Package 'BsMD'

January 20, 2025

Version 2023.920
Date 2023-09-14
Title Bayes Screening and Model Discrimination
Author Ernesto Barrios based on Daniel Meyer's code.
Maintainer Ernesto Barrios <ebarrios@itam.mx>
Description Bayes screening and model discrimination follow-up designs.
Depends R(>= 4.0)
License GPL (>= 3)
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-19 09:00:18 UTC

Contents

SMD-package	2
M86.data	2
M93.e1.data	4
M93.e2.data	5
M93.e3.data	6
BsProb	7
DanielPlot	9
enthPlot	11
1D	13
B12Des	
lot.BsProb	17
rint.BsProb	
	20
Reactor.data	22
ummary.BsProb	
ummary.MD	

Index

BsMD-package

Description

Bayes screening and model discrimination follow-up designs

Details

Package:	BsMD
Type:	Package
Version:	2023.920
Date:	2023-09-14
License:	GPL version 2 or later

The packages allows you to perform the calculations and analyses described in Mayer, Stainberg and Box paper in Technometrics, 1996.

Author(s)

Author: Ernesto Barrios based on Daniel Meyer's code. Maintainer: Ernesto Barrios <ebarrios@itam.mx>

References

Box and Mayer, 1986; Box and Mayer, 1993; Mayer, Steinberg and Box, 1996.

Examples

data(BM86.data)

BM86.data

Data sets in Box and Meyer (1986)

Description

Design factors and responses used in the examples of Box and Meyer (1986)

Usage

data(BM86.data)

BM86.data

Format

A data frame with 16 observations on the following 19 variables.

- X1 numeric vector. Contrast factor.
- X2 numeric vector. Contrast factor.
- X3 numeric vector. Contrast factor.
- X4 numeric vector. Contrast factor.
- X5 numeric vector. Contrast factor.
- X6 numeric vector. Contrast factor.
- X7 numeric vector. Contrast factor.
- X8 numeric vector. Contrast factor.
- X9 numeric vector. Contrast factor.
- X10 numeric vector. Contrast factor.
- X11 numeric vector. Contrast factor.
- X12 numeric vector. Contrast factor.
- X13 numeric vector. Contrast factor.
- X14 numeric vector. Contrast factor.
- X15 numeric vector. Contrast factor.
- y1 numeric vector. Log drill advance response.
- y2 numeric vector. Tensile strength response.
- y3 numeric vector. Shrinkage response.
- y4 numeric vector. Yield of isatin response.

Source

Box, G. E. P and R. D. Meyer (1986). "An Analysis of Unreplicated Fractional Factorials". *Technometrics*. Vol. 28. No. 1. pp. 11–18.

```
library(BsMD)
data(BM86.data,package="BsMD")
print(BM86.data)
```

BM93.e1.data

Description

12-run Plackett-Burman design from the \$2^5\$ reactor example from Box, Hunter and Hunter (1977).

Usage

data(BM93.e1.data)

Format

A data frame with 12 observations on the following 7 variables.

Run a numeric vector. Run number from a \$2^5\$ factorial design in standard order.

- A a numeric vector. Feed rate factor.
- **B** a numeric vector. Catalyst factor.
- C a numeric vector. Agitation factor.
- **D** a numeric vector. Temperature factor.
- E a numeric vector. Concentration factor.
- y a numeric vector. Percent reacted response.

Source

Box G. E. P, Hunter, W. C. and Hunter, J. S. (1978). Statistics for Experimenters. Wiley.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

```
library(BsMD)
data(BM93.e1.data,package="BsMD")
print(BM93.e1.data)
```

BM93.e2.data

Description

12-run Plackett-Burman design for the study of fatigue life of weld repaired castings.

Usage

data(BM93.e2.data)

Format

A data frame with 12 observations on the following 8 variables.

- A a numeric vector. Initial structure factor.
- **B** a numeric vector. Bead size factor.
- C a numeric vector. Pressure treat factor.
- D a numeric vector. Heat treat factor.
- **E** a numeric vector. Cooling rate factor.
- F a numeric vector. Polish factor.
- G a numeric vector. Final treat factor.
- y a numeric vector. Natural log of fatigue life response.

Source

Hunter, G. B., Hodi, F. S., and Eager, T. W. (1982). "High-Cycle Fatigue of Weld Repaired Cast Ti-6A1-4V". *Metallurgical Transactions* 13A, pp. 1589–1594.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

```
library(BsMD)
data(BM93.e2.data,package="BsMD")
print(BM93.e2.data)
```

Description

 2^{8-4} Fractional factorial design in the injection molding example from Box, Hunter and Hunter (1978).

Usage

```
data(BM93.e3.data)
```

Format

A data frame with 20 observations on the following 10 variables.

blk a numeric vector

A a numeric vector. Mold temperature factor.

B a numeric vector. Moisture content factor.

C a numeric vector. Holding Pressure factor.

D a numeric vector. Cavity thickness factor.

E a numeric vector. Booster pressure factor.

F a numeric vector. Cycle time factor.

G a numeric vector. Gate size factor.

H a numeric vector. Screw speed factor.

y a numeric vector. Shrinkage response.

Source

Box G. E. P, Hunter, W. C. and Hunter, J. S. (1978). Statistics for Experimenters. Wiley.

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2004). Statistics for Experimenters II. Wiley.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

```
library(BsMD)
data(BM93.e3.data,package="BsMD")
print(BM93.e3.data)
```

BsProb

Description

Marginal factor posterior probabilities and model posterior probabilities from designed screening experiments are calculated according to Box and Meyer's Bayesian procedure.

Usage

BsProb(X, y, blk, mFac, mInt = 2, p = 0.25, g = 2, ng = 1, nMod = 10)

Arguments

Х	Matrix. The design matrix.
У	vector. The response vector.
blk	integer. Number of blocking factors (>=0). These factors are accommodated in the first columns of matrix X. There are ncol(X)-blk design factors.
mFac	integer. Maximum number of factors included in the models.
mInt	integer <= 3. Maximum order of interactions considered in the models.
р	numeric. Prior probability assigned to active factors.
g	vector. Variance inflation factor(s) γ associated to active and interaction factors.
ng	integer <=20. Number of different variance inflation factors (g) used in calcula- tions.
nMod	integer <=100. Number of models to keep with the highest posterior probability.

Details

Factor and model posterior probabilities are computed by Box and Meyer's Bayesian procedure. The design factors are accommodated in the matrix X after blk columns of the blocking factors. So, ncol(X)-blk design factors are considered. If g, the variance inflation factor (VIF) γ , is a vector of length 1, the same VIF is used for factor main effects and interactions. If the length of g is 2 and ng is 1, g[1] is used for factor main effects and g[2] for the interaction effects. If ng greater than 1, then ng values of VIFs between g[1] and g[2] are used for calculations with the same *gamma* value for main effects and interactions. The function calls the FORTRAN subroutine 'bm' and captures summary results. The complete output of the FORTRAN code is save in the 'BsPrint.out' file in the working directory. The output is a list of class BsProb for which print, plot and summary methods are available.

Value

A list with all output parameters of the FORTRAN subroutine 'bm'. The names of the list components are such that they match the original FORTRAN code. Small letters used for capturing program's output.

Х	matrix. The design matrix.
Υ	vector. The response vector.
Ν	integer. The number of runs.
COLS	integer. The number of design factors.
BLKS	integer. The number of blocking factors accommodated in the first columns of matrix X.
MXFAC	integer. Maximum number of factors considered in the models.
MXINT	integer. Maximum interaction order considered in the models.
PI	numeric. Prior probability assigned to the active factors.
INDGAM	integer. If 0, the same variance inflation factor (GAMMA) is used for main and interactions effects. If INDGAM ==1, then NGAM different values of GAMMA were used.
INDG2	integer. If 1, the variance inflation factor GAM2 was used for the interaction effects.
NGAM	integer. Number of different VIFs used for computations.
GAMMA	vector. Vector of variance inflation factors of length 1 or 2.
NTOP	integer. Number of models with the highest posterior probability
mdcnt	integer. Total number of models evaluated.
ptop	vector. Vector of probabilities of the top ntop models.
sigtop	vector. Vector of sigma-squared of the top ntop models.
nftop	integer. Number of factors in each of the ntop models.
jtop	matrix. Matrix of the number of factors and their labels of the top ntop models.
del	numeric. Interval width of the GAMMA partition.
sprob	vector. Vector of posterior probabilities. If ng>1 the probabilities are weighted averaged over GAMMA.
pgam	vector. Vector of values of the unscaled posterior density of GAMMA.
prob	matrix. Matrix of marginal factor posterior probabilities for each of the different values of GAMMA.
ind	integer. Indicator variable. ind is 1 if the 'bm' subroutine exited properly. Any other number correspond to the format label number in the FORTRAN subroutine script.

Note

The function is a wrapper to call the FORTRAN subroutine 'bm', modification of Daniel Meyer's original program, 'mbcqp5.f', for the application of Bayesian design and analysis of fractional factorial experiments, part of the **mdopt** bundle, available at *StatLib*.

Author(s)

R. Daniel Meyer. Adapted for R by Ernesto Barrios.

DanielPlot

References

Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". *Technometrics*. Vol. 28. No. 1. pp. 11–18.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

print.BsProb, print.BsProb, summary.BsProb.

Examples

DanielPlot Normal Plot of Effects

Description

Normal plot of effects from a two level factorial experiment.

Usage

```
DanielPlot(fit, code = FALSE, faclab = NULL, block = FALSE,
    datax = TRUE, half = FALSE, pch = "*", cex.fac = par("cex.lab"),
    cex.lab = par("cex.lab"), cex.pch = par("cex.axis"), ...)
```

Arguments

fit	object of class 1m. Fitted model from 1m or aov.
code	logical. If TRUE labels "A", "B", etc are used instead of the names of the coefficients (factors).
faclab	list. If NULL points are labelled accordingly to code, otherwise faclab should be a list with idx (integer vector) and lab (character vector) components. See Details.

block	logical. If TRUE, the first factor is labelled as "BK" (block).
datax	logical. If TRUE, the x-axis is used for the factor effects the the y-axis for the normal scores. The opposite otherwise.
half	logical. If TRUE, half-normal plot of effects is display.
pch	numeric or character. Points character.
cex.fac	numeric. Factors' labels character size.
cex.lab	numeric. Labels character size.
cex.pch	numeric. Points character size.
	graphical parameters passed to plot.

Details

The two levels design are assumed -1 and 1. Factor effects assumed 2*coef(obj) ((Intercept) removed) are displayed in a qqnorm plot with the effects in the x-axis by default. If half=TRUE the half-normal plots of effects is plotted as the normal quantiles of 0.5*(rank(abs(effects))-0.5)/length(effects)+1 versus abs(effects).

Value

The function returns invisible data frame with columns: x, y and no, for the coordinates and the enumeration of plotted points. Names of the factor effects (coefficients) are the row names of the data frame.

Author(s)

Ernesto Barrios.

References

C. Daniel (1976). *Application of Statistics to Industrial Experimentation*. Wiley. Box G. E. P, Hunter, W. C. and Hunter, J. S. (1978). *Statistics for Experimenters*. Wiley.

See Also

qqnorm, LenthPlot

LenthPlot

LenthPlot

Lenth's Plot of Effects

Description

Plot of the factor effects with significance levels based on robust estimation of contrast standard errors.

Usage

Arguments

obj	object of class 1m or vector with the factor effects.
alpha	numeric. Significance level used for the <i>margin of error</i> (ME) and <i>simultaneous margin of error</i> (SME). See Lenth(1989).
plt	logical. If TRUE, a spikes plot with the factor effects is displayed. Otherwise, no plot is produced.
limits	logical. If TRUE ME and SME limits are displayed and labeled.
xlab	character string. Used to label the x-axis. "factors" as default.
ylab	character string. Used to label the y-axis. "effects" as default.
faclab	list with components idx (numeric vector) and lab (character vector). The idx entries of effects vector (taken from obj) are labelled as lab. The rest of the effect names are blanked. If NULL all factors are labelled using the coefficients' name.
cex.fac	numeric. Character size used for the factor labels.
cex.axis	numeric. Character size used for the axis.
adj	numeric between 0 and 1. Determines where to place the "ME" (margin of error) and the "SME" (simultaneous margin of error) labels (character size of 0.9 *cex.axis). 0 for extreme left hand side, 1 for extreme right hand side.
	extra parameters passed to plot.

Details

If obj is of class lm, 2*coef(obj) is used as factor effect with the intercept term removed. Otherwise, obj should be a vector with the factor effects. Robust estimate of the contrasts standard error is used to calculate *marginal* (ME) and *simultaneous margin of error* (SME) for the provided significance (1 - alpha) level. See Lenth(1989). Spikes are used to display the factor effects. If faclab is NULL, factors are labelled with the effects or coefficient names. Otherwise, those faclab\\$idx factors are labelled as faclab\\$lab. The rest of the factors are blanked.

Value

The function is called mainly for its side effect. It returns a vector with the value of alpha used, the estimated PSE, ME and SME.

Author(s)

Ernesto Barrios. Extension provided by Kjetil Kjernsmo (2013).

References

Lenth, R. V. (1989). "Quick and Easy Analysis of Unreplicated Factorials". *Technometrics* Vol. 31, No. 4. pp. 469–473.

See Also

DanielPlot, BsProb and plot.BsProb

Examples

12

Description

Best follow-up experiments based on the MD criterion are suggested to discriminate between competing models.

Usage

```
MD(X, y, nFac, nBlk = 0, mInt = 3, g = 2, nMod, p, s2, nf, facs, nFDes = 4, Xcand, mIter = 20, nStart = 5, startDes = NULL, top = 20, eps = 1e-05)
```

Arguments

Х	matrix. Design matrix of the initial experiment.
У	vector. Response vector of the initial experiment.
nFac	integer. Number of factors in the initial experiment.
nBlk	integer $>=1$. The number of blocking factors in the initial experiment. They are accommodated in the first columns of matrix X.
mInt	integer. Maximum order of the interactions in the models.
g	vector. Variance inflation factor for main effects $(g[1])$ and interactions effects $(g[2])$. If vector length is 1 the same inflation factor is used for main and interactions effects.
nMod	integer. Number of competing models.
р	vector. Posterior probabilities of the competing models.
s2	vector. Competing model variances.
nf	vector. Factors considered in each of the models.
facs	matrix. Matrix [nMod x max(nf)] of factor numbers in the design matrix.
nFDes	integer. Number of runs to consider in the follow-up experiment.
Xcand	matrix. Candidate runs to be chosen for the follow-up design.
mIter	integer. If 0, then user-entered designs startDes are evaluated, otherwise the maximum number of iterations for each Wynn search.
nStart	integer. Number of starting designs.
startDes	matrix. Matrix [nStart x nFDes]. Each row has the row numbers of the user- supplied starting design.
top	integer. Highest MD follow-up designs recorded.
eps	numeric. A small number (1e-5 by default) used for computations.

MD

Details

The MD criterion, proposed by Meyer, Steinberg and Box is used to discriminate among competing models. Random starting runs chosen from Xcand are used for the Wynn search of best MD followup designs. nStart starting points are tried in the search limited to mIter iterations. If mIter=0 then startDes user-provided designs are used. Posterior probabilities and variances of the competing models are obtained from BsProb. The function calls the FORTRAN subroutine 'md' and captures summary results. The complete output of the FORTRAN code is save in the 'MDPrint.out' file in the working directory.

Value

A list with all input and output parameters of the FORTRAN subroutine MD. Most of the variable names kept to match FORTRAN code.

NSTART	Number of starting designs.
NRUNS	Number of runs used in follow-up designs.
ITMAX	Maximum number of iterations for each Wynn search.
INITDES	Number of starting points.
NO	Numbers of runs already completed before follow-up.
IND	Indicator; 0 indicates the user supplied starting designs.
Х	Matrix for initial data (nrow(X)=N0; nco1(X)=COLS+BL).
Y	Response values from initial experiment (length(Y)=N0).
GAMMA	Variance inflation factor.
GAM2	If IND=1, GAM2 was used for interaction factors.
BL	Number of blocks (>=1) accommodated in first columns of X and Xcand
COLS	Number of factors.
Ν	Number of candidate runs.
Xcand	Matrix of candidate runs. (nrow(Xcand)=N, ncol(Xcand)=ncol(X)).
NM	Number of models considered.
Ρ	Models posterior probability.
SIGMA2	Models variances.
NF	Number of factors per model.
MNF	Maximum number of factor in models. (MNF=max(NF)).
JFAC	Matrix with the factor numbers for each of the models.
CUT	Maximum interaction order considered.
MBEST	If INITDES=0, the first row of the MBEST[1,] matrix has the first user-supplied starting design. The last row the NSTART-th user-supplied starting design.
NTOP	Number of the top best designs.
TOPD	The D value for the best NTOP designs.
TOPDES	Top NTOP design factors.
ESP	"Small number" provided to the 'md' FORTRAN subroutine. 1e-5 by default.
flag	Indicator = 1, if the 'md' subroutine finished properly, -1 otherwise.

14

Note

The function is a wrapper to call the FORTAN subroutine 'md', modification of Daniel Meyer's original program, 'MD.f', part of the **mdopt** bundle for Bayesian model discrimination of multifactor experiments.

Author(s)

R. Daniel Meyer. Adapted for R by Ernesto Barrios.

References

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). "Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)". *Technometrics*, Vol. 38, No. 4, pp. 303–332.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

print.MD, BsProb

```
### Injection Molding Experiment. Meyer et al. 1996, example 2.
library(BsMD)
data(BM93.e3.data,package="BsMD")
X <- as.matrix(BM93.e3.data[1:16,c(1,2,4,6,9)])</pre>
y <- BM93.e3.data[1:16,10]</pre>
p <- c(0.2356,0.2356,0.2356,0.2356,0.0566)
s2 <- c(0.5815,0.5815,0.5815,0.5815,0.4412)
nf <- c(3,3,3,3,4)
facs <- matrix(c(2,1,1,1,1,3,3,2,2,2,4,4,3,4,3,0,0,0,0,4),nrow=5,</pre>
   dimnames=list(1:5,c("f1","f2","f3","f4")))
nFDes <- 4
-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,
                  -1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
                  -1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1),
                  nrow=16,dimnames=list(1:16,c("blk","f1","f2","f3","f4"))
               )
injectionMolding.MD <- MD(X = X, y = y, nFac = 4, nBlk = 1, mInt = 3,
           g = 2, nMod = 5, p = p, s2 = s2, nf = nf, facs = facs,
           nFDes = 4, Xcand = Xcand, mIter = 20, nStart = 25, top = 10)
summary(injectionMolding.MD)
```

```
### Reactor Experiment. Meyer et al. 1996, example 3.
par(mfrow=c(1,2),pty="s")
data(Reactor.data,package="BsMD")
```

```
# Posterior probabilities based on first 8 runs
X <- as.matrix(cbind(blk = rep(-1,8), Reactor.data[c(25,2,19,12,13,22,7,32), 1:5]))
y <- Reactor.data[c(25,2,19,12,13,22,7,32), 6]
reactor8.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5, mInt = 3,</pre>
        p = 0.25, g = 0.40, ng = 1, nMod = 32)
plot(reactor8.BsProb,prt=TRUE,,main="(8 runs)")
# MD optimal 4-run design
p <- reactor8.BsProb$ptop</pre>
s2 <- reactor8.BsProb$sigtop</pre>
nf <- reactor8.BsProb$nftop</pre>
facs <- reactor8.BsProb$jtop</pre>
nFDes <- 4
Xcand <- as.matrix(cbind(blk = rep(+1,32), Reactor.data[,1:5]))</pre>
reactor.MD <- MD(X = X, y = y, nFac = 5, nBlk = 1, mInt = 3, g =0.40, nMod = 32,
        p = p,s2 = s2, nf = nf, facs = facs, nFDes = 4, Xcand = Xcand,
        mIter = 20, nStart = 25, top = 5)
summary(reactor.MD)
# Posterior probabilities based on all 12 runs
X <- rbind(X, Xcand[c(4,10,11,26), ])</pre>
y <- c(y, Reactor.data[c(4,10,11,26),6])</pre>
reactor12.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5, mInt = 3,</pre>
        p = 0.25, g = 1.20, ng = 1, nMod = 5)
plot(reactor12.BsProb,prt=TRUE,main="(12 runs)")
```

PB12Des

12-run Plackett-Burman Design Matrix

Description

12-run Plackett-Burman design matrix.

Usage

data(PB12Des)

Format

A data frame with 12 observations on the following 11 variables.

- x1 numeric vectors. Contrast factor.
- x2 numeric vectors. Contrast factor.
- x3 numeric vectors. Contrast factor.
- x4 numeric vectors. Contrast factor.
- x5 numeric vectors. Contrast factor.
- x6 numeric vectors. Contrast factor.
- x7 numeric vectors. Contrast factor.

16

- x8 numeric vectors. Contrast factor.
- x9 numeric vectors. Contrast factor.
- x10 numeric vectors. Contrast factor.
- x11 numeric vectors. Contrast factor.

Source

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2004). Statistics for Experimenters II. Wiley.

Examples

```
library(BsMD)
data(PB12Des,package="BsMD")
str(PB12Des)
X <- as.matrix(PB12Des)
print(t(X)%*%X)</pre>
```

```
plot.BsProb
```

Plotting of Posterior Probabilities from Bayesian Screening

Description

Method function for plotting marginal factor posterior probabilities for Bayesian screening.

Usage

S3 method for class 'BsProb'
plot(x, code = TRUE, prt = FALSE, cex.axis=par("cex.axis"), ...)

Arguments

х	list. List of class BsProb output from the BsProb function.
code	logical. If TRUE coded factor names are used.
prt	logical. If TRUE, summary of the posterior probabilities calculation is printed.
cex.axis	Magnification used for the axis annotation. See par.
	additional graphical parameters passed to plot.

Details

A spike plot, similar to barplots, is produced with a spike for each factor. Marginal posterior probabilities are used for the vertical axis. If code=TRUE, X1, X2, ... are used to label the factors otherwise the original factor names are used. If prt=TRUE, the print.BsProb function is called and the posterior probabilities are displayed. When BsProb is called for more than one value of gamma (g), the spikes for each factor probability are overlapped to show the resulting range of each marginal probability.

The function is called for its side effects. It returns an invisible NULL.

Author(s)

Ernesto Barrios.

References

Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". *Technometrics*. Vol. 28. No. 1. pp. 11–18.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

BsProb, print.BsProb, summary.BsProb.

Examples

print.BsProb

Printing Posterior Probabilities from Bayesian Screening

Description

Printing method for lists of class BsProb. Prints the posterior probabilities of factors and models from the Bayesian screening procedure.

Usage

print.BsProb

Arguments

х	list. Object of BsProb class, output from the BsProb function.
Х	logical. If TRUE, the design matrix is printed.
resp	logical. If TRUE, the response vector is printed.
factors	logical. Marginal posterior probabilities are printed if TRUE.
models	logical. If TRUE models posterior probabilities are printed.
nMod	integer. Number of the top ranked models to print.
digits	integer. Significant digits to use for printing.
plt	logical. Factor marginal probabilities are plotted if TRUE.
verbose	logical. If TRUE, the unclass-ed list x is displayed.
	additional arguments passed to print function.

Value

The function prints out marginal factors and models posterior probabilities. Returns invisible list with the components:

calc	numeric vector with general calculation information.
probabilities	Data frame with the marginal posterior factor probabilities.
models	Data frame with model the posterior probabilities.

Author(s)

Ernesto Barrios.

References

Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". *Technometrics*. Vol. 28. No. 1. pp. 11–18.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

BsProb, summary.BsProb, plot.BsProb.

```
plot(drillAdvance.BsProb)
```

```
print.MD
```

Print Best MD Follow-Up Experiments

Description

Printing method for lists of class MD. Displays the best MD criterion set of runs and their MD for follow-up experiments.

Usage

Arguments

х	list of class MD. Output list of the MD function.
Х	logical. If TRUE, the initial design matrix is printed.
resp	logical If TRUE, the response vector of initial design is printed.
Xcand	logical. Prints the candidate runs if TRUE.
models	logical. Competing models are printed if TRUE.
nMod	integer. Top models to print.
digits	integer. Significant digits to use in the print out.
verbose	logical. If TRUE, the unclass-ed x is displayed.
	additional arguments passed to print generic function.

Value

The function is mainly called for its side effects. Prints out the selected components of the class MD objects, output of the MD function. For example the marginal factors and models posterior probabilities and the top MD follow-up experiments with their corresponding MD statistic. It returns invisible list with the components:

calc	Numeric vector with basic calculation information.
models	Data frame with the competing models posterior probabilities.
follow-up	Data frame with the runs for follow-up experiments and their corresponding MD statistic.

20

print.MD

Author(s)

Ernesto Barrios.

References

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). "Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)". *Technometrics*, Vol. 38, No. 4, pp. 303–332.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

MD, BsProb

Examples

```
# Injection Molding Experiment. Meyer et al. 1996. Example 2.
# MD for one extra experiment.
library(BsMD)
data(BM93.e3.data,package="BsMD")
X <- as.matrix(BM93.e3.data[1:16,c(1,2,4,6,9)])</pre>
y <- BM93.e3.data[1:16,10]</pre>
nBlk <- 1
nFac <- 4
mInt <- 3
g <- 2
nMod <- 5
p <- c(0.2356,0.2356,0.2356,0.2356,0.0566)
s2 <- c(0.5815,0.5815,0.5815,0.5815,0.4412)
nf <- c(3,3,3,3,4)
facs <- matrix(c(2,1,1,1,1,3,3,2,2,2,4,4,3,4,3,0,0,0,0,4),nrow=5,
   dimnames=list(1:5,c("f1","f2","f3","f4")))
nFDes <- 1
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,
                  -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1
                  nrow=16,dimnames=list(1:16,c("blk","f1","f2","f3","f4"))
              )
mIter <- 0
startDes <- matrix(c(9,11,12,15),nrow=4)</pre>
top <- 10
injectionMolding.MD <- MD(X=X,y=y,nFac=nFac,nBlk=nBlk,mInt=mInt,g=g,</pre>
           nMod=nMod,p=p,s2=s2,nf=nf,facs=facs,
           nFDes=nFDes,Xcand=Xcand,mIter=mIter,startDes=startDes,top=top)
print(injectionMolding.MD)
```

summary(injectionMolding.MD)

Reactor.data

Description

Data of the Reactor Experiment from Box, Hunter and Hunter (1978).

Usage

data(Reactor.data)

Format

A data frame with 32 observations on the following 6 variables.

A numeric vector. Feed rate factor.

B numeric vector. Catalyst factor.

C numeric vector. Agitation rate factor.

D numeric vector. Temperature factor.

E numeric vector. Concentration factor.

y numeric vector. Percentage reacted response.

Source

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2004). *Statistics for Experimenters II*. Wiley. Box G. E. P, Hunter, W. C. and Hunter, J. S. (1978). *Statistics for Experimenters*. Wiley.

Examples

```
library(BsMD)
data(Reactor.data,package="BsMD")
print(Reactor.data)
```

summary.BsProb Summary of Posterior Probabilities from Bayesian Screening

Description

Reduced printing method for class BsProb lists. Prints posterior probabilities of factors and models from Bayesian screening procedure.

Usage

```
## S3 method for class 'BsProb'
summary(object, nMod = 10, digits = 3, ...)
```

summary.BsProb

Arguments

object	list. BsProb class list. Output list of BsProb function.
nMod	integer. Number of the top ranked models to print.
digits	integer. Significant digits to use.
	additional arguments passed to summary generic function.

Value

The function prints out the marginal factors and models posterior probabilities. Returns invisible list with the components:

calc	Numeric vector with basic calculation information.
probabilities	Data frame with the marginal posterior factor probabilities.
models	Data frame with the models posterior probabilities.

Author(s)

Ernesto Barrios.

References

Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". *Technometrics*. Vol. 28. No. 1. pp. 11–18.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

BsProb, print.BsProb, plot.BsProb.

summary.MD

Description

Reduced printing method for lists of class MD. Displays the best MD criterion set of runs and their MD for follow-up experiments.

Usage

```
## S3 method for class 'MD'
summary(object, digits = 3, verbose=FALSE, ...)
```

Arguments

object	list of MD class. Output list of MD function.
digits	integer. Significant digits to use in the print out.
verbose	logical. If TRUE, the unclass-ed object is displayed.
	additional arguments passed to summary generic function.

Value

It prints out the marginal factors and models posterior probabilities and the top MD follow-up experiments with their corresponding MD statistic.

Author(s)

Ernesto Barrios.

References

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). "Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)". *Technometrics*, Vol. 38, No. 4, pp. 303–332.

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". *Journal of Quality Technology*. Vol. 25. No. 2. pp. 94–105.

See Also

print.MD and MD

summary.MD

```
### Reactor Experiment. Meyer et al. 1996, example 3.
library(BsMD)
data(Reactor.data,package="BsMD")
# Posterior probabilities based on first 8 runs
X <- as.matrix(cbind(blk = rep(-1,8), Reactor.data[c(25,2,19,12,13,22,7,32), 1:5]))</pre>
y <- Reactor.data[c(25,2,19,12,13,22,7,32), 6]
reactor.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5, mInt = 3,</pre>
        p = 0.25, g = 0.40, ng = 1, nMod = 32)
# MD optimal 4-run design
p <- reactor.BsProb$ptop</pre>
s2 <- reactor.BsProb$sigtop</pre>
nf <- reactor.BsProb$nftop</pre>
facs <- reactor.BsProb$jtop</pre>
nFDes <- 4
Xcand <- as.matrix(cbind(blk = rep(+1,32), Reactor.data[,1:5]))</pre>
reactor.MD <- MD(X = X, y = y, nFac = 5, nBlk = 1, mInt = 3, g =0.40, nMod = 32,
        p = p,s2 = s2, nf = nf, facs = facs, nFDes = 4, Xcand = Xcand,
        mIter = 20, nStart = 25, top = 5)
print(reactor.MD)
summary(reactor.MD)
```

Index

* datasets BM86.data, 2 BM93.e1.data,4 BM93.e2.data, 5 BM93.e3.data, 6 PB12Des, 16 Reactor.data, 22 * design BsProb, 7 DanielPlot, 9 LenthPlot, 11 MD, 13 plot.BsProb, 17 print.BsProb, 18 print.MD, 20 summary.BsProb, 22 summary.MD, 24 * hplot plot.BsProb, 17 * package BsMD-package, 2 BM86.data, 2 BM93.e1.data,4 BM93.e2.data, 5 BM93.e3.data, 6 BsMD (BsMD-package), 2 BsMD-package, 2 BsProb, 7, 12, 14, 15, 17-19, 21, 23 DanielPlot, 9, 12 LenthPlot, 10, 11 MD, 13, 20, 21, 24 par, 17 PB12Des, 16 plot.BsProb, 12, 17, 19, 23 print.BsProb, 9, 17, 18, 18, 23 print.MD, 15, 20, 24

qqnorm, 10

Reactor.data, 22

summary.BsProb, *9*, *18*, *19*, 22 summary.MD, 24