=Z.incomedep),

+ W.binary=TRUE, burnin=100000, n.sample=300000, thin=20)

Here we only use 1 Markov chain (the default value of n.chains is 1 so this argument can
be omitted) to illustrate the slightly altered form of the summary table in this case. Here
convergence of the Markov chain can be assessed using traceplots and the Geweke diagnostic
outlined in the previous section, which are not shown for brevity. The above model bases
inference on 10,000 post burn-in and thinned MCMC samples. A summary of the model can
be obtained from the print() function as follows.

R> print(chain1)

#################

#### Model fitted

#################

Likelihood model - Poisson (log link function)

Random effects model - Binary dissimilarity CAR
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Dissimilarity metrics - Z.incomedep

Regression equation - observed ~ offset(log(expected))

#################

#### MCMC details

#################

Total number of post burnin and thinned MCMC samples generated - 10000

Number of MCMC chains used - 1

Length of the burnin period used for each chain - 1e+05

Amount of thinning used - 20

############

#### Results

############

Posterior quantities and DIC

Mean 2.5% 97.5% n.effective Geweke.diag alpha.min

(Intercept) -0.2195 -0.2419 -0.1969 10000.0 1.1 NA

tau2 0.1373 0.0964 0.1897 9470.5 1.6 NA

Z.incomedep 0.0498 0.0465 0.0513 9401.4 -2.3 0.0139

DIC = 1058.256 p.d = 99.07107 LMPL = -570.44

The number of stepchanges identified in the random effect surface

no stepchange stepchange

[1,] 261 99

The model represents the log risk surface {ln(θk)} with an intercept term and the random
effects, which means that the boundaries identified in the random effects surface can also
be interpreted as boundaries in the risk surface. The model summary table displayed above
has the same format as the previous example with two exceptions. Firstly, because only a
single Markov chain is generated in this example, the potential scale reduction factor (PSRF)
cannot be computed, so instead the convergence Z-score diagnostic proposed by Geweke
(1992) (Geweke.diag) is presented. Secondly, the model summary also contains a column
in the parameter summary table headed alpha.min, which only applies to the dissimilarity
metrics and is hence NA for the remaining parameters. The value of alpha.min is the threshold
value for the regression parameter α, below which the dissimilarity metric has no effect in
identifying boundaries in the response (random effects) surface. A brief description is given
in Section 2.1, while full details are given in Lee and Mitchell (2012). For these data the
posterior mean and 95% credible interval lie completely above this threshold, suggesting that
the income deprivation dissimilarity metric has identified a number of boundaries.

The number and locations of these boundaries are summarised in the element of the
output list called chain1$localised.structure$W.posterior, which is a K×K symmetric
matrix containing the posterior median for the set {wkj |k ∼ j}, where k ∼ j denotes that
areas (Sk,Sj) share a common border. Values equal to zero represent a boundary, values
equal to one correspond to no boundary, while NA values correspond to non-adjacent areas.
The locations of these boundaries can be overlaid on a map of the estimated disease risk (that
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is the posterior mean of {θk}). This is done in two steps, the first being the creation of the
boundaries as a SpatialPoints object using the following code.

R> border.locations <- chain1$localised.structure$W.posterior

R> respiratorydata.sf$risk <- chain1$fitted.values /

+ respiratorydata.sf$expected

R> boundary.final <- highlight.borders(border.locations=border.locations,

+ sfdata=respiratorydata.sf)

R> st_crs(boundary.final) <- '+proj=longlat +datum=WGS84 +no_defs'

The first line saves the matrix of border locations, while the second adds the estimated risk
values to the respiratorydata.sf object. The next line identifies the boundary points using
the CARBayes function highlight.borders() and formats them to enable plotting. Then
the final line specifies that this object has a longitude and latitude coordinate reference system.
Then plotting can be done using the code below, and the result is presented in Figure 5.

R> map3 <- mapview(respiratorydata.sf, zcol = "risk",

+ col.regions=brewer.pal(9, "YlOrRd"), alpha.regions=0.6,

+ layer.name="Risk", lwd=0, homebutton=FALSE) +

+ mapview(boundary.final, color="blue", alpha.regions=1, lwd=3,

+ legend=FALSE, homebutton=FALSE)

R> removeMapJunk(map3, junk = c("zoomControl", "layersControl"))

The figure shows the estimated risk surface and the locations of the boundaries (denoted by
blue dots). The model has identified 99 boundaries in the risk surface. The majority of these
visually correspond to sizeable changes in the risk surface, suggesting that the model has the
power to distinguish between boundaries and non-boundaries. The notable boundaries are
the demarcation between the low risk (shaded yellow) city centre / west end of Glasgow in
the middle of the region and the deprived neighbouring areas on both sides (shaded orange
and red), which include Easterhouse / Parkhead in the east and Knightswood / Drumchapel
in the west. The other interesting feature of this map is that the boundaries are not closed,
suggesting that the spatial pattern in risk is more complex than being partitioned into groups
of non-overlapping areas of similar risk.

6. Discussion

This vignette has illustrated the R package CARBayes, which can fit a number of commonly
used conditional autoregressive models to spatial areal unit data, as well as the localised
spatial smoothing models proposed by Lee and Mitchell (2012) and Lee and Sarran (2015).
The response data can be binomial, Gaussian, multinomial, Poisson or ZIP, with link functions
logit, identity, logit, natural log and (natural log / logit) respectively. The availability of areal
unit data has grown dramatically in recent times, due to the launch of freely available on-
line databases such as http://statistics.gov.scot. This increased availability of spatial
data has fuelled a growth of modelling in this area, leading to the need for user friendly
software such as CARBayes and CARBayesST (for spatio-temporal modelling) for use by
both statisticians and non-statisticians alike. Future development of this package will increase

http://statistics.gov.scot
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Figure 5: Map displaying the estimated risk and the locations of the boundaries for the
northern part of Greater Glasgow.
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the number of spatial models available, particularly those with more complex multivariate
and multilevel structures.
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