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Abstract

This vignette shows how to use the Brobdingnag package to manipulate very large
numbers; it is based on Hankin (2007c).

The other vignette shows how to use S4 methods in the context of a simple package.
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1. Introduction

The largest floating point number representable in standard double pre-
cision arithmetic is a little under 21024, or about 1.79×10308. This is too
small for some applications. The R package Brobdingnag (Swift 1726)
overcomes this limit by representing a real number x using a double pre-
cision variable with value log |x|, and a logical corresponding to x ≥ 0;
the S4 class of such objects is brob. Complex numbers with large ab-
solute values (class glub) may be represented using a pair of brobs to
represent the real and imaginary components.

The package allows user-transparent access to the large numbers allowed
by Brobdingnagian arithmetic. The package also includes a vignette—S4_brob—which doc-
uments the S4 methods used and includes a step-by-step tutorial. The vignette also functions
as a “Hello, World!” example of S4 methods as used in a simple package. It also includes a
full description of the glub class.

2. Package Brobdingnag in use

Most readers will be aware of a googol which is equal to 10100:

> require(Brobdingnag)

> googol <- as.brob(10)^100

[1] +exp(230.26)

Note the coercion of double value 10 to an object of class brob using function as.brob():
raising this to the power 100 (also double) results in another brob. The result is printed using
exponential notation, which is convenient for very large numbers.
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A googol is well within the capabilities of standard double precision arithmetic. Now, however,
suppose we wish to compute its factorial. Taking the first term of Stirling’s series gives

> stirling <- function(n){n^n*exp(-n)*sqrt(2*pi*n)}

which then yields

> stirling(googol)

[1] +exp(2.2926e+102)

Note the transparent coercion to brob form within function stirling().

It is also possible to represent numbers very close to 1. Thus

> 2^(1/googol)

[1] +exp(6.9315e-101)

It is worth noting that if x has an exact representation in double precision, then ex is exactly
representable using the system described here. Thus e and e1000 may be represented exactly.

2.1. Accuracy

For small numbers (that is, representable using standard double precision floating point arith-
metic), Brobdingnag suffers a slight loss of precision compared to normal representation.
Consider the following function, whose return value for nonzero arguments is algebraically
zero:

f <- function(x){

as.numeric( (pi*x -3*x -(pi-3)*x)/x)

}

This function combines multiplication and addition; one might expect a logarithmic system
such as described here to have difficulty with it.

> f(1/7)

[1] 1.700029e-16

> f(as.brob(1/7))

[1] -3.143988e-16

This typical example shows that Brobdingnagian numbers suffer a slight loss of precision
for numbers of moderate magnitude. This degradation increases with the magnitude of the
argument:
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> f(1e100)

[1] -2.185503e-16

> f(as.brob(1e100))

[1] -3.219444e-14

Here, the brobs’ accuracy is about two orders of magnitude worse than double precision
arithmetic: this would be expected, as the number of bits required to specify the exponent
goes as log log x. Compare

> f(as.brob(10)^1000)

[1] 1.931667e-13

showing a further degradation of precision. However, observe that conventional double preci-
sion arithmetic cannot deal with numbers this big, and the package returns about 12 correct
significant figures.

3. A practical example

In the field of population dynamics, and especially the modelling of biodiversity (Hankin
2007a; Hubbell 2001), complicated combinatorial formulae often arise.

Etienne (2005), for example, considers a sample of N individual organisms taken from some
natural population; the sample includes S distinct species, and each individual is assigned a
label in the range 1 to S. The sample comprises ni members of species i, with 1 ≤ i ≤ S

and
∑

ni = N . For a given sample D Etienne defines, amongst other terms, K(D, A) for
1 ≤ A ≤ N − S + 1 as

∑

{

a1,...,aS

∣

∣

∑

S

i=1
ai=A

}

S
∏

i=1

s(ni, ai)s(ai, 1)

s(ni, 1)
(1)

where s(n, a) is the Stirling number of the second kind (Abramowitz and Stegun 1965). The
summation is over ai = 1, . . . , ni with the restriction that the ai sum to A, as carried out by
blockparts() of the partitions package (Hankin 2006, 2007b).

Taking an intermediate-sized dataset due to Saunders1 of only 5903 individuals—a relatively
small dataset in this context—the maximal element of K(D, A) is about 1.435 × 101165. The
accuracy of package Brobdingnag in this context may be assessed by comparing it with that
computed by PARI/GP (Batut, Belabas, Bernardi, Cohen, and Olivier 2000) with a working
precision of 100 decimal places; the natural logs of the two values are 2682.8725605988689
and 2682.87256059887 respectively: identical to 14 significant figures.

1The dataset comprises species counts on kelp holdfasts; here saunders.exposed.tot of package untb (Han-
kin 2007a), is used.
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4. Conclusions

The Brobdingnag package allows representation and manipulation of numbers larger than
those covered by standard double precision arithmetic, although accuracy is eroded for very
large numbers. This facility is useful in several contexts, including combinatorial computations
such as encountered in theoretical modelling of biodiversity.
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