
Package ‘BiodiversityR’
April 17, 2025

Type Package

Title Package for Community Ecology and Suitability Analysis

Version 2.17-2

Date 2025-4-17

Author Roeland Kindt [cre, aut] (<https://orcid.org/0000-0002-7672-0712>)

Maintainer Roeland Kindt <RoelandCEKindt@gmail.com>

Description Graphical User Interface (via the R-Commander) and utility functions (of-
ten based on the vegan package) for statistical analysis of biodiversity and ecological communi-
ties, including species accumulation curves, diversity indices, Renyi profiles, GLMs for analy-
sis of species abundance and presence-absence, distance matrices, Mantel tests, and cluster, con-
strained and unconstrained ordination analysis. A book on biodiversity and community ecol-
ogy analysis is available for free download from the website. In 2012, methods for (ensem-
ble) suitability modelling and mapping were expanded in the package.

License GPL-3

URL http://www.worldagroforestry.org/output/tree-diversity-analysis

Depends R (>= 3.2.2), tcltk, vegan (>= 2.6-8)

Imports Rcmdr (>= 2.9-5), ggplot2 (>= 3.3.3)

Suggests vegan3d, rgl, permute, lattice, MASS, mgcv, cluster, car,
RODBC, rpart, effects, multcomp, ellipse, sp, splancs, spatial,
nnet, dismo, raster (>= 3.6-11), terra (>= 1.6-47), maxlike,
gbm, randomForest, gam (>= 1.15), earth, mda, kernlab, e1071,
glmnet, tools, methods, bootstrap, PresenceAbsence, geosphere,
ENMeval, red, igraph, Rlof, maxnet, party, readxl, colorspace,
dplyr, rlang, sf, blockCV, envirem (>= 3.0), concaveman,
pvclust

NeedsCompilation no

Repository CRAN

Date/Publication 2025-04-17 08:30:02 UTC

1

https://orcid.org/0000-0002-7672-0712
http://www.worldagroforestry.org/output/tree-diversity-analysis

2 Contents

Contents
BiodiversityR-package . 3
accumresult . 4
add.spec.scores . 7
balanced.specaccum . 9
BCI.env . 11
BiodiversityR.changeLog . 12
BiodiversityRGUI . 12
CAPdiscrim . 14
caprescale . 16
crosstabanalysis . 18
CucurbitaClim . 19
deviancepercentage . 20
dist.eval . 21
dist.zeroes . 22
distdisplayed . 24
disttransform . 25
diversityresult . 26
ensemble.analogue . 30
ensemble.batch . 34
ensemble.bioclim . 46
ensemble.bioclim.graph . 50
ensemble.calibrate.models . 52
ensemble.concave.hull . 71
ensemble.dummy.variables . 76
ensemble.ecocrop . 79
ensemble.envirem.masterstack . 82
ensemble.evaluate . 85
ensemble.novel . 89
ensemble.PET.season . 93
ensemble.PET.seasons . 94
ensemble.raster . 98
ensemble.red . 104
ensemble.spatialBlock . 108
ensemble.spatialThin . 112
ensemble.terra . 117
ensemble.zones . 121
evaluation.strip.data . 124
faramea . 128
ifri . 129
importancevalue . 130
loaded.citations . 132
makecommunitydataset . 133
multiconstrained . 134
nested.anova.dbrda . 136
NMSrandom . 138
nnetrandom . 139

BiodiversityR-package 3

ordicoeno . 140
ordisymbol . 142
PCAsignificance . 144
radfitresult . 145
rankabundance . 146
removeNAcomm . 150
renyiresult . 153
sites.long . 157
spatialsample . 164
transfgradient . 165
transfspecies . 166
treegoer.score . 167
warcom . 172
warenv . 178

Index 179

BiodiversityR-package GUI for biodiversity, suitability and community ecology analysis

Description

This package provides a GUI (Graphical User Interface, via the R-Commander; BiodiversityRGUI)
and some utility functions (often based on the vegan package) for statistical analysis of biodiver-
sity and ecological communities, including species accumulation curves, diversity indices, Renyi
profiles, GLMs for analysis of species abundance and presence-absence, distance matrices, Mantel
tests, and cluster, constrained and unconstrained ordination analysis. A book on biodiversity and
community ecology analysis is available for free download from the website.

Details

We warmly thank all that provided inputs that lead to improvement of the Tree Diversity Analysis
manual that describes common methods for biodiversity and community ecology analysis and its
accompanying software. We especially appreciate the comments received during training sessions
with draft versions of this manual and the accompanying software in Kenya, Uganda and Mali.
We are equally grateful to the thoughtful reviews by Dr Simoneta Negrete-Yankelevich (Instituto
de Ecologia, Mexico) and Dr Robert Burn (Reading University, UK) of the draft version of this
manual, and to Hillary Kipruto for help in editing of this manual. We also want to specifically thank
Mikkel Grum, Jane Poole and Paulo van Breugel for helping in testing the packaged version of the
software. We also want to give special thanks for all the support that was given by Jan Beniest,
Tony Simons and Kris Vanhoutte in realizing the book and software.

We highly appreciate the support of the Programme for Cooperation with International Institutes
(SII), Education and Development Division of the Netherlands Ministry of Foreign Affairs, and
VVOB (The Flemish Association for Development Cooperation and Technical Assistance, Flan-
ders, Belgium) for funding the development for this manual. We also thank VVOB for seconding
Roeland Kindt to the World Agroforestry Centre (ICRAF). The tree diversity analysis manual was
inspired by research, development and extension activities that were initiated by ICRAF on tree and

4 accumresult

landscape diversification. We want to acknowledge the various donor agencies that have funded
these activities, especially VVOB, DFID, USAID and EU.

We are grateful for the developers of the R Software for providing a free and powerful statistical
package that allowed development of BiodiversityR. We also want to give special thanks to Jari
Oksanen for developing the vegan package and John Fox for developing the Rcmdr package, which
are key packages that are used by BiodiversityR.

Author(s)

Maintainer: Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

We suggest to use this citation for this software as well (together with citations of all other packages
that were used)

accumresult Alternative Species Accumulation Curve Results

Description

Provides alternative methods of obtaining species accumulation results than provided by functions
specaccum and plot.specaccum (vegan).

Usage

accumresult(x, y="", factor="", level, scale="", method="exact", permutations=100,
conditioned=T, gamma="boot", ...)

accumplot(xr, addit=F, labels="", col=1, ci=2, pch=1, type="p", cex=1,
xlim=c(1, xmax), ylim=c(1, rich),
xlab="sites", ylab="species richness", cex.lab=1, cex.axis=1, ...)

accumcomp(x, y="", factor, scale="", method="exact", permutations=100,
conditioned=T, gamma="boot", plotit=T, labelit=T, legend=T, rainbow=T,
xlim=c(1, max), ylim=c(0, rich),type="p", xlab="sites",
ylab="species richness", cex.lab=1, cex.axis=1, ...)

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

y Environmental data frame.

https://www.worldagroforestry.org/output/tree-diversity-analysis

accumresult 5

factor Variable of the environmental data frame that defines subsets to calculate species
accumulation curves for.

level Level of the variable to create the subset to calculate species accumulation
curves.

scale Continuous variable of the environmental data frame that defines the variable
that scales the horizontal axis of the species accumulation curves.

method Method of calculating the species accumulation curve (as in function specaccum).
Method "collector" adds sites in the order they happen to be in the data, "ran-
dom" adds sites in random order, "exact" finds the expected (mean) species rich-
ness, "coleman" finds the expected richness following Coleman et al. 1982, and
"rarefaction" finds the mean when accumulating individuals instead of sites.

permutations Number of permutations to calculate the species accumulation curve (as in func-
tion specaccum).

conditioned Estimation of standard deviation is conditional on the empirical dataset for the
exact SAC (as in function specaccum).

gamma Method for estimating the total extrapolated number of species in the survey
area (as in specaccum).

addit Add species accumulation curve to an existing graph.

xr Result from specaccum or accumresult.

col Colour for drawing lines of the species accumulation curve (as in function plot.specaccum).

labels Labels to plot at left and right of the species accumulation curves.

ci Multiplier used to get confidence intervals from standard deviatione (as in func-
tion plot.specaccum).

pch Symbol used for drawing the species accumulation curve (as in function points).

type Type of plot (as in function plot).

cex Character expansion factor (as in function plot).

xlim Limits for the X = horizontal axis.

ylim Limits for the Y = vertical axis.

xlab Label for the X = horizontal axis (as in function title).

ylab Label for the Y = vertical axis (as in function title).

cex.lab The magnification to be used for X and Y labels relative to the current setting of
cex. (as in function par).

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex (as in function par).

plotit Plot the results.

labelit Label the species accumulation curves with the levels of the categorical variable.

legend Add the legend (you need to click in the graph where the legend needs to be
plotted).

rainbow Use rainbow colouring for the different curves.

... Other items passed to function specaccum or plot.specaccum.

6 accumresult

Details

These functions provide some alternative methods of obtaining species accumulation results, al-
though function specaccum is called by these functions to calculate the actual species accumulation
curve.

Functions accumresult and accumcomp allow to calculate species accumulation curves for subsets
of the community and environmental data sets. Function accumresult calculates the species ac-
cumulation curve for the specified level of a selected environmental variable. Method accumcomp
calculates the species accumulation curve for all levels of a selected environmental variable sepa-
ratedly. Both methods allow to scale the horizontal axis by multiples of the average of a selected
continuous variable from the environmental dataset (hint: add the abundance of each site to the
environmental data frame to scale accumulation results by mean abundance).

Functions accumcomp and accumplot provide alternative methods of plotting species accumulation
curve results, although function plot.specaccum is called by these functions. When you choose to
add a legend, make sure that you click in the graph on the spot where you want to put the legend.

Value

The functions provide alternative methods of obtaining species accumulation curve results, although
results are similar as obtained by functions specaccum and plot.specaccum.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://rpubs.com/Roeland-KINDT

See Also

accumcomp.long

Examples

library(vegan)
data(dune.env)
data(dune)
dune.env$site.totals <- apply(dune,1,sum)
Accum.1 <- accumresult(dune, y=dune.env, scale='site.totals', method='exact', conditioned=TRUE)
Accum.1
accumplot(Accum.1)

Accum.2 <- accumcomp(dune, y=dune.env, factor='Management', method='exact',
legend=FALSE, conditioned=TRUE, scale='site.totals')

CLICK IN THE GRAPH TO INDICATE WHERE THE LEGEND NEEDS TO BE PLACED FOR
OPTION WHERE LEGEND=TRUE (DEFAULT).

https://www.worldagroforestry.org/output/tree-diversity-analysis
https://rpubs.com/Roeland-KINDT

add.spec.scores 7

Not run:
ggplot2 plotting method

data(warcom)
data(warenv)

Accum.3 <- accumcomp(warcom, y=warenv, factor='population',
method='exact', conditioned=F, plotit=F)

library(ggplot2)

possibly need for extrafont::loadfonts(device="win") to have Arial
as alternative, use library(ggThemeAssist)
BioR.theme <- theme(

panel.background = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.line = element_line("gray25"),
text = element_text(size = 12, family="Arial"),
axis.text = element_text(size = 10, colour = "gray25"),
axis.title = element_text(size = 14, colour = "gray25"),
legend.title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.key = element_blank())

accum.long3 <- accumcomp.long(Accum.3, ci=NA, label.freq=5)

plotgg1 <- ggplot(data=accum.long3, aes(x = Sites, y = Richness, ymax = UPR, ymin= LWR)) +
scale_x_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_line(aes(colour=Grouping), size=2) +
geom_point(data=subset(accum.long3, labelit==TRUE),

aes(colour=Grouping, shape=Grouping), size=5) +
geom_ribbon(aes(colour=Grouping), alpha=0.2, show.legend=FALSE) +
BioR.theme +
scale_color_brewer(palette = "Set1") +
labs(x = "Trees", y = "Loci", colour = "Population", shape = "Population")

plotgg1

End(Not run) # dontrun

add.spec.scores Add Species Scores to Unconstrained Ordination Results

Description

Calculates scores (coordinates) to plot species for PCoA or NMS results that do not naturally pro-
vide species scores. The function can also rescale PCA results to use the choice of rescaling used

8 add.spec.scores

in vegan for the rda function (after calculating PCA results via PCoA with the euclidean distance
first).

Usage

add.spec.scores(ordi, comm, method="cor.scores", multi=1, Rscale=F, scaling="1")

Arguments

ordi Ordination result as calculated by cmdscale, isoMDS, sammon, postMDS, metaMDS
or NMSrandom.

comm Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

method Method for calculating species scores. Method "cor.scores" calculates the scores
by the correlation between site scores and species vectors (via function cor),
method "wa.scores" calculates the weighted average scores (via function wascores)
and method "pcoa.scores" calculates the scores by weighing the correlation be-
tween site scores and species vectors by variance explained by the ordination
axes.

multi Multiplier for the species scores.

Rscale Use the same scaling method used by vegan for rda.

scaling Scaling method as used by rda.

Value

The function returns a new ordination result with new information on species scores. For PCoA
results, the function calculates eigenvalues (not sums-of-squares as provided in results from function
cmdscale), the percentage of explained variance per axis and the sum of all eigenvalues. PCA
results (obtained by PCoA obtained by function cmdscale with the Euclidean distance) can be
scaled as in function rda, or be left at the original scale.

Author(s)

Roeland Kindt

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune)
distmatrix <- vegdist(dune, method="euc")
Principal coordinates analysis with 19 axes to estimate total variance
Ordination.model1 <- cmdscale (distmatrix, k=19, eig=TRUE, add=FALSE)

https://www.worldagroforestry.org/output/tree-diversity-analysis

balanced.specaccum 9

Change scores for second axis
Ordination.model1$points[,2] <- -1.0 * Ordination.model1$points[,2]
Ordination.model1 <- add.spec.scores(Ordination.model1, dune,

method='pcoa.scores', Rscale=TRUE, scaling=1, multi=1)
Compare Ordination.model1 with PCA
Ordination.model2 <- rda(dune, scale=FALSE)
#
par(mfrow=c(1,2))
ordiplot(Ordination.model1, type="text")
abline(h = 0, lty = 3)
abline(v = 0, lty = 3)
plot(Ordination.model2, type="text", scaling=1)

balanced.specaccum Balanced Species Accumulation Curves

Description

Provides species accumulation results calculated from balanced (equal subsample sizes) subsam-
pling from each stratum. Sites can be accumulated in a randomized way, or alternatively sites
belonging to the same stratum can be kept together Results are in the same format as specaccum
and can be plotted with plot.specaccum (vegan).

Usage

balanced.specaccum(comm, permutations=100, strata=strata, grouped=TRUE,
reps=0, scale=NULL)

Arguments

comm Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

permutations Number of permutations to calculate the species accumulation curve.

strata Categorical variable used to specify strata.

grouped Should sites from the same stratum be kept together (TRUE) or not.

reps Number of subsamples to be taken from each stratum (see details).

scale Quantitative variable used to scale the sampling effort (see details).

Details

This function provides an alternative method of obtaining species accumulation results as provided
by specaccum and accumresult.

Balanced sampling is achieved by randomly selecting the same number of sites from each stratum.
The number of sites selected from each stratum is determined by reps. Sites are selected from
strata with sample sizes larger or equal than reps. In case that reps is smaller than 1 (default:
0), then the number of sites selected from each stratum is equal to the smallest sample size of all

10 balanced.specaccum

strata. Sites from the same stratum can be kept together (grouped=TRUE) or the order of sites can
be randomized (grouped=FALSE).

The results can be scaled by the average accumulation of a quantitative variable (default is number
of sites), as in accumresult (hint: add the abundance of each site to the environmental data frame
to scale accumulation results by mean abundance). When sites are not selected from all strata, then
the average is calculated only for the strata that provided sites.

Value

The functions provide alternative methods of obtaining species accumulation curve results, although
results are similar as obtained by functions specaccum and accumresult.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R., Kalinganire, A., Larwanou, M., Belem, M., Dakouo, J.M., Bayala, J. & Kaire, M. (2008)
Species accumulation within landuse and tree diameter categories in Burkina Faso, Mali, Niger and
Senegal. Biodiversity and Conservation. 17: 1883-1905.

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune.env)
data(dune)

not balancing species accumulation
Accum.orig <- specaccum(dune)
Accum.orig

randomly sample 3 quadrats from each stratum of Management
Accum.1 <- balanced.specaccum(dune, strata=dune.env$Management, reps=3)
Accum.1

scale results by number of trees per quadrat
dune.env$site.totals <- apply(dune,1,sum)
Accum.2 <- balanced.specaccum(dune, strata=dune.env$Management, reps=3, scale=dune.env$site.totals)
Accum.2

https://www.worldagroforestry.org/output/tree-diversity-analysis

BCI.env 11

BCI.env Barro Colorado Island Quadrat Descriptions

Description

Topography-derived variables and UTM coordinates and UTM coordinates of a 50 ha sample plot
(consisting of 50 1-ha quadrats) from Barro Colorado Island of Panama. Dataset BCI provides the
tree species composition (trees with diameter at breast height equal or larger than 10 cm) of the
same plots.

Usage

data(BCI.env)

Format

A data frame with 50 observations on the following 6 variables.

UTM.EW UTM easting

UTM.NS UTM northing

elevation mean of the elevation values of the four cell corners

convex mean elevation of the target cell minus the mean elevation of the eight surrounding cells

slope mean angular deviation from horizontal of each of the four triangular planes formed by
connecting three of its corners

aspectEW the sine of aspect

aspectNS the cosine of aspect

References

Pyke C.R., Condit R., Aguilar S. and Lao S. (2001). Floristic composition across a climatic gradient
in a neotropical lowland forest. Journal of Vegetation Science 12: 553-566.

Condit R., Pitman N., Leigh E.G., Chave J., Terborgh J., Foster R.B., Nunez P., Aguilar S., Valencia
R., Villa G., Muller-Landau H.C., Losos E. and Hubbell, S.P. (2002). Beta-diversity in tropical
forest trees. Science 295: 666-669.

De Caceres M., P. Legendre, R. Valencia, M. Cao, L.-W. Chang, G. Chuyong, R. Condit, Z. Hao,
C.-F. Hsieh, S. Hubbell, D. Kenfack, K. Ma, X. Mi, N. Supardi Noor, A. R. Kassim, H. Ren, S.-H.
Su, I-F. Sun, D. Thomas, W. Ye and F. He. (2012). The variation of tree beta diversity across a
global network of forest plots. Global Ecology and Biogeography 21: 1191-1202

Examples

data(BCI.env)

12 BiodiversityRGUI

BiodiversityR.changeLog

changeLog file for BiodiversityR

Description

ChangeLog file

Usage

BiodiversityR.changeLog()

BiodiversityRGUI GUI for Biodiversity, Community Ecology and Ensemble Suitability
Analysis

Description

This function provides a GUI (Graphical User Interface) for some of the functions of vegan, some
other packages and some new functions to run biodiversity analysis, including species accumula-
tion curves, diversity indices, Renyi profiles, rank-abundance curves, GLMs for analysis of species
abundance and presence-absence, distance matrices, Mantel tests, cluster and ordination analysis
(including constrained ordination methods such as RDA, CCA, db-RDA and CAP). In 2012 meth-
ods for ensemble suitability The function depends and builds on Rcmdr, performing all analyses
on the community and environmental datasets that the user selects. A thorough description of the
package and the biodiversity and ecological methods that it accomodates (including examples) is
provided in the freely available Tree Diversity Analysis manual (Kindt and Coe, 2005) that is ac-
cessible via the help menu.

Usage

BiodiversityRGUI(changeLog = FALSE, backward.compatibility.messages = FALSE)

Arguments

changeLog Show the changeLog file

backward.compatibility.messages

Some notes on backward compatiblity

BiodiversityRGUI 13

Details

The function launches the R-Commander GUI with an extra menu for common statistical methods
for biodiversity and community ecology analysis as described in the Tree Diversity Analysis man-
ual of Roeland Kindt and Richard Coe (available via https://www.worldagroforestry.org/
output/tree-diversity-analysis]) and expanded systematically with new functions that be-
came available from the vegan community ecology package.

Since 2012, functions for ensemble suitability modelling were included in BiodiversityR. In 2016,
a GUI was created for ensemble suitabilty modelling.

The R-Commander is launched by changing the location of the Rcmdr "etc" folder to the "etc"
folder of BiodiversityR. As the files of the "etc" folder of BiodiversityR are copied from the Rcmdr,
it is possible that newest versions of the R-Commander will not be launched properly. In such
situations, it is possible that copying all files from the Rcmdr "etc" folder again and adding the Bio-
diversityR menu options to the Rcmdr-menus.txt is all that is needed to launch the R-Commander
again. However, please alert Roeland Kindt about the issue.

BiodiversityR uses two data sets for biodiversity and community ecology analysis: the community
dataset (or community matrix or species matrix) and the environmental dataset (or environmental
matrix). The environmental dataset is the same dataset that is used as the "active dataset" of The
R-Commander. (Note that you could sometimes use the same dataset as both the community and
environmental dataset. For example, you could use the community dataset as environmental dataset
as well to add information about specific species to ordination diagrams. As another example, you
could use the environmental dataset as community dataset if you first calculated species richness
of each site, saved this information in the environmental dataset, and then use species richness as
response variable in a regression analysis.) Some options of analysis of ecological distance allow
the community matrix to be a distance matrix (the community data set will be interpreted as distance
matrix via as.dist prior to further analysis).

For ensemble suitability modelling, different data sets should be created and declared such as the
calibration stack, the presence data set and the absence data set. The ensemble suitability modelling
menu gives some guidelines on getting started with ensemble suitability modelling.

Value

Besides launching the graphical user interface, the function gives some notes on backward compat-
ibility.

Author(s)

Roeland Kindt (with some help from Jari Oksanen)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://www.worldagroforestry.org/output/tree-diversity-analysis
https://www.worldagroforestry.org/output/tree-diversity-analysis
https://www.worldagroforestry.org/output/tree-diversity-analysis

14 CAPdiscrim

CAPdiscrim Canonical Analysis of Principal Coordinates based on Discriminant
Analysis

Description

This function provides a method for CAP that follows the procedure as described by the authors of
the ordination method (Anderson & Willis 2003). The CAP method implemented in vegan through
capscale conforms more to distance-based Redundancy Analysis (Legendre & Anderson, 1999)
than to the original description for CAP (Anderson & Willis, 2003).

Usage

CAPdiscrim(formula, data, dist="bray", axes=4,
m=0, mmax=10, add=FALSE,
permutations=0,
aitchison_pseudocount=1)

Arguments

formula Formula with a community data frame (with sites as rows, species as columns
and species abundance as cell values) or distance matrix on the left-hand side
and a categorical variable on the right-hand side (only the first explanatory vari-
able will be used).

data Environmental data set.

dist Method for calculating ecological distance with function vegdist: partial match
to "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower",
"morisita", "horn", "mountford", "aitchison" and "robust.aitchison". This argu-
ment is ignored in case that the left-hand side of the formula already is a distance
matrix.

axes Number of PCoA axes (cmdscale) to provide in the result.

m Number of PCoA axes to be investigated by discriminant analysis (lda). If m=0
then the number of axes that provides the best distinction between the groups is
calculated (following the method of Anderson and Willis).

mmax The maximum number of PCoA axes considered when searching (m=0) for the
number of axes that provide the best classification success.

add Add a constant to the non-diagonal dissimilarities such that the modified dissim-
ilarities are Euclidean; see also cmdscale.

permutations The number of permutations for significance testing.

aitchison_pseudocount

Pseudocount setting as in vegdist.

CAPdiscrim 15

Details

This function provides a method of Constrained Analysis of Principal Coordinates (CAP) that fol-
lows the description of the method by the developers of the method, Anderson and Willis. The
method investigates the results of a Principal Coordinates Analysis (function cmdscale) with linear
discriminant analysis (lda). Anderson and Willis advocate to use the number of principal coordi-
nate axes that result in the best prediction of group identities of the sites.

Results may be different than those obtained in the PRIMER-e package because PRIMER-e does
not consider prior probabilities, does not standardize PCOA axes by their eigenvalues and applies
an additional spherical standardization to a common within-group variance/covariance matrix.

For permutations > 0, the analysis is repeated by randomising the observations of the environmental
data set. The significance is estimated by dividing the number of times the randomisation generated
a larger percentage of correct predictions.

Value

The function returns an object with information on CAP based on discriminant analysis. The object
contains following elements:

PCoA the positions of the sites as fitted by PCoA

m the number of axes analysed by discriminant analysis

tot the total variance (sum of all eigenvalues of PCoA)

varm the variance of the m axes that were investigated

group the original group of the sites

CV the predicted group for the sites by discriminant analysis

percent the percentage of correct predictions

percent.level the percentage of correct predictions for different factor levels

x the positions of the sites provided by the discriminant analysis

F the squares of the singulare values of the discriminant analysis

manova the results for MANOVA with the same grouping variable

signi the significance of the percentage of correct predictions

manova a summary of the observed randomised prediction percentages

The object can be plotted with ordiplot, and species scores can be added by add.spec.scores .

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Anderson, M.J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24.

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84: 511-525.

16 caprescale

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

Not run:
library(vegan)
library(MASS)
data(dune)
data(dune.env)
categorical variables should not be ordered
dune$Management <- factor(dune$Management, ordered=FALSE)
Ordination.model1 <- CAPdiscrim(dune~Management, data=dune.env,

dist="bray", axes=2, m=0, add=FALSE)
Ordination.model1
plot1 <- ordiplot(Ordination.model1, type="none")
ordisymbol(plot1, dune.env, "Management", legend=TRUE)

plot change in classification success against m
plot(seq(1:14), rep(-1000, 14), xlim=c(1, 14), ylim=c(0, 100), xlab="m",

ylab="classification success (percent)", type="n")
for (mseq in 1:14) {

CAPdiscrim.result <- CAPdiscrim(dune~Management, data=dune.env,
dist="bray", axes=2, m=mseq)

points(mseq, CAPdiscrim.result$percent)
}

End(Not run)

caprescale Rescaling of Capscale Results to Reflect Total Sums of Squares Of
Distance Matrix

Description

This is a simple function that rescales the ordination coordinates obtained from the distance-based
redundancy analysis method implemented in vegan through capscale. The rescaling of the ordi-
nation coordinates results in the distances between fitted site scores in ordination results (scaling=1
obtained via ordiplot to be equal to the distances between sites on the axes corresponding to
positive eigenvalues obtained from principal coordinates analysis (cmdscale).

Usage

caprescale(x,verbose=FALSE)

https://www.worldagroforestry.org/output/tree-diversity-analysis

caprescale 17

Arguments

x Ordination result obtained with capscale.

verbose Give some information on the pairwise distances among sites (TRUE) or not.

Details

The first step of distance-based redundancy analysis involves principal coordinates analysis whereby
the distances among sites from a distance matrix are approximated by distances among sites in a
multidimensional configuration (ordination). In case that the principal coordinates analysis does
not result in negative eigenvalues, then the distances from the distance matrix are the same as the
distances among the sites in the ordination. In case that the principal coordinates analysis results
in negative eigenvalues, then the distances among the sites on all ordination axes are related to the
sum of positive eigenvalues, a sum which is larger than the sum of squared distances of the distance
matrix.

The distance-based redundancy analysis method implemented in vegan through capscale uses
a specific rescaling method for ordination results. Function caprescale modifies the results of
capscale so that an ordination with scaling=1 (a distance biplot) obtained viaordiplot preserves
the distances reflected in the principal coordinates analysis implemented as the first step of the
analysis. See Legendre and Legendre (1998) about the relationship between fitted site scores and
eigenvalues.

Value

The function modifies and returns an object obtained via capscale.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Legendre, L. (1998). Numerical Ecology. Amsterdam: Elsevier. 853 pp.

Legendre, P. & Anderson, M.J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24.

Examples

library(vegan)
library(MASS)
data(dune)
data(dune.env)
Distmatrix.1 <- vegdist(dune,method='bray')
Ordination.model1 <- cmdscale(Distmatrix.1, k=19, eig=TRUE, add=FALSE)
Sum of all eigenvalues
sum(Ordination.model1$eig)
[1] 4.395807541512926
Positive eigenvalues
Ordination.model1$eig[Ordination.model1$eig > 0]
sum(Ordination.model1$eig[Ordination.model1$eig > 0])

18 crosstabanalysis

[1] 4.593946896588808
Distmatrix.2 <- as.matrix(vegdist(Ordination.model1$points[, 1:14], method='euc'))
totalsumsquares1 <- sum(Distmatrix.2^2) / (2*20)
Sum of distances among sites in principal coordinates analysis on axes
corresponding to positive eigenvalues
totalsumsquares1
[1] 4.593946896588808
Ordination.model2 <- capscale(dune ~ Management, dune.env, dist='bray', add=FALSE)
Total sums of positive eigenvalues of the distance-based redundancy analysis
Ordination.model2CAtot.chi + Ordination.model2CCAtot.chi
[1] 4.593946896588808
Ordination.model3 <- caprescale(Ordination.model2, verbose=TRUE)
sum1 <- scores(Ordination.model3, choices=seq_len(17), scaling=1, display="lc")
Distmatrix.3 <- as.matrix(vegdist(sum1, method='euc'))
totalsumsquares2 <- sum((Distmatrix.3)^2) / (2*20)/19
totalsumsquares2
[1] 4.593946896588808

crosstabanalysis Presence-absence Analysis by Cross Tabulation

Description

This function makes a cross-tabulation of two variables after transforming the first variable to
presence-absence and then returns results of chisq.test.

Usage

crosstabanalysis(x,variable,factor)

Arguments

x Data set that contains the variables "variable" and "factor".

variable Variable to be transformed in presence-absence in the resulting cross-tabulation.

factor Variable to be used for the cross-tabulation together with the transformed vari-
able.

Value

The function returns the results of chisq.test on a crosstabulation of two variables, after trans-
forming the first variable to presence-absence first.

Author(s)

Roeland Kindt

CucurbitaClim 19

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune.env)
crosstabanalysis(dune.env,"Manure","Management")

CucurbitaClim Baseline and Future WorldClim 2.1 Climatic Data for Cucurbita
Species

Description

This data set provides WorldClim 2.1 bioclimatic data extracted for the baseline (WorldClim 2.1
at 2.5 minutes resolution) and one future (wc2.1_2.5m_bioc_EC-Earth3-Veg_ssp245_2041-2060)
climate for presence observations of Cucurbita cordata, C. digitata and C. palmata provided via
the CucurbitaData data set of the GapAnalysis package. This data set is used for examples of the
ensemble.concave.hull and ensemble.concave.venn functions.

Usage

data(CucurbitaClim)

References

Fick SE and Hijmans RJ. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for
global land areas. International Journal of Climatology 37: 4302-4315.

Carver et al. 2021. GapAnalysis: an R package to calculate conservation indicators using spatial
information. Ecography 44: 1000-1009.

Examples

data(CucurbitaClim)

https://www.worldagroforestry.org/output/tree-diversity-analysis

20 deviancepercentage

deviancepercentage Calculate Percentage and Significance of Deviance Explained by a
GLM

Description

This function calculates the percentage of deviance explained by a GLM model and calculates the
significance of the model.

Usage

deviancepercentage(x,data,test="F",digits=2)

Arguments

x Result of GLM as calculated by glm or glm.nb.

data Data set to be used for the null model (preferably the same data set used by the
’full’ model).

test Test statistic to be used for the comparison between the null model and the ’full’
model as estimated by anova.glm or anova.negbin: partial match of one of
"Chisq", "F" or "Cp".

digits Number of digits in the calculation of the percentage.

Details

The function calculates the percentage of explained deviance and the significance of the ’full’ model
by contrasting it with the null model.

For the null model, the data is subjected to na.omit. You should check whether the same data are
used for the null and ’full’ models.

Value

The function calculates the percentage of explained deviance and the significance of the ’full’ model
by contrasting it with the null model by ANOVA. The results of the ANOVA are also provided.

Author(s)

Roeland Kindt

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://www.worldagroforestry.org/output/tree-diversity-analysis

dist.eval 21

Examples

library(vegan)
data(dune)
data(dune.env)
dune.env$Agrostol <- dune$Agrostol
Count.model1 <- glm(Agrostol ~ Management + A1, family=quasipoisson(link=log),

data=dune.env, na.action=na.omit)
summary(Count.model1)
deviancepercentage(Count.model1, dune.env, digits=3)

dist.eval Distance Matrix Evaluation

Description

Function dist.eval provides one test of a distance matrix, and then continues with distconnected
(vegan). Function prepare.bioenv converts selected variables to numeric variables and then ex-
cludes all categorical variables in preparation of applying bioenv (vegan).

Usage

dist.eval(x, dist)
prepare.bioenv(env, as.numeric = c())

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

env Environmental data frame with sites as rows and variables as columns.

dist Method for calculating ecological distance with function vegdist: partial match
to "manhattan", "euclidean", "canberra", "clark", "bray", "kulczynski", "jac-
card", "gower", "morisita", "horn", "mountford", "raup", "binomial", "chao",
"cao", "mahalanobis", "hellinger".

as.numeric Vector with names of variables in the environmental data set to be converted to
numeric variables.

Details

Function dist.eval provides two tests of a distance matrix:

(i) The first test checks whether any pair of sites that share some species have a larger distance than
any other pair of sites that do not share any species. In case that cases are found, then a warning
message is given.

(ii) The second test is the one implemented by the distconnected function (vegan). The distcon-
nected test is only calculated for distances that calculate a value of 1 if sites share no species (i.e.
not manhattan or euclidean), using the threshold of 1 as an indication that the sites do not share

22 dist.zeroes

any species. Interpretation of analysis of distance matrices that provided these warnings should be
cautious.

Function prepare.bioenv provides some simple methods of dealing with categorical variables
prior to applying bioenv.

Value

The function tests whether distance matrices have some desirable properties and provide warnings
if this is not the case.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune)
dist.eval(dune,"euclidean")
dist.eval(dune,"bray")

Not run:
data(dune.env)
dune.env2 <- dune.env[,c('A1', 'Moisture', 'Manure')]
dune.env2$Moisture <- as.numeric(dune.env2$Moisture)
dune.env2$Manure <- as.numeric(dune.env2$Manure)
sol <- bioenv(dune ~ A1 + Moisture + Manure, dune.env2)
sol
summary(sol)
dune.env3 <- prepare.bioenv(dune.env, as.numeric=c('Moisture', 'Manure'))
bioenv(dune, dune.env3)

End(Not run)

dist.zeroes Distance Matrix Transformation

Description

Sample units without any species result in "NaN" values in the distance matrix for some of the
methods of vegdist (vegan). The function replaces "NA" by "0" if both sample units do not
contain any species and "NA" by "1" if only one sample unit does not have any species.

https://www.worldagroforestry.org/output/tree-diversity-analysis

dist.zeroes 23

Usage

dist.zeroes(comm, dist)

Arguments

comm Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

dist Distance matrix as calculated with function vegdist.

Details

This functions changes a distance matrix by replacing "NaN" values by "0" if both sample units do
not contain any species and by "1" if only one sample unit does not contain any species.

Please note that there is a valid reason (deliberate removal of zero abundance values from calcula-
tions) that the original distance matrix contains "NaN", so you may not wish to do this transforma-
tion and remove sample units with zero abundances from further analysis.

Value

The function provides a new distance matrix where "NaN" values have been replaced by "0" or "1".

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
matrix <- array(0, dim=c(5,3))
matrix[4,] <- c(1, 2, 3)
matrix[5,] <- c(1, 0, 0)
dist1 <- vegdist(matrix, method="kulc")
dist1
dist2 <- dist.zeroes(matrix, dist1)
dist2

https://www.worldagroforestry.org/output/tree-diversity-analysis

24 distdisplayed

distdisplayed Compare Distance Displayed in Ordination Diagram with Distances
of Distance Matrix

Description

This function compares the distance among sites as displayed in an ordination diagram (generated
by ordiplot) with the actual distances among sites as available from a distance matrix (as generated
by vegdist).

Usage

distdisplayed(x, ordiplot, distx = "bray", plotit = T, addit = F,
method = "spearman", permutations = 100, abline = F, gam = T, ...)

Arguments

x Community data frame (with sites as rows, species as columns and species abun-
dance as cell values) or distance matrix.

ordiplot Ordination diagram generated by ordiplot or distance matrix.
distx Ecological distance used to calculated the distance matrix (theoretically the

same distance as displayed in the ordination diagram); passed to vegdist and
partial match to "manhattan", "euclidean", "canberra", "bray", "kulczynski",
"jaccard", "gower", "morisita", "horn", "mountford", "raup", "binomial", "chao",
"aitchison" or "robust.aitchison". This argument is ignored in case that "x" is al-
ready a distance matrix.

plotit Should a plot comparing the distance in ordination diagram (or the distance
matrix) with the distance from the distance matrix be generated (or not).

addit Should the GAM regression result be added to an existing plot (or not).
method Method for calculating the correlation between the ordination distance and the

complete distance; from function mantel passed to function cor: "pearson",
"spearman" or "kendall".

permutations Number of permutations to assess the significance of the Mantel test; passed to
mantel.

abline Should a reference line (y=x) be added to the graph (or not).
gam Evaluate the correspondence between the original distance and the distance from

the ordination diagram with GAMas estimated by gam.
... Other arguments passed to mantel.

Details

This function compares the Euclidean distances (between sites) displayed in an ordination diagram
with the distances of a distance matrix. Alternatively, the distances of one distance matrix are
compared against the distances of another distance matrix.

These distances are compared by a Mantel test (mantel) and (optionally) a GAM regression (gam).
Optionally, a graph is provided compairing the distances and adding GAM results. .

disttransform 25

Value

The function returns the results of a Mantel test and (optionally) the results of a GAM analysis.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
library(mgcv)
data(dune)
pseudocount used by aitchison distance
distmatrix <- vegdist(dune, method="kulc", pseudocount=1)
ordination.model1 <- cmdscale(distmatrix,k=2)
ordiplot1 <- ordiplot(ordination.model1)
distdisplayed(dune, ordiplot=ordiplot1, distx="kulc", plotit=TRUE,

method="spearman", permutations=100, gam=TRUE)

disttransform Community Matrix Transformation

Description

Transforms a community matrix. Some transformation methods are described by distances for the
original community matrix that result in the same distance matrix as calculated with the euclidean
distance from the transformed community matrix. In several cases (methods of "hellinger", "chord",
"profiles" and "chi.square), the method makes use of function decostand. In several other cases
("Braun.Blanquet", "Domin", "Hult", "Hill", "fix" and "coverscale.log"), the method makes use of
function coverscale. For method "dispweight" a call is made to function dispweight.

Usage

disttransform(x, method="hellinger")

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

method Distance measure for the original community matrix that the euclidean dis-
tance will calculate for the transformed community matrix: partial match to
"hellinger", "chord", "profiles", "chi.square", "log", "square", "pa", "Braun.Blanquet",
"Domin", "Hult", "Hill", "fix", "coverscale.log" and "dispweight".

https://www.worldagroforestry.org/output/tree-diversity-analysis

26 diversityresult

Details

This functions transforms a community matrix.

Some transformation methods ("hellinger", "chord", "profiles" and "chi.square") have the behaviour
that the euclidean distance from the transformed matrix will equal a distance of choice for the origi-
nal matrix. For example, using method "hellinger" and calculating the euclidean distance will result
in the same distance matrix as by calculating the Hellinger distance from the original community
matrix.

Transformation methods ("Braun.Blanquet", "Domin", "Hult", "Hill", "fix" and "coverscale.log")
call function coverscale.

Method "dispweight" uses function dispweight without specifying a grouping structure.

Value

The function returns a transformed community matrix.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Gallagher, E.D. (2001). Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

Not run:
library(vegan)
data(dune)
Community.1 <- disttransform(dune, method='hellinger')
Distmatrix.1 <- vegdist(Community.1, method='euclidean')
Distmatrix.1

End(Not run)

diversityresult Alternative Diversity Results

https://www.worldagroforestry.org/output/tree-diversity-analysis

diversityresult 27

Description

Provides alternative methods of obtaining results on diversity statistics than provided directly by
functions diversity, fisher.alpha, specpool and specnumber (all from vegan), although these
same functions are called. Some other statistics are also calculated such as the reciprocal Berger-
Parker diversity index and abundance (not a diversity statistic). The statistics can be calculated for
the entire community, for each site separately, the mean of the sites can be calculated or a jackknife
estimate can be calculated for the community.

Usage

diversityresult(x, y = NULL, factor = NULL, level = NULL,
index=c("Shannon", "Simpson", "inverseSimpson", "Logalpha", "Berger",

"simpson.unb", "simpson.unb.inverse",
"richness", "abundance", "Jevenness", "Eevenness",
"jack1", "jack2", "chao", "boot"),

method=c("pooled", "each site", "mean", "sd", "max", "jackknife"),
sortit = FALSE, digits = 8)

diversityvariables(x, y, digits=8)

diversitycomp(x, y = NULL,
factor1 = NULL ,factor2 = NULL,
index=c("Shannon", "Simpson", "inverseSimpson", "Logalpha", "Berger",

"simpson.unb", "simpson.unb.inverse",
"richness", "abundance", "Jevenness", "Eevenness",
"jack1", "jack2", "chao", "boot"),

method=c("pooled", "mean", "sd", "max", "jackknife"),
sortit=FALSE, digits=8)

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

y Environmental data frame.

factor Variable of the environmental data frame that defines subsets to calculate diver-
sity statistics for.

level Level of the variable to create the subset to calculate diversity statistics.

index Type of diversity statistic with "richness" to calculate species richness, "abun-
dance" to calculate abundance, "Shannon" to calculate the Shannon diversity in-
dex, "Simpson" to calculate 1-Simpson concentration index, "inverseSimpson"
to calculate the reciprocal Simpson diversity index, "simpson.unb" to calculate
the unbiased Simpson index, "simpson.unb.inverse" to calculate the unbiased
inverse simpson index, "Logalpha" to calculate the log series alpha diversity in-
dex, "Berger" to calculate the reciprocal Berger-Parker diversity index, "Jeven-
ness" to calculate one Shannon evenness index, "Eevenness" to calculate another
Shannon evenness index, "jack1" to calculate the first-order jackknife gamma

28 diversityresult

diversity estimator, "jack2" to calculate the second-order jackknife gamma di-
versity estimator, "chao" to calculate the Chao gamma diversity estimator and
"boot" to calculate the bootstrap gamma diversity estimator.

method Method of calculating the diversity statistics: "pooled" calculates the diversity
of the entire community (all sites pooled), "each site" calculates diversity for
each site separetly, "mean" calculates the average diversity of the sites, "sd" cal-
culates the standard deviation of the diversity of the sites, "max" calculates the
maximum diversity of the sites, whereas "jackknife" calculates the jackknifed
diversity for the entire data frame.

sortit Sort the sites by increasing values of the diversity statistic.

digits Number of digits in the results.

factor1 Variable of the environmental data frame that defines subsets to calculate diver-
sity statistics for.

factor2 Optional second variable of the environmental data frame that defines subsets
to calculate diversity statistics for in a crosstabulation with the other variable of
the environmental data frame.

Details

These functions provide some alternative methods of obtaining results with diversity statistics, al-
though functions diversity, fisher.alpha, specpool, estimateR and specnumber (all from
vegan) are called to calculate the various statistics.

Function diversityvariables adds variables to the environmental dataset (richness, Shannon,
Simpson, inverseSimpson, Logalpha, Berger, Jevenness, Eevenness).

The reciprocal Berger-Parker diversity index is the reciprocal of the proportional abundance of the
most dominant species.

J-evenness is calculated as: H / ln(S) where H is the Shannon diversity index and S the species
richness.

E-evenness is calculated as: exp(H) / S where H is the Shannon diversity index and S the species
richness.

The method of calculating the diversity statistics include following options: "all" calculates the
diversity of the entire community (all sites pooled together), "s" calculates the diversity of each site
separatedly, "mean" calculates the average diversity of the sites, whereas "Jackknife" calculates the
jackknifed diversity for the entire data frame. Methods "s" and "mean" are not available for function
diversitycomp. Gamma diversity estimators assume that the method is "all".

Functions diversityresult and diversitycomp allow to calculate diversity statistics for subsets
of the community and environmental data sets. Function diversityresult calculates the diversity
statistics for the specified level of a selected environmental variable. Function diversitycomp cal-
culates the diversity statistics for all levels of a selected environmental variable separatedly. When
a second environmental variable is provided, function diversitycomp calculates diversity statistics
as a crosstabulation of both variables.

Value

The functions provide alternative methods of obtaining diversity results. For function diversitycomp,
the number of sites is provided as "n".

diversityresult 29

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

Not run:

library(vegan)
data(dune.env)
data(dune)

diversityresult(dune, y=NULL, index="Shannon", method="each site",
sortit=TRUE, digits=5)

diversityresult(dune, y=dune.env, factor="Management", level="NM",
index="Shannon", method="each site",
sortit=TRUE, digits=5)

diversityresult(dune, y=NULL, index="Shannon", method="pooled", digits=5)
diversityresult(dune, y=dune.env, factor="Management", level="NM",

index="Shannon", method="pooled", digits=5)
diversityresult(dune, y=NULL, index="Shannon", method="mean",

digits=5)
diversityresult(dune, y=NULL, index="Shannon", method="sd",

digits=5)
diversityresult(dune, y=NULL, index="Shannon", method="jackknife",

digits=5)
diversityresult(dune, y=dune.env, factor="Management", level="NM",

index="Shannon", method="jackknife", digits=5)

diversitycomp(dune, y=dune.env, factor1="Moisture", index="Shannon",
method="pooled", sortit=TRUE)

diversitycomp(dune, y=dune.env, factor1="Moisture", index="Shannon",
method="mean", sortit=TRUE)

diversitycomp(dune, y=dune.env, factor1="Management", index="Shannon",
method="jackknife", sortit=TRUE)

diversitycomp(dune, y=dune.env, factor1="Management", factor2="Moisture",
index="Shannon", method="pooled", digits=6)

diversitycomp(dune, y=dune.env, factor1="Management", factor2="Moisture",
index="Shannon", method="mean", digits=6)

End(Not run)

https://www.worldagroforestry.org/output/tree-diversity-analysis

30 ensemble.analogue

ensemble.analogue Climate analogues from climatic distance raster layers.

Description

Function ensemble.analogue creates the map with climatic distance and provides the locations
of the climate analogues (defined as locations with smallest climatic distance to a reference cli-
mate). Function ensemble.analogue.object provides the reference values used by the prediction
function used by predict .

Usage

ensemble.analogue(x = NULL, analogue.object = NULL, analogues = 1,
RASTER.object.name = analogue.object$name, RASTER.stack.name = x@title,
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
limits = c(1, 5, 20, 50), limit.colours = c('red', 'orange', 'blue', 'grey'),
CATCH.OFF = FALSE)

ensemble.analogue.object(ref.location, future.stack, current.stack, name = "reference1",
method = "mahal", an = 10000, probs = c(0.025, 0.975), weights = NULL, z = 2)

Arguments

x RasterStack object (stack) containing all environmental layers (climatic vari-
ables) for which climatic distance should be calculated.

analogue.object

Object listing reference values for the environmental layers and additional pa-
rameters (covariance matrix for method = "mahal" or normalization parameters
for method = "quantile") that are used by the prediction function that is used
internally by predict. This object is created with ensemble.analogue.object.

analogues Number of analogue locations to be provided
RASTER.object.name

First part of the names of the raster file that will be generated, expected to iden-
tify the area and time period for which ranges were calculated

RASTER.stack.name

Last part of the names of the raster file that will be generated, expected to iden-
tify the predictor stack used

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.
RASTER.NAflag Value that is used to store missing data. See writeRaster.
limits Limits indicating the accumulated number of closest analogue sites. These lim-

its will correspond to different colours in the KML map. In the default setting,
the closest analogue will be coloured red and the second to fifth closest ana-
logues will be coloured orange.

ensemble.analogue 31

limit.colours Colours for the different limits based on number of analogues.

CATCH.OFF Disable calls to function tryCatch.

ref.location Location of the reference location for which analogues are searched for and from
which climatic distance will be calculated, typically available in 2-column (lon,
lat) dataframe; see also extract.

future.stack RasterStack object (stack) containing the environmental layers (climatic vari-
ables) to obtain the conditions of the reference location. For climate change
research, this RasterStack object corresponds to the future climatic conditions
of the reference location.

current.stack RasterStack object (stack) containing all environmental layers (climatic vari-
ables) for which climatic distance should be calculated. For climate change
research, this RasterStack object corresponds to the current climatic conditions
and range where climate analogues are searched for.

name Name of the object, expect to expected to identify the area and time period for
which ranges were calculated and where no novel conditions will be detected

method Method used to calculate climatic distance: method = "mahal" results in using
the Mahalanobis distance (mahalanobis); method = "quantile" results in di-
viding the differences between reference climatic values and climatic values in
the ’current’ raster by a quantile range obtained from the ’current’ raster; method
= "sd" results in dividing the differences between reference climatic values and
climatic values in the ’current’ raster by standard deviations obtained from the
’current’ raster; and method = "none" results in not dividing these differences.

an Number of randomly selected locations points to calculate the covariance matrix
(cov) to be used with mahalanobis, therefore only used for method = "mahal".
See also randomPoints.

probs Numeric vector of probabilities [0,1] as used by quantile). Only used for
method = "quantile".

weights Numeric vector of weights by which each variable (difference) should be multi-
plied by (can be used to give equal weight to 12 monthly rainfall values and 24
minimum and maximum monthly temperature values). Not used for method =
"mahal".

z Parameter used as exponent for differences calculated between reference cli-
matic variables and variables in the ’current’ raster and reciprocal exponent for
the sum of all differences. Default value of 2 corresponds to the Euclidean dis-
tance. Not used for method = "mahal".

Details

Function ensemble.analogues maps the climatic distance from reference values determined by
ensemble.analogues.object and provides the locations of the analogues closest analogues.

The method = "mahal" uses the Mahalanobis distance as environmental (climatic) distance: mahalanobis.

Other methods use a normalization method to handle scale differences between environmental (cli-
matic) variables:

ClimaticDistance = (
∑

i(weighti ∗ (|Ti − Ci|/normi)
z))(1/z)

32 ensemble.analogue

where Ti are the target values for environmental (climatic) variable i, Ci are the values in the current
environmental layers where analogues are searched for, weighti are the weights for environmental
variable i, and normi are the normalization parameters for environmental variable i

Value

Function ensemble.analogue.object returns a list with following objects:

name name for the reference location

ref.location coordinates of the reference location

stack.name name for time period for which values are extracted from the future.stack

method method used for calculating climatic distance

target.values target environmental values to select analogues for through minimum climatic
distance

cov.mahal covariance matrix

norm.values parameters by which each difference between target and ’current’ value will be
divided

weight.values weights by which each difference between target and ’current’ value will be
multiplied

z parameter to be used as exponent for differences between target and ’current’
values

Author(s)

Roeland Kindt (World Agroforestry Centre) and Eike Luedeling (World Agroforestry Centre)

References

Bos, Swen PM, et al. "Climate analogs for agricultural impact projection and adaptation-a reliability
test." Frontiers in Environmental Science 3 (2015): 65. Luedeling, Eike, and Henry Neufeldt.
"Carbon sequestration potential of parkland agroforestry in the Sahel." Climatic Change 115.3-4
(2012): 443-461.

See Also

ensemble.novel

Examples

Not run:
get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio7", "bio8",

"bio12", "bio16", "bio17"))
predictors

ensemble.analogue 33

predictors@title <- "base"

instead of searching for current analogue of future climate conditions,
search for analogue in southern hemisphere
future.stack <- stack(crop(predictors, y=extent(-125, -32, 0, 40)))
future.stack@title <- "north"
current.stack <- stack(crop(predictors, y=extent(-125, -32, -56, 0)))
current.stack@title <- "south"

reference location in Florida
in this case future.stack and current.stack are both current
ref.loc <- data.frame(t(c(-80.19, 25.76)))
names(ref.loc) <- c("lon", "lat")

climate analogue analysis based on the Mahalanobis distance
Florida.object.mahal <- ensemble.analogue.object(ref.location=ref.loc,

future.stack=future.stack, current.stack=current.stack,
name="FloridaMahal", method="mahal", an=10000)

Florida.object.mahal

Florida.analogue.mahal <- ensemble.analogue(x=current.stack,
analogue.object=Florida.object.mahal, analogues=50)

Florida.analogue.mahal

climate analogue analysis based on the Euclidean distance and dividing each variable by the sd
Florida.object.sd <- ensemble.analogue.object(ref.location=ref.loc,

future.stack=future.stack, current.stack=current.stack,
name="FloridaSD", method="sd", z=2)

Florida.object.sd

Florida.analogue.sd <- ensemble.analogue(x=current.stack,
analogue.object=Florida.object.sd, analogues=50)

Florida.analogue.sd

plot analogues on climatic distance maps
par(mfrow=c(1,2))
analogue.file <- paste(getwd(), "//ensembles//analogue//FloridaMahal_south_analogue.tif", sep="")
plot(raster(analogue.file), main="Mahalanobis climatic distance")
points(Florida.analogue.sd[3:50, "lat"] ~ Florida.analogue.sd[3:50, "lon"],

pch=1, col="red", cex=1)
points(Florida.analogue.mahal[3:50, "lat"] ~ Florida.analogue.mahal[3:50, "lon"],

pch=3, col="black", cex=1)
points(Florida.analogue.mahal[2, "lat"] ~ Florida.analogue.mahal[2, "lon"],

pch=22, col="blue", cex=2)
legend(x="topright", legend=c("closest", "Mahalanobis", "SD"), pch=c(22, 3 , 1),

col=c("blue" , "black", "red"))

analogue.file <- paste(getwd(), "//ensembles//analogue//FloridaSD_south_analogue.tif", sep="")
plot(raster(analogue.file), main="Climatic distance normalized by standard deviation")
points(Florida.analogue.mahal[3:50, "lat"] ~ Florida.analogue.mahal[3:50, "lon"],

pch=3, col="black", cex=1)
points(Florida.analogue.sd[3:50, "lat"] ~ Florida.analogue.sd[3:50, "lon"],

pch=1, col="red", cex=1)

34 ensemble.batch

points(Florida.analogue.sd[2, "lat"] ~ Florida.analogue.sd[2, "lon"],
pch=22, col="blue", cex=2)

legend(x="topright", legend=c("closest", "Mahalanobis", "SD"), pch=c(22, 3 , 1),
col=c("blue" , "black", "red"))

par(mfrow=c(1,1))

End(Not run)

ensemble.batch Suitability mapping based on ensembles of modelling algorithms:
batch processing

Description

The main function allows for batch processing of different species and different environmental
RasterStacks. The function makes internal calls to ensemble.calibrate.weights, ensemble.calibrate.models
and ensemble.raster.

Usage

ensemble.batch(x = NULL, xn = c(x),
species.presence = NULL, species.absence = NULL,
presence.min = 20, thin.km = 0.1,
an = 1000, excludep = FALSE, target.groups = FALSE,
get.block = FALSE, block.default = runif(1) > 0.5, get.subblocks = FALSE,
SSB.reduce = FALSE, CIRCLES.d = 250000,
k.splits = 4, k.test = 0,
n.ensembles = 1,
VIF.max = 10, VIF.keep = NULL,
SINK = FALSE, CATCH.OFF = FALSE,
RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
models.save = FALSE,
threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE,
ENSEMBLE.best = 0, ENSEMBLE.min = 0.7, ENSEMBLE.exponent = 1,
ENSEMBLE.weight.min = 0.05,
input.weights = NULL,
MAXENT = 1, MAXNET = 1, MAXLIKE = 1, GBM = 1, GBMSTEP = 0, RF = 1, CF = 1,
GLM = 1, GLMSTEP = 1, GAM = 1, GAMSTEP = 1, MGCV = 1, MGCVFIX = 0,
EARTH = 1, RPART = 1, NNET = 1, FDA = 1, SVM = 1 , SVME = 1, GLMNET = 1,
BIOCLIM.O = 0, BIOCLIM = 1, DOMAIN = 1, MAHAL = 1, MAHAL01 = 1,
PROBIT = FALSE,
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL, dummy.vars = NULL,
formulae.defaults = TRUE, maxit = 100,
MAXENT.a = NULL, MAXENT.an = 10000,
MAXENT.path = paste(getwd(), "/models/maxent", sep=""),

ensemble.batch 35

MAXNET.classes = "default", MAXNET.clamp = FALSE, MAXNET.type = "cloglog",
MAXLIKE.formula = NULL, MAXLIKE.method = "BFGS",
GBM.formula = NULL, GBM.n.trees = 2001,
GBMSTEP.tree.complexity = 5, GBMSTEP.learning.rate = 0.005,
GBMSTEP.bag.fraction = 0.5, GBMSTEP.step.size = 100,
RF.formula = NULL, RF.ntree = 751, RF.mtry = floor(sqrt(raster::nlayers(x))),
CF.formula = NULL, CF.ntree = 751, CF.mtry = floor(sqrt(raster::nlayers(x))),
GLM.formula = NULL, GLM.family = binomial(link = "logit"),

GLMSTEP.steps = 1000, STEP.formula = NULL, GLMSTEP.scope = NULL, GLMSTEP.k = 2,
GAM.formula = NULL, GAM.family = binomial(link = "logit"),
GAMSTEP.steps = 1000, GAMSTEP.scope = NULL, GAMSTEP.pos = 1,
MGCV.formula = NULL, MGCV.select = FALSE,
MGCVFIX.formula = NULL,
EARTH.formula = NULL,
EARTH.glm = list(family = binomial(link = "logit"), maxit = maxit),
RPART.formula = NULL, RPART.xval = 50,
NNET.formula = NULL, NNET.size = 8, NNET.decay = 0.01,
FDA.formula = NULL,
SVM.formula = NULL, SVME.formula = NULL,
GLMNET.nlambda = 100, GLMNET.class = FALSE,
BIOCLIM.O.fraction = 0.9,
MAHAL.shape = 1)

ensemble.mean(RASTER.species.name = "Species001", RASTER.stack.name = "base",
positive.filters = c("tif", "_ENSEMBLE_"), negative.filters = c("xml"),
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
abs.breaks = 6, pres.breaks = 6, sd.breaks = 9,
p = NULL, a = NULL,
pt = NULL, at = NULL,
threshold = -1,
threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE)

ensemble.plot(RASTER.species.name = "Species001", RASTER.stack.name = "base",
plot.method=c("suitability", "presence", "count",
"consensussuitability", "consensuspresence", "consensuscount", "consensussd"),

dev.new.width = 7, dev.new.height = 7,
main = paste(RASTER.species.name, " ", plot.method,

" for ", RASTER.stack.name, sep=""),
positive.filters = c("tif"), negative.filters = c("xml"),
p=NULL, a=NULL,
threshold = -1,
threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE,
abs.breaks = 6, abs.col = NULL,
pres.breaks = 6, pres.col = NULL,
sd.breaks = 9, sd.col = NULL,
absencePresence.col = NULL,

36 ensemble.batch

count.col = NULL, ...)

Arguments

x RasterStack object (stack) containing all layers to calibrate an ensemble.

xn RasterStack object (stack) containing all layers that correspond to explanatory
variables of an ensemble calibrated earlier with x. Several RasterStack objects
can be provided in a format as c(stack1, stack2, stack3); these will be used
sequentially. See also predict.

species.presence

presence points used for calibrating the suitability models, available in 3-column
(species, x, y) or (species, lon, lat) dataframe

species.absence

background points used for calibrating the suitability models, either available in
a 3-column (species, x, y) or (species, lon, lat), or available in a 2-column (x, y)
or (lon, lat) dataframe. In case of a 2-column dataframe, the same background
locations will be used for all species.

presence.min minimum number of presence locations for the organism (if smaller, no models
are fitted).

thin.km Threshold for minimum distance (km) between presence point locations for fo-
cal species for model calibrations in each run. A new data set is randomly se-
lected via ensemble.spatialThin in each of ensemble run.

an number of background points for calibration to be selected with randomPoints
in case argument a or species.absence is missing

excludep parameter that indicates (if TRUE) that presence points will be excluded from the
background points; see also randomPoints

target.groups Parameter that indicates (if TRUE) that the provided background points (argument
a) represent presence points from a target group sensu Phillips et al. 2009 (these
are species that are all collected or observed using the same methods or equip-
ment). Setting the parameter to TRUE results in selecting the centres of cells of
the target groups as background points, while avoiding to select the same cells
twice. Via argument excludep, it is possible to filter out cells with presence
observations (argument p).

get.block if TRUE, instead of creating k-fold cross-validation subsets randomly (kfold),
create 4 subsets of presence and background locations with get.block.

block.default if FALSE, instead of making the first division of presence point locations along
the y-coordinates (latitude) as in get.block, make the first division along the
x-coordinates (longitude).

get.subblocks if TRUE, then 4 subsets of presence and background locations are generated in
a checkerboard configuration by applying get.block to each of the 4 blocks
generated by get.block in a first step.

SSB.reduce If TRUE, then new background points that will be used for evaluationg the suit-
ability models will be selected (randomPoints) in circular neighbourhoods (cre-
ated with circles) around presence locations (p and pt). The abbreviation of
SSB refers to spatial sorting bias; see also ssb.

ensemble.batch 37

CIRCLES.d Radius in m of circular neighbourhoods (created with circles) around presence
locations (p and pt).

k If larger than 1, the mumber of groups to split between calibration (k-1) and
evaluation (1) data sets (for example, k=5 results in 4/5 of presence and back-
ground points to be used for calibrating the models, and 1/5 of presence and
background points to be used for evaluating the models). See also kfold.

k.splits If larger than 1, the number of splits for the ensemble.calibrate.weights
step in batch processing. See also kfold.

k.test If larger than 1, the mumber of groups to split between calibration (k-1) and
evaluation (1) data sets when calibrating the final models (for example, k=5
results in 4/5 of presence and background points to be used for calibrating the
models, and 1/5 of presence and background points to be used for evaluating the
models). See also kfold.

n.ensembles If larger than 1, the number of different ensembles generated per species in batch
processing.

VIF.max Maximum Variance Inflation Factor of variables; see ensemble.VIF.

VIF.keep character vector with names of the variables to be kept; see ensemble.VIF.

SINK Append the results to a text file in subfolder ’outputs’ (if TRUE). The name of
file is based on species names. In case a file already exists, then results are
appended. See also sink.

CATCH.OFF Disable calls to function tryCatch.

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.

models.save Save the list with model details to a file (if TRUE). The filename will be species.name
with extension .models; this file will be saved in subfolder of models. When
loading this file, model results will be available as ensemble.models.

threshold.method

Method to calculate the threshold between predicted absence and presence; pos-
sibilities include spec_sens (highest sum of the true positive rate and the true
negative rate), kappa (highest kappa value), no_omission (highest threshold
that corresponds to no omission), prevalence (modeled prevalence is closest to
observed prevalence) and equal_sens_spec (equal true positive rate and true
negative rate). See threshold. Options specific to the BiodiversityR imple-
mentation are: threshold.mean (resulting in calculating the mean value of
spec_sens, equal_sens_spec and prevalence) and threshold.min (result-
ing in calculating the minimum value of spec_sens, equal_sens_spec and
prevalence).

threshold.sensitivity

Sensitivity value for threshold.method = 'sensitivity'. See threshold.
threshold.PresenceAbsence

If TRUE calculate thresholds with the PresenceAbsence package. See optimal.thresholds.

38 ensemble.batch

ENSEMBLE.best The number of individual suitability models to be used in the consensus suitabil-
ity map (based on a weighted average). In case this parameter is smaller than 1
or larger than the number of positive input weights of individual models, then
all individual suitability models with positive input weights are included in the
consensus suitability map. In case a vector is provided, ensemble.strategy is
called internally to determine weights for the ensemble model.

ENSEMBLE.min The minimum input weight (typically corresponding to AUC values) for a model
to be included in the ensemble. In case a vector is provided, function ensemble.strategy
is called internally to determine weights for the ensemble model.

ENSEMBLE.exponent

Exponent applied to AUC values to convert AUC values into weights (for exam-
ple, an exponent of 2 converts input weights of 0.7, 0.8 and 0.9 into 0.7^2=0.49,
0.8^2=0.64 and 0.9^2=0.81). See details.

ENSEMBLE.weight.min

The minimum output weight for models included in the ensemble, applying to
weights that sum to one. Note that ENSEMBLE.min typically refers to input AUC
values.

input.weights array with numeric values for the different modelling algorithms; if NULL then
values provided by parameters such as MAXENT and GBM will be used. As an
alternative, the output from ensemble.calibrate.weights can be used.

MAXENT Input weight for a maximum entropy model (maxent). (Only weights > 0 will
be used.)

MAXNET number: if larger than 0, then a maximum entropy model (maxnet) will be fitted
among ensemble

MAXLIKE Input weight for a maxlike model (maxlike). (Only weights > 0 will be used.)

GBM Input weight for a boosted regression trees model (gbm). (Only weights > 0 will
be used.)

GBMSTEP Input weight for a stepwise boosted regression trees model (gbm.step). (Only
weights > 0 will be used.)

RF Input weight for a random forest model (randomForest). (Only weights > 0
will be used.)

CF number: if larger than 0, then a random forest model (cforest) will be fitted
among ensemble

GLM Input weight for a generalized linear model (glm). (Only weights > 0 will be
used.)

GLMSTEP Input weight for a stepwise generalized linear model (stepAIC). (Only weights
> 0 will be used.)

GAM Input weight for a generalized additive model (gam). (Only weights > 0 will be
used.)

GAMSTEP Input weight for a stepwise generalized additive model (step.gam). (Only
weights > 0 will be used.)

MGCV Input weight for a generalized additive model (gam). (Only weights > 0 will be
used.)

ensemble.batch 39

MGCVFIX number: if larger than 0, then a generalized additive model with fixed d.f. re-
gression splines (gam) will be fitted among ensemble

EARTH Input weight for a multivariate adaptive regression spline model (earth). (Only
weights > 0 will be used.)

RPART Input weight for a recursive partioning and regression tree model (rpart). (Only
weights > 0 will be used.)

NNET Input weight for an artificial neural network model (nnet). (Only weights > 0
will be used.)

FDA Input weight for a flexible discriminant analysis model (fda). (Only weights >
0 will be used.)

SVM Input weight for a support vector machine model (ksvm). (Only weights > 0 will
be used.)

SVME Input weight for a support vector machine model (svm). (Only weights > 0 will
be used.)

GLMNET Input weight for a GLM with lasso or elasticnet regularization (glmnet). (Only
weights > 0 will be used.)

BIOCLIM.O Input weight for the original BIOCLIM algorithm (ensemble.bioclim). (Only
weights > 0 will be used.)

BIOCLIM Input weight for the BIOCLIM algorithm (bioclim). (Only weights > 0 will be
used.)

DOMAIN Input weight for the DOMAIN algorithm (domain). (Only weights > 0 will be
used.)

MAHAL Input weight for the Mahalonobis algorithm (mahal). (Only weights > 0 will be
used.)

MAHAL01 Input weight for the Mahalanobis algorithm (mahal), using a transformation
method afterwards whereby output is within the range between 0 and 1. (Only
weights > 0 will be used.)

PROBIT If TRUE, then subsequently to the fitting of the individual algorithm (e.g. maxi-
mum entropy or GAM) a generalized linear model (glm) with probit link family=binomial(link="probit")
will be fitted to transform the predictions, using the previous predictions as ex-
planatory variable. This transformation results in all model predictions to be
probability estimates.

Yweights chooses how cases of presence and background (absence) are weighted; "BIOMOD"
results in equal weighting of all presence and all background cases, "equal" re-
sults in equal weighting of all cases. The user can supply a vector of weights
similar to the number of cases in the calibration data set.

layer.drops vector that indicates which layers should be removed from RasterStack x. See
also addLayer.

factors vector that indicates which variables are factors; see also prepareData

dummy.vars vector that indicates which variables are dummy variables (influences formulae
suggestions)

formulae.defaults

Suggest formulae for most of the models (if TRUE). See also ensemble.formulae.

40 ensemble.batch

maxit Maximum number of iterations for some of the models. See also glm.control,
gam.control, gam.control and nnet.

MAXENT.a background points used for calibrating the maximum entropy model (maxent),
typically available in 2-column (lon, lat) dataframe; see also prepareData and
extract.

MAXENT.an number of background points for calibration to be selected with randomPoints
in case argument MAXENT.a is missing. When used with the ensemble.batch
function, the same background locations will be used for each of the species
runs; this implies that for each species, presence locations are not excluded from
the background data for this function.

MAXENT.path path to the directory where output files of the maximum entropy model are
stored; see also maxent

MAXNET.classes continuous feature classes, either "default" or any subset of "lqpht" (linear, quadratic,
product, hinge, threshold). Note that the "default" option chooses feature classes
based on the number of presence locations as "l" (< 10 locations), "lq" (10 - 14
locations), "lqh" (15 - 79 locations) or "lqph" (> 79 locations). See also maxnet.

MAXNET.clamp restrict predictors and features to the range seen during model training; see also
predict.maxnet

MAXNET.type type of response required; see also predict.maxnet

MAXLIKE.formula

formula for the maxlike algorithm; see also maxlike

MAXLIKE.method method for the maxlike algorithm; see also optim

GBM.formula formula for the boosted regression trees algorithm; see also gbm

GBM.n.trees total number of trees to fit for the boosted regression trees model; see also gbm

GBMSTEP.tree.complexity

complexity of individual trees for stepwise boosted regression trees; see also
gbm.step

GBMSTEP.learning.rate

weight applied to individual trees for stepwise boosted regression trees; see also
gbm.step

GBMSTEP.bag.fraction

proportion of observations used in selecting variables for stepwise boosted re-
gression trees; see also gbm.step

GBMSTEP.step.size

number of trees to add at each cycle for stepwise boosted regression trees (should
be small enough to result in a smaller holdout deviance than the initial number
of trees [50]); see also gbm.step

RF.formula formula for the random forest algorithm; see also randomForest

RF.ntree number of trees to grow for random forest algorithm; see also randomForest

RF.mtry number of variables randomly sampled as candidates at each split for random
forest algorithm; see also randomForest

CF.formula formula for random forest algorithm; see also cforest

CF.ntree number of trees to grow in a forest; see also cforest_control

ensemble.batch 41

CF.mtry number of input variables randomly sampled as candidates at each node for
random forest like algorithms; see also cforest_control

GLM.formula formula for the generalized linear model; see also glm

GLM.family description of the error distribution and link function for the generalized linear
model; see also glm

GLMSTEP.steps maximum number of steps to be considered for stepwise generalized linear
model; see also stepAIC

STEP.formula formula for the "starting model" to be considered for stepwise generalized linear
model; see also stepAIC

GLMSTEP.scope range of models examined in the stepwise search; see also stepAIC

GLMSTEP.k multiple of the number of degrees of freedom used for the penalty (only k = 2
gives the genuine AIC); see also stepAIC

GAM.formula formula for the generalized additive model; see also gam

GAM.family description of the error distribution and link function for the generalized additive
model; see also gam

GAMSTEP.steps maximum number of steps to be considered in the stepwise generalized additive
model; see also step.gam

GAMSTEP.scope range of models examined in the step-wise search n the stepwise generalized
additive model; see also step.gam

GAMSTEP.pos parameter expected to be set to 1 to allow for fitting of the stepwise generalized
additive model

MGCV.formula formula for the generalized additive model; see also gam

MGCV.select if TRUE, then the smoothing parameter estimation that is part of fitting can com-
pletely remove terms from the model; see also gam

MGCVFIX.formula

formula for the generalized additive model with fixed d.f. regression splines;
see also gam (the default formulae sets "s(..., fx=TRUE, ...)"; see also s)

EARTH.formula formula for the multivariate adaptive regression spline model; see also earth

EARTH.glm list of arguments to pass on to glm; see also earth

RPART.formula formula for the recursive partioning and regression tree model; see also rpart

RPART.xval number of cross-validations for the recursive partioning and regression tree model;
see also rpart.control

NNET.formula formula for the artificial neural network model; see also nnet

NNET.size number of units in the hidden layer for the artificial neural network model; see
also nnet

NNET.decay parameter of weight decay for the artificial neural network model; see also nnet

FDA.formula formula for the flexible discriminant analysis model; see also fda

SVM.formula formula for the support vector machine model; see also ksvm

SVME.formula formula for the support vector machine model; see also svm

GLMNET.nlambda The number of lambda values; see also glmnet

42 ensemble.batch

GLMNET.class Use the predicted class to calculate the mean predictions of GLMNET; see also
predict.glmnet

BIOCLIM.O.fraction

Fraction of range representing the optimal limits, default value of 0.9 as in the
original BIOCLIM software (ensemble.bioclim).

MAHAL.shape parameter that influences the transformation of output values of mahal.
RASTER.species.name

First part of the names of the raster files, expected to identify the modelled
species (or organism).

RASTER.stack.name

Last part of the names of the raster files, expected to identify the predictor stack
used.

positive.filters

vector that indicates parts of filenames for files that will be included in the cal-
culation of the mean probability values

negative.filters

vector that indicates parts of filenames for files that will not be included in the
calculation of the mean probability values

abs.breaks Number of breaks in the colouring scheme for absence (only applies to suitability
mapping).

pres.breaks Number of breaks in the colouring scheme for presence (only applies to suitability
mapping).

sd.breaks Number of breaks in the colouring scheme for standard deviation (only applies
to sd mapping).

p presence points used for calibrating the suitability models, typically available in
2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

a background points used for calibrating the suitability models, typically available
in 2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

pt presence points used for evaluating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData

at background points used for calibrating the suitability models, typicall available
in 2-column (lon, lat) dataframe; see also prepareData and extract

threshold Threshold value that will be used to distinguish between presence and absence.
If < 0, then a threshold value will be calculated from the provided presence p
and absence a locations.

plot.method Choice of maps to be plotted: suitability plots suitability maps, presence
plots presence-absence maps, count plots count maps (count of number of al-
gorithms or number of ensembles predicting presence) and sd plots standard
deviation maps.

dev.new.width Width for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

dev.new.height Heigth for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

main main title for the plots.

ensemble.batch 43

abs.col specify colours for absence (see examples on how not to plot areas where the
species is predicted absent)

pres.col specify colours for presence
sd.col specify colours for standard deviation
absencePresence.col

specify colours for absence - presence maps (see examples on how not to plot
areas where the species is predicted absent)

count.col specify colours for number of algorithms or ensembles (see examples on how
not to plot areas where the species is predicted absent)

... Other items passed to function plot.

Details

This function allows for batch processing of different species and different environmental Raster-
Stacks. The function makes internal calls to ensemble.spatialThin, ensemble.VIF, ensemble.calibrate.weights,
ensemble.calibrate.models and ensemble.raster.

Different ensemble runs allow for different random selection of k-fold subsets, background loca-
tions or spatial thinning of presence locations.

ensemble.calibrate.weights results in a cross-validation procedure whereby the data set is split
in calibration and testing subsets and the best weights for the ensemble model are determined (in-
cluding the possibility for weights = 0).

ensemble.calibrate.models is the step whereby models are calibrated using all the available
presence data.

ensemble.raster is the final step whereby raster layers are produced for the ensemble model.

Function ensemble.mean results in raster layers that are based on the summary of several ensemble
layers: the new ensemble has probability values that are the mean of the probabilities of the different
raster layers, the presence-absence threshold is derived for this new ensemble layer, whereas the
count reflects the number of ensemble layers where presence was predicted. Note the assumption
that input probabilities are scaled between 0 and 1000 (as the output from ensemble.raster),
whereas thresholds are based on actual probabilities (scaled between 0 and 1). After the mean
probability has been calculated, the niche overlap (nicheOverlap) with the different input layers is
calculated.

Function ensemble.plot plots suitability, presence-absence or count maps. In the case of suit-
ability maps, the presence-absence threshold needs to be provide as suitabilities smaller than the
threshold will be coloured red to orange, whereas suitabilities larger than the threshold will be
coloured light blue to dark blue.

Value

The function finally results in ensemble raster layers for each species, including the fitted values
for the ensemble model, the estimated presence-absence and the count of the number of submodels
prediction presence and absence.

Author(s)

Roeland Kindt (World Agroforestry Centre), Eike Luedeling (World Agroforestry Centre) and Evert
Thomas (Bioversity International)

44 ensemble.batch

References

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Buisson L, Thuiller W, Casajus N, Lek S and Grenouillet G. 2010. Uncertainty in ensemble fore-
casting of species distribution. Global Change Biology 16: 1145-1157

Phillips SJ, Dudik M, Elith J et al. 2009. Sample selection bias and presence-only distribution
models: implications for background and pseudo-absence data. Ecological Applications 19: 181-
197.

See Also

ensemble.calibrate.weights, ensemble.calibrate.models, ensemble.raster

Examples

Not run:
based on examples in the dismo package

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')
pres[,1] <- rep("Bradypus", nrow(pres))

choose background points
background <- randomPoints(predictors, n=1000, extf = 1.00)

north and south for new predictions (as if new climates)
ext2 <- extent(-90, -32, 0, 23)
predictors2 <- crop(predictors, y=ext2)
predictors2 <- stack(predictors2)
predictors2@title <- "north"

ext3 <- extent(-90, -32, -33, 0)
predictors3 <- crop(predictors, y=ext3)
predictors3 <- stack(predictors3)
predictors3@title <- "south"

fit 3 ensembles with batch processing, choosing the best ensemble model based on the
average weights of 4-fold split of calibration and testing data
final models use all available presence data and average weights determined by the

https://doi.org/10.1016/j.envsoft.2017.11.009

ensemble.batch 45

ensemble.calibrate.weights function (called internally)
batch processing can handle several species by using 3-column species.presence and
species.absence data sets
note that these calculations can take a while

ensemble.nofactors <- ensemble.batch(x=predictors,
xn=c(predictors, predictors2, predictors3),
species.presence=pres,
species.absence=background,
k.splits=4, k.test=0,
n.ensembles=3,
SINK=TRUE,
layer.drops=c("biome"),
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
PROBIT=TRUE,
Yweights="BIOMOD",
formulae.defaults=TRUE)

summaries for the 3 ensembles for the species
summaries are based on files in folders ensemble/suitability,
ensemble/presence and ensemble/count
ensemble.mean is used internally in ensemble.batch

ensemble.mean(RASTER.species.name="Bradypus", RASTER.stack.name="base",
p=pres, a=background)

plot mean suitability without specifying colours
plot1 <- ensemble.plot(RASTER.species.name="Bradypus", RASTER.stack.name="base",

plot.method="consensussuitability",
p=pres, a=background, abs.breaks=4, pres.breaks=9)

plot1

only colour the areas where species is predicted to be present
option is invoked by having no absence breaks
same colourscheme as \url{http://www.worldagroforestry.org/atlas-central-america}
LAatlascols <- grDevices::colorRampPalette(c("#FFFF80", "#38E009","#1A93AB", "#0C1078"))
plot2 <- ensemble.plot(RASTER.species.name="Bradypus", RASTER.stack.name="base",

plot.method="consensussuitability",
p=pres, a=background, abs.breaks=0, pres.breaks=9, pres.col=LAatlascols(8))

plot2

only colour the areas where species is predicted to be present
option is invoked by only setting one colour for absence-presence
plot3 <- ensemble.plot(RASTER.species.name="Bradypus", RASTER.stack.name="base",

plot.method="consensuspresence",
absencePresence.col=c("#90EE90"))

only colour presence area by specifying colours > 0

46 ensemble.bioclim

plot4 <- ensemble.plot(RASTER.species.name="Bradypus", RASTER.stack.name="base",
plot.method="consensuscount",
count.col=LAatlascols(3))

End(Not run)

ensemble.bioclim Suitability mapping based on the BIOCLIM algorithm

Description

Implementation of the BIOCLIM algorithm more similar to the original BIOCLIM algorithm and
software than the implementation through bioclim. Function ensemble.bioclim creates the suit-
ability map. Function ensemble.bioclim.object provides the reference values used by the pre-
diction function used by predict .

Usage

ensemble.bioclim(x = NULL, bioclim.object = NULL,
RASTER.object.name = bioclim.object$species.name, RASTER.stack.name = x@title,
RASTER.format = "GTiff",
CATCH.OFF = FALSE)

ensemble.bioclim.object(x = NULL, p = NULL, fraction = 0.9,
quantiles = TRUE,
species.name = "Species001",
factors = NULL)

Arguments

x RasterStack object (stack) containing all environmental layers for which suit-
ability should be calculated, or alternatively a data.frame containing the biocli-
matic variables.

bioclim.object Object listing optimal and absolute minima and maxima for bioclimatic vari-
ables, used by the prediction function that is used internally by predict. This
object is created with ensemble.bioclim.object.

RASTER.object.name

First part of the names of the raster file that will be generated, expected to iden-
tify the species or crop for which ranges were calculated

RASTER.stack.name

Last part of the names of the raster file that will be generated, expected to iden-
tify the predictor stack used

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.

ensemble.bioclim 47

CATCH.OFF Disable calls to function tryCatch.

p presence points used for calibrating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData and extract.

fraction Fraction of range representing the optimal limits, default value of 0.9 as in the
original BIOCLIM software.

quantiles If TRUE then optimal limits are calculated as quantiles corresponding to 0.5-fraction/2
and 0.5+fraction/2 percentiles. If FALSE then optimal limits are calculated
from the normal distribution with mean - cutoff*sd and mean + cutoff*sd
with cutoff calculated as qnorm(0.5+fraction/2).

species.name Name by which the model results will be saved.

factors vector that indicates which variables are factors; these variables will be ignored
by the BIOCLIM algorithm

Details

Function ensemble.bioclim maps suitability for a species based on optimal (percentiles, typically
5 and 95 percent) and absolute (minimum to maximum) limits for bioclimatic variables. If all values
at a given location are within the optimal limits, suitability values are mapped as 1 (suitable). If
not all values are within the optimal limits, but all values are within the absolute limits, suitability
values are mapped as 0.5 (marginal). If not all values are within the absolute limits, suitability
values are mapped as 0 (unsuitable).

Function ensemble.bioclim.object calculates the optimal and absolute limits. Optimal limits
are calculated based on the parameter fraction, resulting in optimal limits that correspond to 0.5-
fraction/2 and 0.5+fraction/2 (the default value of 0.9 therefore gives a lower limit of 0.05 and a
upper limit of 0.95). Two methods are implemented to obtain optimal limits for the lower and upper
limits. One method (quantiles = FALSE) uses mean, standard deviation and a cutoff parameter
calculated with qnorm. The other method (quantiles = TRUE) calculates optimal limits via the
quantile function. To handle possible asymmetrical distributions better, the second method is
used as default.

When x is a RasterStack and point locations are provided, then optimal and absolute limits cor-
respond to the bioclimatic values observed for the locations. When x is RasterStack and point
locations are not provided, then optimal and absolute limits correspond to the bioclimatic values of
the RasterStack.

Applying to algorithm without providing point locations will provide results that are similar to the
ensemble.novel function, whereby areas plotted as not suitable will be the same areas that are
novel.

Value

Function ensemble.bioclim.object returns a list with following objects:

lower.limits vector with lower limits for each bioclimatic variable

upper.limits vector with upper limits for each bioclimatic variable

minima vector with minima for each bioclimatic variable

maxima vector with maxima for each bioclimatic variable

means vector with mean values for each bioclimatic variable

48 ensemble.bioclim

medians vector with median values for each bioclimatic variable

sds vector with standard deviation values for each bioclimatic variable

cutoff cutoff value for the normal distribution

fraction fraction of values within the optimal limits

species.name name for the species

Author(s)

Roeland Kindt (World Agroforestry Centre) with inputs from Trevor Booth (CSIRO)

References

Nix HA. 1986. A biogeographic analysis of Australian elapid snakes. In: Atlas of Elapid Snakes of
Australia. (Ed.) R. Longmore, pp. 4-15. Australian Flora and Fauna Series Number 7. Australian
Government Publishing Service: Canberra.

Booth TH, Nix HA, Busby JR and Hutchinson MF. 2014. BIOCLIM: the first species distribution
modelling package, its early applications and relevance to most current MAXENT studies. Diversity
and Distributions 20: 1-9

See Also

bioclim, ensemble.bioclim.graph and ensemble.novel

Examples

Not run:
get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

background <- dismo::randomPoints(predictors, n=100)
colnames(background)=c('lon', 'lat')

pres.dataset <- data.frame(extract(predictors, y=pres))
names(pres.dataset) <- names(predictors)
pres.dataset$biome <- as.factor(pres.dataset$biome)

Bradypus.bioclim <- ensemble.bioclim.object(predictors, quantiles=T,
p=pres, factors="biome", species.name="Bradypus")

ensemble.bioclim 49

Bradypus.bioclim
obtain the same results with a data.frame
Bradypus.bioclim2 <- ensemble.bioclim.object(pres.dataset, quantiles=T,

species.name="Bradypus")
Bradypus.bioclim2
obtain results for entire rasterStack
Bradypus.bioclim3 <- ensemble.bioclim.object(predictors, p=NULL, quantiles=T,

factors="biome", species.name="America")
Bradypus.bioclim3

ensemble.bioclim(x=predictors, bioclim.object=Bradypus.bioclim)
ensemble.bioclim(x=predictors, bioclim.object=Bradypus.bioclim3)

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))

rasterfull1 <- paste("ensembles//Bradypus_base_BIOCLIM_orig.tif", sep="")
raster::plot(raster(rasterfull1), breaks=c(-0.1, 0, 0.5, 1),

col=c("grey", "blue", "green"), main="original method")
rasterfull2 <- paste("ensembles//America_base_BIOCLIM_orig.tif", sep="")
raster::plot(raster(rasterfull2), breaks=c(-0.1, 0, 0.5, 1),

col=c("grey", "blue", "green"), main="America")

graphics::par(par.old)

compare with implementation bioclim in dismo
bioclim.dismo <- bioclim(predictors, p=pres)
rasterfull2 <- paste("ensembles//Bradypus_base_BIOCLIM_dismo.tif", sep="")
raster::predict(object=predictors, model=bioclim.dismo, na.rm=TRUE,

filename=rasterfull2, progress='text', overwrite=TRUE)

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))

raster::plot(raster(rasterfull1), breaks=c(-0.1, 0, 0.5, 1),
col=c("grey", "blue", "green"), main="original method")

raster::plot(raster(rasterfull2), main="dismo method")

graphics::par(par.old)

use dummy variables to deal with factors
predictors <- stack(predictor.files)
biome.layer <- predictors[["biome"]]
biome.layer
ensemble.dummy.variables(xcat=biome.layer, most.frequent=0, freq.min=1,

overwrite=TRUE)

predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
pattern='grd', full.names=TRUE)

predictors <- stack(predictor.files)
predictors.dummy <- subset(predictors, subset=c("biome_1", "biome_2", "biome_3",

"biome_4", "biome_5", "biome_7", "biome_8", "biome_9", "biome_10",
"biome_12", "biome_13", "biome_14"))

50 ensemble.bioclim.graph

predictors.dummy
predictors.dummy@title <- "base_dummy"

Bradypus.dummy <- ensemble.bioclim.object(predictors.dummy, quantiles=T,
p=pres, species.name="Bradypus")

Bradypus.dummy
ensemble.bioclim(x=predictors.dummy, bioclim.object=Bradypus.dummy)

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))

rasterfull3 <- paste("ensembles//Bradypus_base_dummy_BIOCLIM_orig.tif", sep="")
raster::plot(raster(rasterfull1), breaks=c(-0.1, 0, 0.5, 1), col=c("grey", "blue", "green"),

main="numeric predictors")
raster::plot(raster(rasterfull3), breaks=c(-0.1, 0, 0.5, 1), col=c("grey", "blue", "green"),

main="dummy predictors")

graphics::par(par.old)

End(Not run)

ensemble.bioclim.graph

Graphs of bioclimatic ranges of species and climates

Description

The main graph function makes graphs that show mean, median, minimum, maximum and lower
and upper limits for species or climates. The ensemble.bioclim.graph.data function creates
input data, using ensemble.bioclim.object internally.

Usage

ensemble.bioclim.graph(graph.data = NULL, focal.var = NULL,
species.climates.subset = NULL, cols = NULL,
var.multiply = 1.0, ref.lines = TRUE)

ensemble.bioclim.graph.data(
x=NULL, p=NULL, fraction = 0.9,
species.climate.name="Species001_base", factors = NULL)

Arguments

graph.data Input data with same variables as created by ensemble.bioclim.graph

focal.var Bioclimatic variable to be plotted in the graph
species.climates.subset

Character vector with subset of names of species and climates to be plotted in
the graph (if not provided, then all species and climates will be plotted).

ensemble.bioclim.graph 51

cols colours for the different species and climates

var.multiply multiplier for the values to be plotted; 0.1 should be used if the bioclimatic vari-
able was multiplied by 10 in the raster layers as in WorldClim and AFRICLIM

ref.lines If TRUE, then horizontal reference lines will be added for the minimum and max-
imum values of the species or climate plotted on the extreme left in the graph

x RasterStack object (stack) containing all environmental layers for which statis-
tics should be calculated; see also ensemble.bioclim.

p presence points used for calibrating the suitability models, typically available in
2-column (lon, lat) dataframe; see also ensemble.bioclim.

fraction Fraction of range representing the optimal limits, default value of 0.9 as in the
original BIOCLIM software; see also ensemble.bioclim.

species.climate.name

Name for the species or climate that will be used as label in the graph.

factors vector that indicates which variables are factors; these variables will be ignored
by the BIOCLIM algorithm; see also ensemble.bioclim.

Details

The function creates a graph that shows mean, median, minimum, maximum and upper and lower
limits for a range of species and climates. The graph can be useful in interpreting results of
ensemble.bioclim or ensemble.novel.

In the graphs, means are indicated by an asterisk (pch=8 and medians as larger circles (pch=1)).

Value

function ensemble.bioclim.graph.data creates a data frame, function ensemble.bioclim.graph
allows for plotting.

Author(s)

Roeland Kindt (World Agroforestry Centre)

See Also

ensemble.bioclim

Examples

Not run:

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))

52 ensemble.calibrate.models

predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

climates for north and south (use same process for future climates)
ext2 <- extent(-90, -32, 0, 23)
predictors2 <- crop(predictors, y=ext2)
predictors2 <- stack(predictors2)
predictors2@title <- "north"

ext3 <- extent(-90, -32, -33, 0)
predictors3 <- crop(predictors, y=ext3)
predictors3 <- stack(predictors3)
predictors3@title <- "south"

graph.data1 <- ensemble.bioclim.graph.data(predictors, p=pres,
factors="biome", species.climate.name="Bradypus")

graph.data2 <- ensemble.bioclim.graph.data(predictors, p=NULL,
factors="biome", species.climate.name="baseline")

graph.data3 <- ensemble.bioclim.graph.data(predictors2, p=NULL,
factors="biome", species.climate.name="north")

graph.data4 <- ensemble.bioclim.graph.data(predictors3, p=NULL,
factors="biome", species.climate.name="south")

graph.data.all <- rbind(graph.data1, graph.data2, graph.data3, graph.data4)

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(2, 2))

ensemble.bioclim.graph(graph.data.all, focal.var="bio5",
var.multiply=0.1, cols=c("black", rep("blue", 3)))

ensemble.bioclim.graph(graph.data.all, focal.var="bio6",
var.multiply=0.1, cols=c("black", rep("blue", 3)))

ensemble.bioclim.graph(graph.data.all, focal.var="bio16",
var.multiply=1.0, cols=c("black", rep("blue", 3)))

ensemble.bioclim.graph(graph.data.all, focal.var="bio17",
var.multiply=1.0, cols=c("black", rep("blue", 3)))

graphics::par(par.old)

End(Not run)

ensemble.calibrate.models

Suitability mapping based on ensembles of modelling algorithms: cal-
ibration of models and weights

ensemble.calibrate.models 53

Description

The basic function ensemble.calibrate.models allows to evaluate different algorithms for (species)
suitability modelling, including maximum entropy (MAXENT), boosted regression trees, random
forests, generalized linear models (including stepwise selection of explanatory variables), gener-
alized additive models (including stepwise selection of explanatory variables), multivariate adap-
tive regression splines, regression trees, artificial neural networks, flexible discriminant analysis,
support vector machines, the BIOCLIM algorithm, the DOMAIN algorithm and the Mahalanobis
algorithm. These sets of functions were developed in parallel with the biomod2 package, especially
for inclusion of the maximum entropy algorithm, but also to allow for a more direct integration with
the BiodiversityR package, more direct handling of model formulae and greater focus on mapping.
Researchers and students of species distribution are strongly encouraged to familiarize themselves
with all the options of the BIOMOD and dismo packages.

Usage

ensemble.calibrate.models(x = NULL, p = NULL,
a = NULL, an = 1000, excludep = FALSE, target.groups = FALSE,
k = 0, pt = NULL, at = NULL, SSB.reduce = FALSE, CIRCLES.d = 250000,
TrainData = NULL, TestData = NULL,
VIF = FALSE, COR = FALSE,
SINK = FALSE, PLOTS = FALSE, CATCH.OFF = FALSE,
threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE,
evaluations.keep = FALSE,
models.list = NULL, models.keep = FALSE,
models.save = FALSE, species.name = "Species001",
ENSEMBLE.tune = FALSE,
ENSEMBLE.best = 0, ENSEMBLE.min = 0.7, ENSEMBLE.exponent = 1,
ENSEMBLE.weight.min = 0.05,
input.weights = NULL,
MAXENT = 1, MAXNET = 1, MAXLIKE = 1, GBM = 1, GBMSTEP = 1, RF = 1, CF = 1,
GLM = 1, GLMSTEP = 1, GAM = 1, GAMSTEP = 1, MGCV = 1, MGCVFIX = 0,
EARTH = 1, RPART = 1, NNET = 1, FDA = 1, SVM = 1 , SVME = 1, GLMNET = 1,
BIOCLIM.O = 0, BIOCLIM = 1, DOMAIN = 1, MAHAL = 1, MAHAL01 = 1,
PROBIT = FALSE,
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL, dummy.vars = NULL,
formulae.defaults = TRUE, maxit = 100,
MAXENT.a = NULL, MAXENT.an = 10000,
MAXENT.path = paste(getwd(), "/models/maxent_", species.name, sep=""),
MAXNET.classes = "default", MAXNET.clamp = FALSE, MAXNET.type = "cloglog",
MAXLIKE.formula = NULL, MAXLIKE.method = "BFGS",
GBM.formula = NULL, GBM.n.trees = 2001,
GBMSTEP.gbm.x = 2:(ncol(TrainData.orig)), GBMSTEP.tree.complexity = 5,
GBMSTEP.learning.rate = 0.005, GBMSTEP.bag.fraction = 0.5,
GBMSTEP.step.size = 100,

RF.formula = NULL, RF.ntree = 751, RF.mtry = floor(sqrt(ncol(TrainData.vars))),
CF.formula = NULL, CF.ntree = 751, CF.mtry = floor(sqrt(ncol(TrainData.vars))),

54 ensemble.calibrate.models

GLM.formula = NULL, GLM.family = binomial(link = "logit"),
GLMSTEP.steps = 1000, STEP.formula = NULL, GLMSTEP.scope = NULL,
GLMSTEP.k = 2,
GAM.formula = NULL, GAM.family = binomial(link = "logit"),
GAMSTEP.steps = 1000, GAMSTEP.scope = NULL, GAMSTEP.pos = 1,
MGCV.formula = NULL, MGCV.select = FALSE,
MGCVFIX.formula = NULL,
EARTH.formula = NULL,
EARTH.glm = list(family = binomial(link = "logit"), maxit = maxit),
RPART.formula = NULL, RPART.xval = 50,
NNET.formula = NULL, NNET.size = 8, NNET.decay = 0.01,
FDA.formula = NULL,
SVM.formula = NULL,
SVME.formula = NULL,
GLMNET.nlambda = 100, GLMNET.class = FALSE,
BIOCLIM.O.fraction = 0.9,
MAHAL.shape = 1)

ensemble.calibrate.weights(x = NULL, p = NULL, TrainTestData=NULL,
a = NULL, an = 1000,
get.block = FALSE, block.default = TRUE, get.subblocks = FALSE,
SSB.reduce = FALSE, CIRCLES.d = 100000,
excludep = FALSE, target.groups = FALSE,
k = 4,
VIF = FALSE, COR = FALSE,
SINK = FALSE, PLOTS = FALSE, CATCH.OFF = FALSE,
data.keep = FALSE,
species.name = "Species001",
threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE,
ENSEMBLE.tune = FALSE,
ENSEMBLE.best = 0, ENSEMBLE.min = 0.7, ENSEMBLE.exponent = 1,
ENSEMBLE.weight.min = 0.05,
input.weights = NULL,
MAXENT = 1, MAXNET = 1, MAXLIKE = 1, GBM = 1, GBMSTEP = 1, RF = 1, CF = 1,
GLM = 1, GLMSTEP = 1, GAM = 1, GAMSTEP = 1, MGCV = 1, MGCVFIX = 0,
EARTH = 1, RPART = 1, NNET = 1, FDA = 1, SVM = 1 , SVME = 1, GLMNET = 1,
BIOCLIM.O = 0, BIOCLIM = 1, DOMAIN = 1, MAHAL = 1, MAHAL01 = 1,
PROBIT = FALSE,
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL, dummy.vars = NULL,
formulae.defaults = TRUE, maxit = 100,
MAXENT.a = NULL, MAXENT.an = 10000,
MAXENT.path = paste(getwd(), "/models/maxent_", species.name, sep=""),
MAXNET.classes = "default", MAXNET.clamp = FALSE, MAXNET.type = "cloglog",
MAXLIKE.formula = NULL, MAXLIKE.method = "BFGS",
GBM.formula = NULL, GBM.n.trees = 2001,
GBMSTEP.gbm.x = 2:(length(var.names)+1), GBMSTEP.tree.complexity = 5,

ensemble.calibrate.models 55

GBMSTEP.learning.rate = 0.005,
GBMSTEP.bag.fraction = 0.5, GBMSTEP.step.size = 100,
RF.formula = NULL, RF.ntree = 751, RF.mtry = floor(sqrt(length(var.names))),
CF.formula = NULL, CF.ntree = 751, CF.mtry = floor(sqrt(length(var.names))),
GLM.formula = NULL, GLM.family = binomial(link = "logit"),

GLMSTEP.steps = 1000, STEP.formula = NULL, GLMSTEP.scope = NULL, GLMSTEP.k = 2,
GAM.formula = NULL, GAM.family = binomial(link = "logit"),
GAMSTEP.steps = 1000, GAMSTEP.scope = NULL, GAMSTEP.pos = 1,
MGCV.formula = NULL, MGCV.select = FALSE,
MGCVFIX.formula = NULL,
EARTH.formula = NULL,
EARTH.glm = list(family = binomial(link = "logit"), maxit = maxit),
RPART.formula = NULL, RPART.xval = 50,
NNET.formula = NULL, NNET.size = 8, NNET.decay = 0.01,
FDA.formula = NULL,
SVM.formula = NULL,
SVME.formula = NULL,
GLMNET.nlambda = 100, GLMNET.class = FALSE,
BIOCLIM.O.fraction = 0.9,
MAHAL.shape = 1)

ensemble.calibrate.models.gbm(x = NULL, p = NULL, a = NULL, an = 1000, excludep = FALSE,
k = 4,
TrainData = NULL,
VIF = FALSE, COR = FALSE,
SINK = FALSE, PLOTS = FALSE,
species.name = "Species001",
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL,
GBMSTEP.gbm.x = 2:(ncol(TrainData.orig)),
complexity = c(3:6), learning = c(0.005, 0.002, 0.001),
GBMSTEP.bag.fraction = 0.5, GBMSTEP.step.size = 100)

ensemble.calibrate.models.nnet(x = NULL, p = NULL, a = NULL, an = 1000, excludep = FALSE,
k = 4,
TrainData = NULL,
VIF = FALSE, COR = FALSE,
SINK = FALSE, PLOTS = FALSE,
species.name = "Species001",
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL,
formulae.defaults = TRUE, maxit = 100,
NNET.formula = NULL,
sizes = c(2, 4, 6, 8), decays = c(0.1, 0.05, 0.01, 0.001))

ensemble.drop1(x = NULL, p = NULL,
a = NULL, an = 1000, excludep = FALSE, target.groups = FALSE,
k = 0, pt = NULL, at = NULL, SSB.reduce = FALSE, CIRCLES.d = 100000,

56 ensemble.calibrate.models

TrainData = NULL, TestData = NULL,
VIF = FALSE, COR = FALSE,
SINK = FALSE,
species.name = "Species001",
difference = FALSE, variables.alone = FALSE,
ENSEMBLE.tune = FALSE,
ENSEMBLE.best = 0, ENSEMBLE.min = 0.7, ENSEMBLE.exponent = 1,
input.weights = NULL,
MAXENT = 1, MAXNET = 1, MAXLIKE = 1, GBM = 1, GBMSTEP = 0, RF = 1, CF = 1,
GLM = 1, GLMSTEP = 1, GAM = 1, GAMSTEP = 1, MGCV = 1, MGCVFIX = 0,
EARTH = 1, RPART = 1, NNET = 1, FDA = 1, SVM = 1, SVME = 1, GLMNET = 1,
BIOCLIM.O = 0, BIOCLIM = 1, DOMAIN = 1, MAHAL = 1, MAHAL01 = 1,
PROBIT = FALSE,
Yweights = "BIOMOD",
layer.drops = NULL, factors = NULL, dummy.vars = NULL,
maxit = 100,
MAXENT.a = NULL, MAXENT.an = 10000,
MAXENT.path = paste(getwd(), "/models/maxent_", species.name, sep=""),
MAXNET.classes = "default", MAXNET.clamp = FALSE, MAXNET.type = "cloglog",
MAXLIKE.method = "BFGS",
GBM.n.trees = 2001,
GBMSTEP.tree.complexity = 5, GBMSTEP.learning.rate = 0.005,
GBMSTEP.bag.fraction = 0.5, GBMSTEP.step.size = 100,
RF.ntree = 751,
CF.ntree = 751,
GLM.family = binomial(link = "logit"),
GLMSTEP.steps = 1000, GLMSTEP.scope = NULL, GLMSTEP.k = 2,
GAM.family = binomial(link = "logit"),
GAMSTEP.steps = 1000, GAMSTEP.scope = NULL, GAMSTEP.pos = 1,
MGCV.select = FALSE,
EARTH.glm = list(family = binomial(link = "logit"), maxit = maxit),
RPART.xval = 50,
NNET.size = 8, NNET.decay = 0.01,
GLMNET.nlambda = 100, GLMNET.class = FALSE,
BIOCLIM.O.fraction = 0.9,
MAHAL.shape = 1)

ensemble.weights(weights = c(0.9, 0.8, 0.7, 0.5),
best = 0, min.weight = 0,
exponent = 1, digits = 6)

ensemble.strategy(TrainData = NULL, TestData = NULL,
verbose = FALSE,
ENSEMBLE.best = c(4:10), ENSEMBLE.min = c(0.7),
ENSEMBLE.exponent = c(1, 2, 3))

ensemble.formulae(x,
layer.drops = NULL, factors = NULL, dummy.vars = NULL, weights = NULL)

ensemble.calibrate.models 57

ensemble.threshold(eval, threshold.method = "spec_sens", threshold.sensitivity = 0.9,
threshold.PresenceAbsence = FALSE, Pres, Abs)

ensemble.VIF(x = NULL, a = NULL, an = 10000,
VIF.max = 10, keep = NULL,
layer.drops = NULL, factors = NULL, dummy.vars = NULL)

ensemble.VIF.dataframe(x=NULL,
VIF.max=10, keep=NULL,
car=TRUE, silent=F)

ensemble.pairs(x = NULL, a = NULL, an = 10000)

Arguments

x RasterStack object (stack) containing all layers that correspond to explanatory
variables

p presence points used for calibrating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData and extract

a background points used for calibrating the suitability models (except for maxent),
typically available in 2-column (lon, lat) dataframe; see also prepareData and
extract

an number of background points for calibration to be selected with randomPoints
in case argument a is missing

excludep parameter that indicates (if TRUE) that presence points will be excluded from the
background points; see also randomPoints

target.groups Parameter that indicates (if TRUE) that the provided background points (argument
a) represent presence points from a target group sensu Phillips et al. 2009 (these
are species that are all collected or observed using the same methods or equip-
ment). Setting the parameter to TRUE results in selecting the centres of cells of
the target groups as background points, while avoiding to select the same cells
twice. Via argument excludep, it is possible to filter out cells with presence
observations (argument p).

k If larger than 1, the number of groups to split between calibration (k-1) and eval-
uation (1) data sets (for example, k = 4 results in 3/4 of presence and background
points to be used for calibrating the models, and 1/4 of presence and background
points to be used for evaluating the models). For ensemble.calibrate.weights,
ensemble.calibrate.models.gbm and ensemble.calibrate.models.nnet,
this procedure is repeated k times (k-fold cross-validation). See also kfold.

pt presence points used for evaluating the suitability models, available in 2-column
(lon, lat) dataframe; see also prepareData and extract

at background points used for evaluating the suitability models, available in 2-
column (lon, lat) dataframe; see also prepareData and extract

SSB.reduce If TRUE, then new background points that will be used for evaluationg the suit-
ability models will be selected (randomPoints) in circular neighbourhoods (cre-

58 ensemble.calibrate.models

ated with circles) around presence locations (p and pt). The abbreviation of
SSB refers to spatial sorting bias; see also ssb.

CIRCLES.d Radius in m of circular neighbourhoods (created with circles) around presence
locations (p and pt).

TrainData dataframe with first column ’pb’ describing presence (1) and absence (0) and
other columns containing explanatory variables; see also prepareData. In case
that this dataframe is provided, then locations p and a are not used. For the
maximum entropy model (maxent), a different dataframe is used for calibration;
see parameter MAXENT.TrainData.

TestData dataframe with first column ’pb’ describing presence (1) and absence (0) and
other columns containing explanatory variables; see also prepareData. In case
that this dataframe is provided, then locations pt and at are not used. For
ensemble.strategy, this dataframe should be a dataframe that contains predic-
tions for various models - such dataframe can be provided by the ensemble.calibrate.models
or ensemble.raster functions.

VIF Estimate the variance inflation factors based on a linear model calibrated on the
training data (if TRUE). Only background locations will be used and the response
variable ’pb’ will be replaced by a random variable. See also vif.

COR Provide information on the correlation between the numeric explanatory vari-
ables (if TRUE). See also cor.

SINK Append the results to a text file in subfolder ’outputs’ (if TRUE). The name of file
is based on argument species.name. In case the file already exists, then results
are appended. See also sink.

PLOTS Disabled option of plotting evaluation results(BiodiversityR version 2.9-1) - see
examples how to plot results afterwards and also evaluate.

CATCH.OFF Disable calls to function tryCatch.
threshold.method

Method to calculate the threshold between predicted absence and presence; pos-
sibilities include spec_sens (highest sum of the true positive rate and the true
negative rate), kappa (highest kappa value), no_omission (highest threshold
that corresponds to no omission), prevalence (modeled prevalence is closest to
observed prevalence) and equal_sens_spec (equal true positive rate and true
negative rate). See threshold. Options specific to the BiodiversityR implemen-
tation are: threshold2005.mean, threshold2005.min, threshold2013.mean
and threshold2013.min (resulting in calculating the mean or minimum value
of recommended threshold values by studies published in 2005 and 2013; see
details below).

threshold.sensitivity

Sensitivity value for threshold.method = 'sensitivity'. See threshold.
threshold.PresenceAbsence

If TRUE calculate thresholds with the PresenceAbsence package. See optimal.thresholds.
evaluations.keep

Keep the results of evaluations (if TRUE). See also evaluate.

models.list list with ’old’ model objects such as MAXENT or RF.

ensemble.calibrate.models 59

models.keep store the details for each suitability modelling algorithm (if TRUE). (This may be
particularly useful when projecting to different possible future climates.)

models.save Save the list with model details to a file (if TRUE). The filename will be species.name
with extension .models; this file will be saved in subfolder of models. When
loading this file, model results will be available as ensemble.models.

species.name Name by which the model details will be saved to a file; see also argument
models.save

data.keep Keep the data for each k-fold cross-validation run (if TRUE).

ENSEMBLE.tune Determine weights for the ensemble model based on AUC values (if TRUE). See
details.

ENSEMBLE.best The number of individual suitability models to be used in the consensus suitabil-
ity map (based on a weighted average). In case this parameter is smaller than 1
or larger than the number of positive input weights of individual models, then
all individual suitability models with positive input weights are included in the
consensus suitability map. In case a vector is provided, ensemble.strategy is
called internally to determine weights for the ensemble model.

ENSEMBLE.min The minimum input weight (typically corresponding to AUC values) for a model
to be included in the ensemble. In case a vector is provided, function ensemble.strategy
is called internally to determine weights for the ensemble model.

ENSEMBLE.exponent

Exponent applied to AUC values to convert AUC values into weights (for exam-
ple, an exponent of 2 converts input weights of 0.7, 0.8 and 0.9 into 0.7^2=0.49,
0.8^2=0.64 and 0.9^2=0.81). See details.

ENSEMBLE.weight.min

The minimum output weight for models included in the ensemble, applying to
weights that sum to one. Note that ENSEMBLE.min typically refers to input AUC
values.

input.weights array with numeric values for the different modelling algorithms; if NULL then
values provided by parameters such as MAXENT and GBM will be used. As an
alternative, the output from ensemble.calibrate.weights can be used.

MAXENT number: if larger than 0, then a maximum entropy model (maxent) will be fitted
among ensemble

MAXNET number: if larger than 0, then a maximum entropy model (maxnet) will be fitted
among ensemble

MAXLIKE number: if larger than 0, then a maxlike model (maxlike) will be fitted among
ensemble

GBM number: if larger than 0, then a boosted regression trees model (gbm) will be
fitted among ensemble

GBMSTEP number: if larger than 0, then a stepwise boosted regression trees model (gbm.step)
will be fitted among ensemble

RF number: if larger than 0, then a random forest model (randomForest) will be
fitted among ensemble

CF number: if larger than 0, then a random forest model (cforest) will be fitted
among ensemble

60 ensemble.calibrate.models

GLM number: if larger than 0, then a generalized linear model (glm) will be fitted
among ensemble

GLMSTEP number: if larger than 0, then a stepwise generalized linear model (stepAIC)
will be fitted among ensemble

GAM number: if larger than 0, then a generalized additive model (gam) will be fitted
among ensemble

GAMSTEP number: if larger than 0, then a stepwise generalized additive model (step.gam)
will be fitted among ensemble

MGCV number: if larger than 0, then a generalized additive model (gam) will be fitted
among ensemble

MGCVFIX number: if larger than 0, then a generalized additive model with fixed d.f. re-
gression splines (gam) will be fitted among ensemble

EARTH number: if larger than 0, then a multivariate adaptive regression spline model
(earth) will be fitted among ensemble

RPART number: if larger than 0, then a recursive partioning and regression tree model
(rpart) will be fitted among ensemble

NNET number: if larger than 0, then an artificial neural network model (nnet) will be
fitted among ensemble

FDA number: if larger than 0, then a flexible discriminant analysis model (fda) will
be fitted among ensemble

SVM number: if larger than 0, then a support vector machine model (ksvm) will be
fitted among ensemble

SVME number: if larger than 0, then a support vector machine model (svm) will be
fitted among ensemble

GLMNET number: if larger than 0, then a GLM with lasso or elasticnet regularization
(glmnet) will be fitted among ensemble

BIOCLIM.O number: if larger than 0, then the original BIOCLIM algorithm (ensemble.bioclim)
will be fitted among ensemble

BIOCLIM number: if larger than 0, then the BIOCLIM algorithm (bioclim) will be fitted
among ensemble

DOMAIN number: if larger than 0, then the DOMAIN algorithm (domain) will be fitted
among ensemble

MAHAL number: if larger than 0, then the Mahalanobis algorithm (mahal) will be fitted
among ensemble

MAHAL01 number: if larger than 0, then the Mahalanobis algorithm (mahal) will be fitted
among ensemble, using a transformation method afterwards whereby output is
within the range between 0 and 1 (see details)

PROBIT If TRUE, then subsequently to the fitting of the individual algorithm (e.g. maxi-
mum entropy or GAM) a generalized linear model (glm) with probit link family=binomial(link="probit")
will be fitted to transform the predictions, using the previous predictions as ex-
planatory variable. This transformation results in all model predictions to be
probability estimates.

ensemble.calibrate.models 61

Yweights chooses how cases of presence and background (absence) are weighted; "BIOMOD"
results in equal weighting of all presence and all background cases, "equal" re-
sults in equal weighting of all cases. The user can supply a vector of weights
similar to the number of cases in the calibration data set.

layer.drops vector that indicates which layers should be removed from RasterStack x. This
argument is especially useful for the ensemble.drop1 function. See also addLayer.

factors vector that indicates which variables are factors; see also prepareData

dummy.vars vector that indicates which variables are dummy variables (influences formulae
suggestions)

formulae.defaults

Suggest formulae for most of the models (if TRUE). See also ensemble.formulae.

maxit Maximum number of iterations for some of the models. See also glm.control,
gam.control, gam.control and nnet.

MAXENT.a background points used for calibrating the maximum entropy model (maxent),
typically available in 2-column (lon, lat) dataframe; see also prepareData and
extract.

MAXENT.an number of background points for calibration to be selected with randomPoints
in case argument MAXENT.a is missing

MAXENT.path path to the directory where output files of the maximum entropy model are
stored; see also maxent

MAXNET.classes continuous feature classes, either "default" or any subset of "lqpht" (linear, quadratic,
product, hinge, threshold). Note that the "default" option chooses feature classes
based on the number of presence locations as "l" (< 10 locations), "lq" (10 - 14
locations), "lqh" (15 - 79 locations) or "lqph" (> 79 locations). See also maxnet.

MAXNET.clamp restrict predictors and features to the range seen during model training; see also
predict.maxnet

MAXNET.type type of response required; see also predict.maxnet

MAXLIKE.formula

formula for the maxlike algorithm; see also maxlike

MAXLIKE.method method for the maxlike algorithm; see also optim

GBM.formula formula for the boosted regression trees algorithm; see also gbm

GBM.n.trees total number of trees to fit for the boosted regression trees model; see also gbm

GBMSTEP.gbm.x indices of column numbers with explanatory variables for stepwise boosted re-
gression trees; see also gbm.step

GBMSTEP.tree.complexity

complexity of individual trees for stepwise boosted regression trees; see also
gbm.step

GBMSTEP.learning.rate

weight applied to individual trees for stepwise boosted regression trees; see also
gbm.step

GBMSTEP.bag.fraction

proportion of observations used in selecting variables for stepwise boosted re-
gression trees; see also gbm.step

62 ensemble.calibrate.models

GBMSTEP.step.size

number of trees to add at each cycle for stepwise boosted regression trees (should
be small enough to result in a smaller holdout deviance than the initial number
of trees [50]); see also gbm.step

RF.formula formula for random forest algorithm; see also randomForest

RF.ntree number of trees to grow for random forest algorithm; see also randomForest

RF.mtry number of variables randomly sampled as candidates at each split for random
forest algorithm; see also randomForest

CF.formula formula for random forest algorithm; see also cforest

CF.ntree number of trees to grow in a forest; see also cforest_control

CF.mtry number of input variables randomly sampled as candidates at each node for
random forest like algorithms; see also cforest_control

GLM.formula formula for the generalized linear model; see also glm

GLM.family description of the error distribution and link function for the generalized linear
model; see also glm

GLMSTEP.steps maximum number of steps to be considered for stepwise generalized linear
model; see also stepAIC

STEP.formula formula for the "starting model" to be considered for stepwise generalized linear
model; see also stepAIC

GLMSTEP.scope range of models examined in the stepwise search; see also stepAIC

GLMSTEP.k multiple of the number of degrees of freedom used for the penalty (only k = 2
gives the genuine AIC); see also stepAIC

GAM.formula formula for the generalized additive model; see also gam

GAM.family description of the error distribution and link function for the generalized additive
model; see also gam

GAMSTEP.steps maximum number of steps to be considered in the stepwise generalized additive
model; see also step.gam

GAMSTEP.scope range of models examined in the step-wise search n the stepwise generalized
additive model; see also step.gam

GAMSTEP.pos parameter expected to be set to 1 to allow for fitting of the stepwise generalized
additive model

MGCV.formula formula for the generalized additive model; see also gam

MGCV.select if TRUE, then the smoothing parameter estimation that is part of fitting can com-
pletely remove terms from the model; see also gam

MGCVFIX.formula

formula for the generalized additive model with fixed d.f. regression splines;
see also gam (the default formulae sets "s(..., fx = TRUE, ...)"; see also s)

EARTH.formula formula for the multivariate adaptive regression spline model; see also earth

EARTH.glm list of arguments to pass on to glm; see also earth

RPART.formula formula for the recursive partioning and regression tree model; see also rpart

RPART.xval number of cross-validations for the recursive partioning and regression tree model;
see also rpart.control

ensemble.calibrate.models 63

NNET.formula formula for the artificial neural network model; see also nnet

NNET.size number of units in the hidden layer for the artificial neural network model; see
also nnet

NNET.decay parameter of weight decay for the artificial neural network model; see also nnet

FDA.formula formula for the flexible discriminant analysis model; see also fda

SVM.formula formula for the support vector machine model; see also ksvm

SVME.formula formula for the support vector machine model; see also svm

GLMNET.nlambda The number of lambda values; see also glmnet

GLMNET.class Use the predicted class to calculate the mean predictions of GLMNET; see
predict.glmnet

BIOCLIM.O.fraction

Fraction of range representing the optimal limits, default value of 0.9 as in the
original BIOCLIM software (ensemble.bioclim).

MAHAL.shape parameter that influences the transformation of output values of mahal. See
details section.

TrainTestData dataframe with first column ’pb’ describing presence (1) and absence (0) and
other columns containing explanatory variables; see also prepareData. In case
that this dataframe is provided, then locations p and a are not used. This data set
will also be used for the maximum entropy and maximum likelihood models.

get.block if TRUE, instead of creating k-fold cross-validation subsets randomly (kfold),
create 4 subsets of presence and background locations with get.block.

block.default if FALSE, instead of making the first division of presence point locations along
the y-coordinates (latitude) as in get.block, make the first division along the
x-coordinates (longitude).

get.subblocks if TRUE, then 4 subsets of presence and background locations are generated in
a checkerboard configuration by applying get.block to each of the 4 blocks
generated by get.block in a first step.

complexity vector with values of complexity of individual trees (tree.complexity) for
boosted regression trees; see also gbm.step

learning vector with values of weights applied to individual trees (learning.rate) for
boosted regression trees; see also gbm.step

sizes vector with values of number of units in the hidden layer for the artificial neural
network model; see also nnet

decays vector with values of weight decay for the artificial neural network model; see
also nnet

difference if TRUE, then AUC values of the models with all variables are subtracted from
the models where one explanatory variable was excluded. After subtraction,
positive values indicate that the model without the explanatory variable has a
higher AUC than the model with all variables.

variables.alone

if TRUE, then models are also fitted using each explanatory variable as single
explanatory variable

weights input weights for the ensemble.weights function

64 ensemble.calibrate.models

best The number of final weights. In case this parameter is smaller than 1 or larger
than the number of positive input weights of individual models, then this param-
eter is ignored.

min.weight The minimum input weight to be included in the output.

exponent Exponent applied to AUC values to convert AUC values into weights (for exam-
ple, an exponent of 2 converts input weights of 0.7, 0.8 and 0.9 into 0.7^2=0.49,
0.8^2=0.64 and 0.9^2=0.81). See details.

digits Number of number of decimal places in the output weights; see also round.

verbose If TRUE, then provide intermediate results for ensemble.strategy)

eval ModelEvaluation object obtained by evaluate

Pres Suitabilities (probabilities) at presence locations

Abs Suitabilities (probabilities) at background locations

VIF.max Maximum Variance Inflation Factor of the selected subset of variables. In case
that at least one of the variables has VIF larger than VIF.max, then the variable
with the highest VIF will be removed in the next step.

keep character vector with names of the variables to be kept.

car Also provide results from vif.

silent Limit textual output.

Details

The basic function ensemble.calibrate.models first calibrates individual suitability models based
on presence locations p and background locations a, then evaluates these suitability models based
on presence locations pt and background locations at. While calibrating and testing individual
models, results obtained via the evaluate function can be saved (evaluations.keep).

As an alternative to providing presence locations p, models can be calibrated with data provided in
TrainData. In case that both p and TrainData are provided, then models will be calibrated with
TrainData.

Calibration of the maximum entropy (MAXENT) algorithm is not based on background locations
a, but based on background locations MAXENT.a instead. However, to compare evaluations with
evaluations of other algorithms, during evaluations of the MAXENT algorithm, presence locations
p and background locations a are used (and not background locations MAXENT.a).

Output from the GLMNET algorithm is calculated as the mean of the output from predict.glmnet.
With option GLMNET.class = TRUE, the mean output is the mean prediction of class 1. With option
GLMNET.class = FALSE, the mean output is the mean of the responses.

As the Mahalanobis function (mahal) does not always provide values within the range of 0 - 1, the
output values are rescaled with option MAHAL01 by first subtracting the value of 1 - MAHAL.shape
from each prediction, followed by calculating the absolute value, followed by calculating the re-
ciprocal value and finally multiplying this reciprocal value with MAHAL.shape. As this rescaling
method does not estimate probabilities, inclusion in the calculation of a (weighted) average of en-
semble probabilities may be problematic and the PROBIT transformation may help here (the same
applies to other distance-based methods).

With parameter ENSEMBLE.best, the subset of best models (evaluated by the individual AUC val-
ues) can be selected and only those models will be used for calculating the ensemble model (in

ensemble.calibrate.models 65

other words, weights for models not included in the ensemble will be set to zero). It is possible to
further increase the contribution to the ensemble model for models with higher AUC values through
parameter ENSEMBLE.exponent. With ENSEMBLE.exponent = 2, AUC values of 0.7, 0.8 and 0.9 are
converted into weights of 0.7^2=0.49, 0.8^2=0.64 and 0.9^2=0.81). With ENSEMBLE.exponent =
4, AUC values of 0.7, 0.8 and 0.9 are converted into weights of 0.7^4=0.2401, 0.8^4=0.4096 and
0.9^2=0.6561).

ENSEMBLE.tune will result in an internal procedure whereby the best selection of parameter values
for ENSEMBLE.min, ENSEMBLE.best or ENSEMBLE.exponent can be identified. Through a factorial
procedure, the ensemble model with best AUC for a specific combination of parameter values is
identified. The procedure also provides the weights that correspond to the best ensemble. In case
that ENSEMBLE.tune is set to FALSE, then the ensemble is calculated based on the input weights.

Function ensemble.calibrate.weights splits the presence and background locations in a user-
defined (k) number of subsets (i.e. k-fold cross-validation), then sequentially calibrates individual
suitability models with (k-1) combined subsets and evaluates those with the remaining one subset,
whereby each subset is used once for evaluation in the user-defined number (k) of runs. For exam-
ple, k = 4 results in splitting the locations in 4 subsets, then using one of these subsets in turn for
evaluations (see also kfold). Note that for the maximum entropy (MAXENT) algorithm, the same
background data will be used in each cross-validation run (this is based on the assumption that a
large number (~10000) of background locations are used).

Among the output from function ensemble.calibrate.weights are suggested weights for an en-
semble model (output.weights and output.weights.AUC), and information on the respective
AUC values of the ensemble model with the suggested weights for each of the (k) subsets. Sug-
gested weights output.weights are calculated as the average of the weights of the different algo-
rithms (submodels) of the k ensembles. Suggested weights output.weights.AUC are calculated as
the average of the AUC of the different algorithms of the for the k runs.

Function ensemble.calibrate.models.gbm allows to test various combinations of parameters
tree.complexity and learning.rate for the gbm.step model.

Function ensemble.calibrate.models.nnet allows to test various combinations of parameters
size and decay for the nnet model.

Function ensemble.drop1 allows to test the effects of leaving out each of the explanatory variables,
and comparing these results with the "full" model. Note that option of difference = TRUE may
result in positive values, indicating that the model without the explanatory variable having larger
AUC than the "full" model. A procedure is included to estimate the deviance of a model based
on the fitted values, using -2 * (sum(x*log(x)) + sum((1-x)*log(1-x))) where x is a vector of the
fitted values for a respective model. (It was checked that this procedure results in similar deviance
estimates for the null and ’full’ models for glm, but note that it is not certain whether deviance can
be calculated in a similar way for other submodels.)

Function ensemble.formulae provides suggestions for formulae that can be used for ensemble.calibrate.models
and ensemble.raster. This function is always used internally by the ensemble.drop1 function.

The ensemble.weights function is used internally by the ensemble.calibrate.models and ensemble.raster
functions, using the input weights for the different suitability modelling algorithms. Ties between
input weights result in the same output weights.

The ensemble.strategy function is used internally by the ensemble.calibrate.models func-
tion, using the train and test data sets with predictions of the different suitability modelling algo-
rithms and different combinations of parameters ENSEMBLE.best, ENSEMBLE.min and ENSEMBLE.exponent.
The final ensemble model is based on the parameters that generate the best AUC.

66 ensemble.calibrate.models

The ensemble.threshold function is used internally by the ensemble.calibrate.models, ensemble.mean
and ensemble.plot functions. threshold2005.mean results in calculating the mean value of
threshold methods that resulted in better results (calculated by optimal.thresholds with meth-
ods of ObsPrev, MeanProb, MaxSens+Spec, Sens=Spec and MinROCdist) in a study by Liu et al.
(Ecography 28: 385-393. 2005). threshold2005.min results in calculating the mean value of
threshold methods that resulted in better results (calculated by optimal.thresholds with meth-
ods of ObsPrev, MeanProb and MaxSens+Spec) in a study by Liu et al. (Ecography 28: 385-393.
2005). threshold2013.mean results in calculating the mean value of threshold methods that re-
sulted in better results (calculated by optimal.thresholds with methods of ObsPrev, MeanProb,
MaxSens+Spec, Sens=Spec and MinROCdist) in a study by Liu et al. (J. Biogeogr. 40: 778-789.
2013). threshold2013.min results in calculating the minimum value of threshold methods that re-
sulted in better results (calculated by optimal.thresholds with methods of ObsPrev, MeanProb,
MaxSens+Spec, Sens=Spec and MinROCdist) in a study by Liu et al. (J. Biogeogr. 40: 778-789.
2013).

Function ensemble.VIF implements a stepwise procedure whereby the explanatory variable with
highest Variance Inflation Factor is removed from the list of variables. The procedure ends when
no variable has VIF larger than parameter VIF.max.

Function ensemble.pairs provides a matrix of scatterplots similar to the example of pairs for
version 3.4.3 of that package.

Value

Function ensemble.calibrate.models (potentially) returns a list with results from evaluations
(via evaluate) of calibration and test runs of individual suitability models.

Function ensemble.calibrate.weights returns a matrix with, for each individual suitability model,
the AUC of each run and the average AUC over the runs. Models are sorted by the average AUC.
The average AUC for each model can be used as input weights for the ensemble.raster function.

Functions ensemble.calibrate.models.gbm and ensemble.calibrate.models.nnet return a
matrix with, for each combination of model parameters, the AUC of each run and the average AUC.
Models are sorted by the average AUC.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Buisson L, Thuiller W, Casajus N, Lek S and Grenouillet G. 2010. Uncertainty in ensemble fore-
casting of species distribution. Global Change Biology 16: 1145-1157

Liu C, Berry PM, Dawson TP and Pearson RC. 2005. Selecting thresholds of occurrence in the
prediction of species distributions. Ecography 28: 385-393

Liu C, White M and Newell G. 2013. Selecting thresholds for the prediction of species occurrence
with presence-only data. Journal of Biogeography 40: 778-789

https://doi.org/10.1016/j.envsoft.2017.11.009

ensemble.calibrate.models 67

Phillips SJ, Dudik M, Elith J et al. 2009. Sample selection bias and presence-only distribution
models: implications for background and pseudo-absence data. Ecological Applications 19: 181-
197.

See Also

ensemble.raster, ensemble.batch

Examples

Not run:
based on examples in the dismo package

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))
predictors
predictors@title <- "predictors"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

the kfold function randomly assigns data to groups;
groups are used as calibration (1/4) and training (3/4) data
groupp <- kfold(pres, 4)
pres_train <- pres[groupp != 1,]
pres_test <- pres[groupp == 1,]

choose background points
background <- randomPoints(predictors, n=1000, extf=1.00)
colnames(background)=c('lon', 'lat')
groupa <- kfold(background, 4)
backg_train <- background[groupa != 1,]
backg_test <- background[groupa == 1,]

formulae for random forest and generalized linear model
compare with: ensemble.formulae(predictors, factors=c("biome"))

rfformula <- as.formula(pb ~ bio5+bio6+bio16+bio17)

glmformula <- as.formula(pb ~ bio5 + I(bio5^2) + I(bio5^3) +
bio6 + I(bio6^2) + I(bio6^3) + bio16 + I(bio16^2) + I(bio16^3) +
bio17 + I(bio17^2) + I(bio17^3))

fit four ensemble models (RF, GLM, BIOCLIM, DOMAIN)
factors removed for BIOCLIM, DOMAIN, MAHAL

68 ensemble.calibrate.models

ensemble.nofactors <- ensemble.calibrate.models(x=predictors, p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,
species.name="Bradypus",
ENSEMBLE.tune=TRUE,
ENSEMBLE.min = 0.65,
MAXENT=0, MAXNET=0, MAXLIKE=0, GBM=0, GBMSTEP=0, RF=1, CF=0,
GLM=1, GLMSTEP=0, GAM=0, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=0, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=0, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=0,
Yweights="BIOMOD",
factors="biome",
evaluations.keep=TRUE, models.keep=TRUE,
RF.formula=rfformula,
GLM.formula=glmformula)

with option models.keep, all model objects are saved in ensemble object
the same slots can be used to replace model objects with new calibrations
ensemble.nofactors$models$RF
summary(ensemble.nofactors$models$GLM)
ensemble.nofactors$models$BIOCLIM
ensemble.nofactors$models$DOMAIN
ensemble.nofactors$models$formulae

evaluations are kept in different slot
attributes(ensemble.nofactors$evaluations)
plot(ensemble.nofactors$evaluations$RF.T, "ROC")

fit four ensemble models (RF, GLM, BIOCLIM, DOMAIN) using default formulae
variable 'biome' is not included as explanatory variable
results are provided in a file in the 'outputs' subfolder of the working
directory
ensemble.nofactors <- ensemble.calibrate.models(x=predictors,

p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,
layer.drops="biome",
species.name="Bradypus",
ENSEMBLE.tune=TRUE,
ENSEMBLE.min=0.65,
SINK=TRUE,
MAXENT=0, MAXNET=0, MAXLIKE=0, GBM=0, GBMSTEP=0, RF=1, CF=0,
GLM=1, GLMSTEP=0, GAM=0,
GAMSTEP=0, MGCV=0, MGCVFIX=0, EARTH=0, RPART=0, NNET=0, FDA=0,
SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=0, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=0,
Yweights="BIOMOD",
evaluations.keep=TRUE,
formulae.defaults=TRUE)

after fitting the individual algorithms (submodels),
transform predictions with a probit link.
ensemble.nofactors <- ensemble.calibrate.models(x=predictors,

p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,

ensemble.calibrate.models 69

layer.drops="biome",
species.name="Bradypus",
SINK=TRUE,
ENSEMBLE.tune=TRUE,
ENSEMBLE.min=0.65,
MAXENT=0, MAXNET=0, MAXLIKE=0, GBM=0, GBMSTEP=0, RF=1, CF=0,
GLM=1, GLMSTEP=0, GAM=0, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=0, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=0, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=0,
PROBIT=TRUE,
Yweights="BIOMOD", factors="biome",
evaluations.keep=TRUE,
formulae.defaults=TRUE)

Instead of providing presence and background locations, provide data.frames.
Because 'biome' is a factor, RasterStack needs to be provided
to check for levels in the Training and Testing data set.
TrainData1 <- prepareData(x=predictors, p=pres_train, b=backg_train,

factors=c("biome"), xy=FALSE)
TestData1 <- prepareData(x=predictors, p=pres_test, b=backg_test,

factors=c("biome"), xy=FALSE)
ensemble.factors1 <- ensemble.calibrate.models(x=predictors,

TrainData=TrainData1, TestData=TestData1,
p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,
species.name="Bradypus",
SINK=TRUE,
ENSEMBLE.tune=TRUE,
ENSEMBLE.min=0.65,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=0,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
Yweights="BIOMOD", factors="biome",
evaluations.keep=TRUE)

compare different methods of calculating ensembles
ensemble.factors2 <- ensemble.calibrate.models(x=predictors,

TrainData=TrainData1, TestData=TestData1,
p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,
species.name="Bradypus",
SINK=TRUE,
ENSEMBLE.tune=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.best=c(4:10), ENSEMBLE.exponent=c(1, 2, 3),
Yweights="BIOMOD", factors="biome",
evaluations.keep=TRUE)

test performance of different suitability models

70 ensemble.calibrate.models

data are split in 4 subsets, each used once for evaluation
ensemble.nofactors2 <- ensemble.calibrate.weights(x=predictors,

p=pres, a=background, k=4,
species.name="Bradypus",
SINK=TRUE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
Yweights="BIOMOD",
formulae.defaults=TRUE)

ensemble.nofactors2$AUC.table
ensemble.nofactors2$eval.table.all

test the result of leaving out one of the variables from the model
note that positive differences indicate that the model without the variable
has higher AUC than the full model
ensemble.variables <- ensemble.drop1(x=predictors,

p=pres, a=background, k=4,
species.name="Bradypus",
SINK=TRUE,
difference=TRUE,
VIF=TRUE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
Yweights="BIOMOD", factors="biome")

ensemble.variables

use function ensemble.VIF to select a subset of variables
factor variables are not handled well by the function
and therefore factors are removed
however, one can check for factors with car::vif through
the ensemble.calibrate.models function
VIF.analysis$var.drops can be used as input for ensemble.calibrate.models or
ensemble.calibrate.weights

predictors <- stack(predictor.files)
predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio8",

"bio12", "bio16", "bio17", "biome"))

ensemble.pairs(predictors)

VIF.analysis <- ensemble.VIF(predictors, factors="biome")
VIF.analysis
alternative solution where bio1 and bio12 are kept

ensemble.concave.hull 71

VIF.analysis <- ensemble.VIF(predictors, factors="biome",
keep=c("bio1", "bio12"))

VIF.analysis

End(Not run)

ensemble.concave.hull Analysis of Niche Overlap in Environmental Space for Changed Cli-
mates via Concave Hulls

Description

Building on methodologies described by Pironon et al. (doi:10.1038/s4155801905857), func-
tion ensemble.concave.hull constructs two hulls in environmental space for the baseline and
a changed (typically a future climate, but possibly also a historical or paleo-climate) for a focal
species. Functions ensemble.concave.venn and ensemble.concave.union create a third hull
for candidate accessions that represent different geographies and/or different species. Subsequently
overlaps between hulls are investigated. Information is also provided for each accession of the focal
species in the novel climate if these are included within the hull of the candidate accessions.

Usage

ensemble.concave.hull(
baseline.data,
change.data,
complete.cases = TRUE,
VIF = TRUE, VIF.max = 20, VIF.silent = TRUE,
method = c("rda", "pca", "prcomp"),
ax1 = 1, ax2 = 2,
concavity = 2.5,
buffer.dist = NA,
ggplot = TRUE)

ensemble.concave.venn(
x,
candidate.data,
concavity = x$concavity,
buffer.dist = x$buffer.dist,
ggplot = TRUE,
show.candidate.points = TRUE)

ensemble.concave.union(
x,
candidate.venns,
buffer.dist = x$buffer.dist,
ggplot = TRUE,
show.candidate.points = TRUE)

https://doi.org/10.1038/s41558-019-0585-7

72 ensemble.concave.hull

ensemble.outliers(
x,
ID.var = NULL, bioc.vars = NULL,
fence.k = 2.5, n_min = 5)

Arguments

baseline.data data.frame with climatic variables for the accessions in the baseline climate.

change.data data.frame with climatic variables for the accessions in the changed (potentially
future) climate.

complete.cases Reduce cases with those without missing data via complete.cases.

VIF Select a subset of climatic variables via ensemble.VIF.dataframe.

VIF.max Argument setting for ensemble.VIF.dataframe.

VIF.silent Argument setting for ensemble.VIF.dataframe.

method Method of constructing the hulls; see details.

ax1 Idex for the first ordination axis to be analyzed; see also scores.

ax2 Index for second ordination axis to be analyzed; see also scores.

concavity A relative measure of concavity used by concaveman.

buffer.dist Buffer width used internally by st_buffer.

ggplot Should a ggplot object be included in the output?

x Output similar to those of ensemble.concave.hull.

candidate.data data.frame with climatic variables for candidate accessions such as accessions
from other geographical areas or other species.

show.candidate.points

Should the ggplot object show the locations of the candidate accessions?
candidate.venns

list with outputs from the ensemble.concave.venn function.

ID.var Variable name used as identifier

bioc.vars Variables included in the analysis of outliers

fence.k Multiplier to calculate distance of observation from Interquartile lower and up-
per limits as used by Tukey’s Fences method to detect outliers

n_min Minimum number of variables for identifying outliers

Details

Whereas the metholology of Pironon et al. (2019) uses convex hulls, concave hulls can also be
used in the methodology provided here. Convex hulls will be obtained by using large values for the
concavity argument (see the description for the concaveman function). By using more concave
hulls, the influence of outliers on measures of niche overlap can be reduced.

Three methods are available for mapping accessions in environmental space. Methods pca and
prcomp use principal components analysis, respectively via the rda and prcomp functions. In both

ensemble.concave.hull 73

the methods, climatic variables are scaled. As results with pca are also rescaled via caprescale,
both methods of pca and prcomp should theoretically result in the same configurations.

Method rda internally uses envfit to select a subset of climatic variables that are significantly
correlated (P <= 0.05, R2 >= 0.50) with the first two axes of a redundancy analysis that uses the
climate (baseline vs. changed) as predictor variable.

Candidate accessions are mapped in the environmental space created by ensemble.concave.hull
via prediction methods available from predict.cca and predict.prcomp.

Function ensemble.concave.union combines candidate hulls obtained from ensemble.concave.venn,
using st_union internally.

Both ensemble.concave.venn and ensemble.concave.union return measures of niche overlap
based on areas of overlap between the candidate hull and the part of hull for the changed climate
that is not covered by the hull for the baseline climate. These functions also indicate for each of the
accessions of the focal species in the changed climate whether they occur in a novel climate (novel
== TRUE; this information was obtained by ensemble.concave.hull) and whether they are inside
the hull of the candidate accessions (candidate.in == TRUE).

The optional plot shows the locations of accessions for the changed climate. For ensemble.concave.hull,
colouring is based on having novel climates (not occurring in the overlap between the two hulls) or
not. For the other functions, locations are only shown for accessions with novel climates. Colouring
is based on being inside the hull for the candidate accessions or not.

Function ensemble.outliers generalizes Tukey’s fences method to require that a multivariate
outlier is a univariate outlier for a minimum number of n_min variables (see)

Value

Function ensemble.concave.hull returns a list with following elements:

- rda.object: result of the ordination method used; - method: method used in the function; - base-
line.hull: polygon for the hull for the baseline climate; - baseline.area: area of the baseline hull; -
change.hull: polygon for the hull for the changed climate; - change.area: area of the hull for the
changed climate; - overlap.hull: polygon for the overlap (intersection) of the baseline and changed
hull; - overlap.area: area of the overlap hull; - novel.hull: polygon for the part of the changed hull
that does not cover the baseline hull; - change.area: area of the novel hull; - buffer.dist: distance
used in checking whether accessions are in novel conditions; - change.points: plotting coordinates
and details on novel conditions for accessions of the changed climate; - baseline.points: plotting
coordinates for accessions of the baseline climate

Author(s)

Roeland Kindt (World Agroforestry Centre) and Maarten van Zonneveld (World Vegetable Center)

References

Pironon et al. (2019). Potential adaptive strategies for 29 sub-Saharan crops under future climate
change. Nat. Clim. Chang. 9: 758-736. doi:10.1038/s4155801905857

van Zonneveld et al. (2018). Tree genetic resources at risk in South America: a spatial threat
assessment to prioritize populations for conservation. Diversity and Distributions 24: 718-729

https://doi.org/10.1038/s41558-019-0585-7

74 ensemble.concave.hull

van Zonneveld et al. (2023). Forgotten food crops in sub-Saharan Africa for healthy diets in a
changing climate. Proceedings of the National Academy of Sciences (PNAS) 120 (14) e2205794120.
doi:10.1073/pnas.2205794120

Examples

Not run:
library(ggplot2)
library(sf)
library(concaveman)

data(CucurbitaClim)

alata.data <- CucurbitaClim[CucurbitaClim$species == "Cucurbita_palmata",]

bioc.names <- paste0("bioc", 1:19)

alata.data2 <- alata.data[alata.data$ADM0_A3 == "USA",]
alata.base <- alata.data2[alata.data2$climate == "baseline", bioc.names]
alata.fut <- alata.data2[alata.data2$climate == "future", bioc.names]

conc2.res <- ensemble.concave.hull(baseline.data=alata.base,
change.data=alata.fut,
method="pca",
VIF.max=40,
concavity=2)

plot(conc2.res$ggplot.out)
conc2.res$baseline.area
conc2.res$change.area
conc2.res$novel.area
conc2.res$novel.area / conc2.res$change.area

Which accessions have novel climates?
summary(conc2.res$change.points)
change.points <- conc2.res$change.points
rownames(change.points[change.points$novel == TRUE,])
nrow(change.points[change.points$novel == TRUE,]) / nrow(change.points)

Analysis via convex hulls
conc100.res <- ensemble.concave.hull(baseline.data=alata.base,

change.data=alata.fut,
method="pca",
concavity=100)

plot(conc100.res$ggplot.out)
conc100.res$baseline.area
conc100.res$change.area
conc100.res$novel.area
conc100.res$novel.area / conc100.res$change.area

Which accessions have novel climates?
summary(conc100.res$change.points)

https://doi.org/10.1073/pnas.2205794120

ensemble.concave.hull 75

change.points <- conc100.res$change.points
rownames(change.points[change.points$novel == TRUE,])
nrow(change.points[change.points$novel == TRUE,]) / nrow(change.points)

Checking niche overlaps with other accessions
Alternative 1: niche overlap with accessions from Mexico
alata.data2 <- alata.data[alata.data$ADM0_A3 == "MEX",]
alata.MEX <- alata.data2[alata.data2$climate == "baseline", bioc.names]

venn2.res <- ensemble.concave.venn(conc2.res,
candidate.data=alata.MEX,
concavity=2)

plot(venn2.res$ggplot.out)
table(venn2.res$change.points[, c("novel", "candidate.in")])

alternative 1 for convex hulls
venn100.res <- ensemble.concave.venn(conc100.res,

candidate.data=alata.MEX,
concavity=100)

plot(venn100.res$ggplot.out)
table(venn100.res$change.points[, c("novel", "candidate.in")])

alternative 2: niche overlap with other species
cucurbita2 <- CucurbitaClim[CucurbitaClim$climate == "baseline",]
cordata.data <- cucurbita2[cucurbita2$species == "Cucurbita_cordata", bioc.names]
digitata.data <- cucurbita2[cucurbita2$species == "Cucurbita_digitata", bioc.names]

venn.cordata <- ensemble.concave.venn(conc2.res,
candidate.data=cordata.data,
concavity=2)

plot(venn.cordata$ggplot.out)

venn.digitata <- ensemble.concave.venn(conc2.res,
candidate.data=digitata.data,
concavity=2)

plot(venn.digitata$ggplot.out)

check the union of the two species
spec.res <- vector("list", 2)
spec.res[[1]] <- venn.cordata
spec.res[[2]] <- venn.digitata
union2.res <- ensemble.concave.union(conc2.res,

candidate.venns=spec.res)
table(union2.res$change.points[, c("novel", "candidate.in")])

Analysis via convex hulls
venn.digitata <- ensemble.concave.venn(conc100.res,

candidate.data=digitata.data,
concavity=100)

venn.cordata <- ensemble.concave.venn(conc100.res,
candidate.data=cordata.data,

76 ensemble.dummy.variables

concavity=100)
spec.res <- vector("list", 2)
spec.res[[1]] <- venn.cordata
spec.res[[2]] <- venn.digitata

union100.res <- ensemble.concave.union(conc100.res,
candidate.venns=spec.res)

plot(union100.res$ggplot.out)
table(union100.res$change.points[, c("novel", "candidate.in")])

Identify outliers
baseline.outliers <- ensemble.outliers(alata.base,

bioc.vars=paste0("bioc", 1:19))
baseline.outliers[baseline.outliers$outlier == TRUE,]

End(Not run)

ensemble.dummy.variables

Suitability mapping based on ensembles of modelling algorithms:
handling of categorical data

Description

The basic function ensemble.dummy.variables creates new raster layers representing dummy
variables (coded 0 or 1) for all or the most frequent levels of a caterogical variable. Sometimes
the creation of dummy variables is needed for proper handling of categorical data for some of the
suitability modelling algorithms.

Usage

ensemble.dummy.variables(xcat = NULL,
freq.min = 50, most.frequent = 5,
new.levels = NULL, overwrite = TRUE, ...)

ensemble.accepted.categories(xcat = NULL, categories = NULL,
filename = NULL, overwrite = TRUE, ...)

ensemble.simplified.categories(xcat = NULL, p = NULL,
filename = NULL, overwrite = TRUE, ...)

Arguments

xcat RasterLayer object (raster) containing values for a categorical explanatory
variable.

freq.min Minimum frequency for a dummy raster layer to be created for the correspond-
ing factor level. See also freq.

ensemble.dummy.variables 77

most.frequent Number of dummy raster layers to be created (if larger than 0), corresponding
to the same number of most frequent factor levels See also freq.

new.levels character vector giving factor levels that are not encountered in xcat and for
which dummy layers should be created (this could be useful in dealing with
novel conditions)

overwrite overwrite an existing file name with the same name (if TRUE). See also writeRaster.

... additional arguments for writeRaster or (for ensemble.dummy.variables,
writeRaster).

categories numeric vector providing the accepted levels of a categorical raster layer; ex-
pected to correspond to the levels encountered during calibration

filename name for the output file. See also writeRaster.

p presence points that will be used for calibrating the suitability models, typically
available in 2-column (x, y) or (lon, lat) dataframe; see also prepareData and
extract

Details

The basic function ensemble.dummy.variables creates dummy variables from a RasterLayer
object (see raster) that represents a categorical variable. With freq.min and most.frequent it is
possible to limit the number of dummy variables that will be created. For example, most.frequent
= 5 results in five dummy variables to be created.

Function ensemble.accepted.categories modifies the RasterLayer object (see raster) by re-
placing cell values for categories (levels) that are not accepted with missing values.

Function ensemble.simplified.categories modifies the RasterLayer object (see raster) by
replacing cell values for categories (levels) where none of the presence points occur with the same
level. This new level is coded by the maximum coding level for these ’outside categories’.

Value

The basic function ensemble.dummy.variables mainly results in the creation of raster layers that
correspond to dummy variables.

Author(s)

Roeland Kindt (World Agroforestry Centre) and Evert Thomas (Bioversity International)

See Also

ensemble.calibrate.models, ensemble.raster

Examples

Not run:

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)

78 ensemble.dummy.variables

predictors <- stack(predictor.files)
biome.layer <- predictors[["biome"]]
biome.layer

create dummy layers for the 5 most frequent factor levels

ensemble.dummy.variables(xcat=biome.layer, most.frequent=5,
overwrite=TRUE)

check whether dummy variables were created
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
predictors
names(predictors)

once dummy variables were created, avoid using the original categorical data layer
predictors <- subset(predictors, subset=c("bio5", "bio6", "bio16", "bio17",

"biome_1", "biome_2", "biome_7", "biome_8", "biome_13"))
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

the kfold function randomly assigns data to groups;
groups are used as calibration (1/5) and training (4/5) data
groupp <- kfold(pres, 5)
pres_train <- pres[groupp != 1,]
pres_test <- pres[groupp == 1,]

choose background points
background <- randomPoints(predictors, n=1000, extf=1.00)
colnames(background)=c('lon', 'lat')
groupa <- kfold(background, 5)
backg_train <- background[groupa != 1,]
backg_test <- background[groupa == 1,]

note that dummy variables with no variation are not used by DOMAIN
note that dummy variables are not used by MAHAL and MAHAL01
(neither are categorical variables)
ensemble.nofactors <- ensemble.calibrate.models(x=predictors, p=pres_train, a=backg_train,

pt=pres_test, at=backg_test,
species.name="Bradypus",
VIF=T,
MAXENT=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, GLM=1, GLMSTEP=0, GAM=1,
GAMSTEP=0, MGCV=1, MGCVFIX=0, EARTH=1, RPART=1, NNET=1, FDA=1,
SVM=1, SVME=1, BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
Yweights="BIOMOD",
dummy.vars=c("biome_1", "biome_2", "biome_7", "biome_8", "biome_13"),
PLOTS=FALSE, evaluations.keep=TRUE)

ensemble.ecocrop 79

End(Not run)

ensemble.ecocrop Suitability mapping via absolute and optimal precipitation and tem-
perature limits as in the ECOCROP model.

Description

Function ensemble.ecocrop creates the map with novel conditions. Function ensemble.novel.object
provides the reference values used by the prediction function used by predict .

Usage

ensemble.ecocrop(x = NULL, ecocrop.object = NULL,
RASTER.object.name = ecocrop.object$name,
RASTER.stack.name = "xTitle",
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
CATCH.OFF = FALSE)

ensemble.ecocrop.object(temp.thresholds, rain.thresholds, name = "crop01",
temp.multiply = 1, annual.temps = TRUE, transform = 1)

Arguments

x RasterStack object (stack) containing all environmental layers for which suit-
ability should be calculated.

ecocrop.object Object listing optimal and absolute minima and maxima for the rainfall and
temperature values, used by the prediction function that is used internally by
predict. This object is created with ensemble.ecocrop.object.

RASTER.object.name

First part of the names of the raster file that will be generated, expected to iden-
tify the species or crop for which ranges were calculated

RASTER.stack.name

Last part of the names of the raster file that will be generated, expected to iden-
tify the predictor stack used

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.

CATCH.OFF Disable calls to function tryCatch.
temp.thresholds

Optimal and absolute thresholds for temperatures. These will be sorted as: abso-
lute minimum temperature, optimal minimum temperature, optimal maximum
temperature and absolute maximum temperature.

80 ensemble.ecocrop

rain.thresholds

Optimal and absolute thresholds for annual rainfall. These will be sorted as: ab-
solute minimum rainfall, optimal minimum rainfall, optimal maximum rainfall
and absolute maximum rainfall.

name Name of the object, expect to expected to identify the species or crop

temp.multiply Multiplier for temperature values. The value of 10 is to be used with raster
layers where temperature was multiplied by 10 such as Worldclim version 1 or
AFRICLIM.

annual.temps If TRUE then temperature limits are assumed to apply to mean annual tempera-
ture (bioclimatic variable bio1). If FALSE then minimum temperature limits are
assumed to apply to the temperature of the coldest month (bioclimatic variable
bio6) and maximum temperature limits are assumed to apply to the temperature
of the hottest month (bioclimatic variable bio5). See also biovars.

transform Exponent used to transform probability values obtained from interpolating be-
tween optimal and absolute limits. Exponent of 2 results in squaring probabili-
ties, for example input probabilities of 0.5 transformed to 0.5^2 = 0.25.

Details

Function ensemble.ecocrop maps suitability for a species or crop based on optimal and absolute
temperature and rainfall limits. Where both temperature and rainfall are within the optimal limits,
suitability of 1000 is calculated. Where both temperature and rainfall are outside the absolute limits,
suitability of 0 is calculated. In situations where temperature or rainfall is in between the optimal
and absolute limits, then suitability is interpolated between 0 and 1000, and the lowest suitability
from temperature and rainfall is calculated. Setting very wide rainfall limits will simulate the effect
of irrigation, i.e. where suitability only depends on temperature limits.

For a large range of crop and plant species, optimal and absolute limits are available from the
FAO ecocrop database (https://gaez.fao.org/pages/ecocrop-search), hence the name of the
function. A different implementation of suitability mapping based on ecocrop limits is available
from ecocrop. Ecocrop thresholds for several species are available from: getCrop

Value

Function ensemble.ecocrop.object returns a list with following objects:

name name for the crop or species
temp.thresholds

optimal and absolute minimum and maximum temperature limits
rain.thresholds

optimal and absolute minimum and maximum annual rainfall limits

annual.temps logical indicating whether temperature limits apply to annual temperatures

transform exponent to transform suitability values

Author(s)

Roeland Kindt (World Agroforestry Centre)

https://gaez.fao.org/pages/ecocrop-search

ensemble.ecocrop 81

See Also

biovars

Examples

Not run:
test with Brazil nut (limits from FAO ecocrop)
temperature: (12) 20-36 (40)
annnual rainfall: (1400) 2400-2800 (3500)

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6", "bio12"))
predictors
predictors@title <- "base"

As the raster data correspond to WorldClim version 1,
the temperatures need to be multiplied by 10
Brazil.ecocrop <- ensemble.ecocrop.object(temp.thresholds=c(20, 36, 12, 40),

rain.thresholds=c(2400, 2800, 1400, 3500),
temp.multiply=10,
annual.temps=FALSE, name="Bertholletia_excelsa")

Brazil.ecocrop
ensemble.ecocrop(predictors,

ecocrop.object=Brazil.ecocrop,
RASTER.stack.name="base")

dev.new()
par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))

rasterfull1 <- paste("ensembles//ecocrop//Bertholletia_excelsa_base.tif", sep="")
rasterfull1 <- raster(rasterfull1)
raster file saved probabilities as integer values between 0 and 1000
rasterfull1 <- rasterfull1/1000
raster::plot(rasterfull1, main="Ecocrop suitability")

GBIFloc <- gbif(genus="Bertholletia", species="excelsa", geo=TRUE)
GBIFpres <- GBIFloc[, c("lon", "lat")]
GBIFpres <- GBIFpres[complete.cases(GBIFpres),]
GBIFpres <- GBIFpres[duplicated(GBIFpres) == FALSE,]
point.suitability <- extract(rasterfull1, y=GBIFpres)
point.suitability[is.na(point.suitability)] <- -1

GBIFpres.optimal <- GBIFpres[point.suitability == 1,]
GBIFpres.suboptimal <- GBIFpres[point.suitability < 1 & point.suitability > 0,]
GBIFpres.not <- GBIFpres[point.suitability == 0,]

82 ensemble.envirem.masterstack

raster::plot(rasterfull1, main="GBIF locations",
sub="blue: optimal, cyan: suboptimal, red: not suitable")

bg.legend <- c("blue", "cyan", "red")

points(GBIFpres.suboptimal, pch=21, cex=1.2, bg=bg.legend[2])
points(GBIFpres.optimal, pch=21, cex=1.2, bg=bg.legend[1])
points(GBIFpres.not, pch=21, cex=1.2, bg=bg.legend[3])

graphics::par(par.old)

End(Not run)

ensemble.envirem.masterstack

Calculate bioclimatic variables via the envirem package for
data.frames.

Description

Function generateEnvirem uses RasterStack (stack) objects as input and also generates outputs
in the same format. The functions described here can be used to generate the bioclimatic variables
for data.frames while using envirem functions internally. This feature can be useful in situations
where models are calibrated with higher resolution data, but where maps will only be generated in
lower resolutions, thus avoiding the need to generate the higher resolution envirem layers first.

Usage

ensemble.envirem.masterstack(
x,
precipstack,
tmaxstack, tminstack,
tmeanstack = NULL,
envirem3 = TRUE)

ensemble.envirem.solradstack(
x, solrad,
envirem3 = TRUE)

ensemble.envirem.run(
masterstack, solradstack,
var = "all", ...)

Arguments

x Point locations provided in 2-column (eg, LON-LAT) format.

precipstack RasterStack object (stack) or SpatRaster object (rast) containing monthly pre-
cipitation data.

ensemble.envirem.masterstack 83

tmaxstack RasterStack object (stack) or SpatRaster object (rast) containing monthly max-
imum temperature data.

tminstack RasterStack object (stack) or SpatRaster object (rast) containing monthly min-
imum temperature data.

tmeanstack RasterStack object (stack) or SpatRaster object (rast) containing monthly av-
erage temperature data.

envirem3 generate a SpatRaster object (rast) as used by envirem 3.

solrad RasterStack object (stack) or SpatRaster object (rast) containing monthly ex-
trasolar radiation data.

masterstack RasterStack object (stack) expected to have been created via ensemble.envirem.masterstack.

solradstack RasterStack object (stack) expected to have been created via ensemble.envirem.solradstack.

var Names of bioclimatic variables to be created; see: generateEnvirem.

... Other arguments for generateEnvirem, dealing with the scale of temperature
or precipitation data.

Details

The objective of these functions is to expand a data.frame of explanatory variables that will be
used for calibrating species distribution models with bioclimatic variables that are generated by the
envirem package (See details in generateEnvirem).

It is important that monthly values are sorted sequentially (January - December) as the ensemble.envirem.masterstack
and ensemble.envirem.solradstack functions expect the inputs to be sorted in this order.

Function ensemble.envirem.solradstack requires monthly extraterrestrial solar radiation layers
at the same resolution as the climatic layers. It is possible, however, to also calculate these values
directly for point observation data as shown below in the examples.

Value

Function ensemble.envirem.run returns a data.frame with bioclimatic variables for each point
location.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Title P.O., Bemmels J.B. 2018. ENVIREM: An expanded set of bioclimatic and topographic vari-
ables increases flexibility and improves performance of ecological niche modeling. Ecography 41:
291-307.

Kindt R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129
tree species. Global Change Biology. doi:10.1111/gcb.16914

See Also

generateEnvirem, ensemble.calibrate.models, ensemble.calibrate.weights

https://doi.org/10.1111/gcb.16914

84 ensemble.envirem.masterstack

Examples

Not run:
Based on examples in envirem package for envirem::generateEnvirem
Modified Sep-2023 due to change in function name in envirem

library(terra)
library(envirem)

Find example rasters
rasterFiles <- list.files(system.file('extdata', package='envirem'),

full.names=TRUE)

precip.files <- rasterFiles[grepl(pattern="prec_",
x=rasterFiles)]

precip.files <- precip.files[c(1, 5:12, 2:4)]
precip.stack <- terra::rast(precip.files)
precip.stack
names(precip.stack)

tmin.files <- rasterFiles[grepl(pattern="tmin_",
x=rasterFiles)]

tmin.files <- tmin.files[c(1, 5:12, 2:4)]
tmin.stack <- terra::rast(tmin.files)
tmin.stack
names(tmin.stack)

tmax.files <- rasterFiles[grepl(pattern="tmax_",
x=rasterFiles)]

tmax.files <- tmax.files[c(1, 5:12, 2:4)]
tmax.stack <- terra::rast(tmax.files)
tmax.stack
names(tmax.stack)

tmean.files <- rasterFiles[grepl(pattern="tmean_",
x=rasterFiles)]

tmean.files <- tmean.files[c(1, 5:12, 2:4)]
tmean.stack <- terra::rast(tmean.files)
tmean.stack
names(tmean.stack)

Random locations
locs <- dismo::randomPoints(raster::stack(precip.stack[[1]]), n=50)

Climatic data
master.input <- ensemble.envirem.masterstack(x=locs,

precipstack=precip.stack,
tmaxstack=tmax.stack,
tminstack=tmin.stack,
tmeanstack=tmean.stack)

Calculate solar radiation for 1975
(Use other midpoint for the 1970-2000 WorldClim 2.1 baseline)

ensemble.evaluate 85

solrad.stack <- ETsolradRasters(precip.stack[[1]],
year = 1975-1950,
outputDir = NULL)

solrad.input <- ensemble.envirem.solradstack(x=locs,
solrad=solrad.stack)

Obtain the envirem bioclimatic data

envirem.data1 <- ensemble.envirem.run(masterstack=master.input,
solradstack=solrad.input,
tempScale=10)

Generate all the envirem layers, then extract
See envirem package for envirem::generateEnvirem

worldclim <- rast(c(precip.files, tmax.files, tmin.files, tmean.files))
names(worldclim)

assignNames(precip = 'prec_##')

generate all possible envirem variables
envirem.stack <- generateEnvirem(worldclim, solrad.stack, var='all', tempScale = 10)

set back to defaults
assignNames(reset = TRUE)

envirem.data2 <- extract(envirem.stack, y=locs)

compare
envirem.data1 - envirem.data2

Calculate extraterrestrial solar radiation for point observations
solrad1 <- extract(solrad.stack, y=locs)
solrad2 <- array(dim=c(nrow(locs), 12))
for (i in 1:nrow(locs)) {

lat.i <- locs[i, 2]
for (m in 1:12) {
solrad2[i, m] <- envirem:::calcSolRad(year=1975-1950,

lat=lat.i,
month=m)

}
}

solrad1 - solrad2

End(Not run)

86 ensemble.evaluate

ensemble.evaluate Model evaluation including True Skill Statistic (TSS), AUCdiff and
Symmetric Extremal Dependence Index (SEDI).

Description

The main function of ensemble.evaluate calculates various model evaluation statistics. Function
ENSEMBLE.SEDI calculates the Symmetric Extremal Dependence Index (SEDI) from the True Pos-
itive Rate (TPR = Sensitivity = Hit Rate) and the False Positive Rate (FPR = False Alarm Rate = 1
- Specificity).

Usage

ensemble.evaluate(eval, fixed.threshold = NULL, eval.train = NULL)

ensemble.SEDI(TPR, FPR, small = 1e-9)

ensemble.Tjur(eval)

Arguments

eval ModelEvaluation object (evaluate), ideally obtained via model testing data that
were not used for calibrating the model.

fixed.threshold

Absence-presence threshold to create the confusion matrix. See also (threshold
and ensemble.threshold).

eval.train ModelEvaluation object (evaluate), ideally obtained via model calibration data
that were used for calibrating the model.

TPR True Presence Rate, equal to correctly predicted presence observations divided
by total number of presence observations. Also known as Sensitivity or Hit Rate.

FPR False Presence Rate, equal to wrongly predicted absence observations divided
by total number of absence observations. Also known as False Alarm Rate.

small small amount that replaces zeroes in calculations.

Details

Details for the True Skill Statistic (TSS = TPR + TNR - 1 = TPR - FPR), Symmetric Extremal
Dependence Index (SEDI), False Negative Rate (omission or miss rate) and AUCdiff (AUCtrain -
AUCtest) are available from Ferro and Stephenson (2011), Wunderlich et al. (2019) and Castellanos
et al. (2019).
Tjur’s (2009) coefficient of discrimination is calculated as the differences between the averages of
fitted values for successes and failures (see also Erikson & Smith 2023).
Values for TSS and SEDI are given for the fixed absence-presence threshold, as well as their maxi-
mal values across the entire range of candidate threshold values calculate by evaluate.
In case that fixed.threshold is not provided, it is calculated from the calibration ModelEvaluation
as the threshold that maximizes the sum of TPR (sensitivity) and TNR (specificity) (and thus also
maximizes the TSS for the calibration).

ensemble.evaluate 87

Value

A numeric vector with following values.

- AUC: Area Under The Curve for the testing ModelEvaluation

- TSS: maximum value of the True Skill Statistic over range of threshold values

- SEDI: maximum value of the Symmetric Extremal Dependence Index over range of threshold
values

- TSS.fixed: True Skill Statistic at the fixed threshold value

- SEDI.fixed: SEDI at the fixed threshold value

- FNR.fixed: False Negative Rate (= omission rate) at the fixed threshold value

- MCR.fixed: Missclassification Rate at the fixed threshold value

- AUCdiff: Difference between AUC for calibration and the testing data

- Tjur: Coefficient of Discrimination proposed by Tjur (2009)

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Ferro CA, Stephenson DB. 2011. Extremal Dependence Indices: Improved Verification Measures
for Deterministic Forecasts of Rare Binary Events. Wea. Forecasting 26: 699-713.

Wunderlich RF, Lin Y-P, Anthony J, Petway JR. 2019. Two alternative evaluation metrics to replace
the true skill statistic in the assessment of species distribution models. Nature Conservation 35:
97-116. doi:10.3897/natureconservation.35.33918

Castellanos AA, Huntley JW, Voelker G, Lawing AM. 2019. Environmental filtering improves
ecological niche models across multiple scales. Methods in Ecology and Evolution 10: 481-492.

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Tjur T. 2009. Coefficient of determination in logistic regression models - a new proposal: the
coefficient of discrimination. The American Statistician 63: 366-372. doi:10.1198/tast.2009.08210

Erickson KD, Smith AB. 2023. Modelling the rarest of the rare: a comparison between multi-
species distribution models, ensembles of small models, and single-species models at extremely
low sample sizes. Ecography e06500 doi:10.1111/ecog.06500

See Also

ensemble.batch

Examples

check examples from Ferro and Stephenson (2011)
see their Tables 2 - 5

TPR.Table2 <- 55/100
FPR.Table2 <- 45/900

https://doi.org/10.3897/natureconservation.35.33918
https://doi.org/10.1016/j.envsoft.2017.11.009
https://doi.org/10.1198/tast.2009.08210
https://doi.org/10.1111/ecog.06500

88 ensemble.evaluate

ensemble.SEDI(TPR=TPR.Table2, FPR=FPR.Table2)

TPR.Table4 <- 195/300
FPR.Table4 <- 105/700
ensemble.SEDI(TPR=TPR.Table4, FPR=FPR.Table4)

Not run:
Not run:
get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))
predictors
predictors@title <- "predictors"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

the kfold function randomly assigns data to groups;
groups are used as calibration (1/4) and training (3/4) data
groupp <- kfold(pres, 4)
pres_train <- pres[groupp != 1,]
pres_test <- pres[groupp == 1,]

choose background points
background <- randomPoints(predictors, n=1000, extf=1.00)
colnames(background)=c('lon', 'lat')
groupa <- kfold(background, 4)
backg_train <- background[groupa != 1,]
backg_test <- background[groupa == 1,]

formulae for random forest and generalized linear model
compare with: ensemble.formulae(predictors, factors=c("biome"))

rfformula <- as.formula(pb ~ bio5+bio6+bio16+bio17)

glmformula <- as.formula(pb ~ bio5 + I(bio5^2) + I(bio5^3) +
bio6 + I(bio6^2) + I(bio6^3) + bio16 + I(bio16^2) + I(bio16^3) +
bio17 + I(bio17^2) + I(bio17^3))

fit four ensemble models (RF, GLM, BIOCLIM, DOMAIN)
factors removed for BIOCLIM, DOMAIN, MAHAL
ensemble.nofactors <- ensemble.calibrate.models(x=predictors, p=pres_train, a=backg_train,

pt=pres_test, at=backg_test,
species.name="Bradypus",
ENSEMBLE.tune=TRUE,
ENSEMBLE.min = 0.65,
MAXENT=0, MAXNET=0, MAXLIKE=0, GBM=0, GBMSTEP=0, RF=1, CF=0,

ensemble.novel 89

GLM=1, GLMSTEP=0, GAM=0, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=0, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=0, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=0,
Yweights="BIOMOD",
factors="biome",
evaluations.keep=TRUE, models.keep=FALSE,
RF.formula=rfformula,
GLM.formula=glmformula)

with option evaluations.keep, all model evaluations are saved in the ensemble object
attributes(ensemble.nofactors$evaluations)

Get evaluation statistics for the ENSEMBLE model
eval.ENSEMBLE <- ensemble.nofactors$evaluations$ENSEMBLE.T
eval.calibrate.ENSEMBLE <- ensemble.nofactors$evaluations$ENSEMBLE.C
ensemble.evaluate(eval=eval.ENSEMBLE, eval.train=eval.calibrate.ENSEMBLE)

TSS is maximum where specificity + sensitivity is maximum
threshold.specsens <- threshold(eval.ENSEMBLE, stat="spec_sens")
ensemble.evaluate(eval=eval.ENSEMBLE, fixed.threshold=threshold.specsens,

eval.train=eval.calibrate.ENSEMBLE)

usual practice to calculate threshold from calibration data
ensemble.evaluate(eval=eval.ENSEMBLE, eval.train=eval.calibrate.ENSEMBLE)

End(Not run)

ensemble.novel Mapping of novel environmental conditions (areas where some of the
environmental conditions are outside the range of environmental con-
ditions of a reference area).

Description

Function ensemble.novel creates the map with novel conditions. Function ensemble.novel.object
provides the reference values used by the prediction function used by predict .

Usage

ensemble.novel(x = NULL, novel.object = NULL,
RASTER.object.name = novel.object$name, RASTER.stack.name = x@title,
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
CATCH.OFF = FALSE)

ensemble.novel.object(x = NULL, name = "reference1", mask.raster = NULL,
quantiles = FALSE, probs = c(0.05, 0.95), factors = NULL)

90 ensemble.novel

Arguments

x RasterStack object (stack) containing all environmental layers for which novel
conditions should be calculated. With ensemble.novel.object, x can also be
a data.frame.

novel.object Object listing minima and maxima for the environmental layers, used by the
prediction function that is used internally by predict. This object is created
with ensemble.novel.object.

RASTER.object.name

First part of the names of the raster file that will be generated, expected to iden-
tify the area and time period for which ranges were calculated

RASTER.stack.name

Last part of the names of the raster file that will be generated, expected to iden-
tify the predictor stack used

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.

CATCH.OFF Disable calls to function tryCatch.

name Name of the object, expect to expected to identify the area and time period for
which ranges were calculated and where no novel conditions will be detected

mask.raster RasterLayer object (raster) that can be used to select the area for which refer-
ence values are obtained (see mask)

quantiles If TRUE, then replace minima and maxima with quantile values. See also quantile
and quantile)

probs Numeric vector of probabilities [0, 1] as used by quantile and quantile)

factors vector that indicates which variables are factors; these variables will be ignored
for novel conditions

Details

Function ensemble.novel maps zones (coded ’1’) that are novel (outside the minimum-maximum
range) relative to the range provided by function ensemble.novel.object. Values that are not
novel (inside the range of minimum-maximum values) are coded ’0’. In theory, the maps show
the same areas that have negative Multivariate Environmental Similarity Surface (MESS) values
((mess))

Value

Function ensemble.novel.object returns a list with following objects:

minima minima of the reference environmental conditions

maxima maxima of the reference environmental conditions

name name for the reference area and time period

ensemble.novel 91

Author(s)

Roeland Kindt (World Agroforestry Centre)

See Also

ensemble.raster, ensemble.bioclim and ensemble.bioclim.graph

Examples

Not run:
get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio7", "bio8",

"bio12", "bio16", "bio17"))
predictors
predictors@title <- "base"

reference area to calculate environmental ranges
ext <- extent(-70, -50, -10, 10)
extent.values2 <- c(-70, -50, -10, 10)
predictors.current <- crop(predictors, y=ext)
predictors.current <- stack(predictors.current)

novel.test <- ensemble.novel.object(predictors.current, name="noveltest")
novel.test
novel.raster <- ensemble.novel(x=predictors, novel.object=novel.test)
novel.raster

plot(novel.raster)
no novel conditions within reference area
rect(extent.values2[1], extent.values2[3], extent.values2[2], extent.values2[4])

use novel conditions as a simple species suitability mapping method
presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]
pres.data <- data.frame(extract(predictors, y=pres))

ranges and maps
Bradypus.ranges1 <- ensemble.novel.object(pres.data, name="Bradypus", quantiles=F)
Bradypus.ranges1
Bradypus.novel1 <- ensemble.novel(x=predictors, novel.object=Bradypus.ranges1)
Bradypus.novel1

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))

suitable where there are no novel conditions
raster::plot(Bradypus.novel1, breaks=c(-0.1, 0, 1), col=c("green", "grey"),

92 ensemble.novel

main="Suitability mapping using minimum to maximum range")
points(pres[, 2] ~ pres[, 1], pch=1, col="red", cex=0.8)

use 90 percent intervals similar to BIOCLIM methodology
Bradypus.ranges2 <- ensemble.novel.object(pres.data, name="BradypusQuantiles", quantiles=T)
Bradypus.ranges2
Bradypus.novel2 <- ensemble.novel(x=predictors, novel.object=Bradypus.ranges2)
Bradypus.novel2
raster::plot(Bradypus.novel2, breaks=c(-0.1, 0, 1), col=c("green", "grey"),

main="Suitability mapping using quantile range")
points(pres[, 2] ~ pres[, 1], pch=1, col="red", cex=0.8)

graphics::par(par.old)

deal with novel factor levels through dummy variables
predictors <- stack(predictor.files)
biome.layer <- predictors[["biome"]]
biome.layer
ensemble.dummy.variables(xcat=biome.layer, most.frequent=0, freq.min=1,

overwrite=TRUE)

predictors.dummy <- stack(predictor.files)
predictors.dummy <- subset(predictors.dummy, subset=c("biome_1", "biome_2", "biome_3",

"biome_4", "biome_5", "biome_7", "biome_8", "biome_9",
"biome_10", "biome_12", "biome_13", "biome_14"))

predictors.dummy
predictors.dummy@title <- "base_dummy"

predictors.dummy.current <- crop(predictors.dummy, y=ext)
predictors.dummy.current <- stack(predictors.dummy.current)

novel.levels <- ensemble.novel.object(predictors.dummy.current, name="novellevels")
novel.levels
novel.levels.raster <- ensemble.novel(x=predictors.dummy, novel.object=novel.levels)
novel.levels.raster

novel.levels.quantiles <- ensemble.novel.object(predictors.dummy.current, quantiles=TRUE,
name="novellevels_quantiles")

novel.levels.quantiles
novel.levels.quantiles.raster <- ensemble.novel(x=predictors.dummy,

novel.object=novel.levels.quantiles)
novel.levels.quantiles.raster

difference in ranges for variables with low frequencies
background <- dismo::randomPoints(predictors.dummy.current, n=10000, p=NULL, excludep=F)
extract.data <- extract(predictors.dummy.current, y=background)
colSums(extract.data)/sum(extract.data)*100
novel.levels
novel.levels.quantiles

par.old <- graphics::par(no.readonly=T)
graphics::par(mfrow=c(1,2))
raster::plot(novel.levels.raster, breaks=c(-0.1, 0, 1), col=c("grey", "green"),

ensemble.PET.season 93

main="novel outside minimum to maximum range")
rect(extent.values2[1], extent.values2[3], extent.values2[2], extent.values2[4])
raster::plot(novel.levels.quantiles.raster, breaks=c(-0.1, 0, 1), col=c("grey", "green"),

main="novel outside quantile range")
rect(extent.values2[1], extent.values2[3], extent.values2[2], extent.values2[4])
graphics::par(par.old)

End(Not run)

ensemble.PET.season Calculate the balance between precipitation and potential evapotran-
spiration for the dry season with the largest balance (maximum clima-
tological water deficit, accumulated aridity).

Description

Internally, the function first determines different dry seasons, defined by consecutive months where
precipitation is smaller than potential evapotranspiration. The function then returns the summa-
tion of monthly balances of precipitation minus potential evapotranspiration that is largest (most
negative) of the different dry seasons.

Usage

ensemble.PET.season(PREC.stack = NULL, PET.stack = NULL,
filename = NULL, overwrite = TRUE,
CATCH.OFF = FALSE, ...)

Arguments

PREC.stack stack object (stack) with monthly precipitation values.

PET.stack stack object (stack) with monthly potential evapotranspiration values.

filename Name for writing the resulting raster layer (as in writeRaster).

overwrite Replace a previous version of the same file.

CATCH.OFF Disable calls to function tryCatch.

... Additional arguments for writeRaster.

Details

Unlike the methodology described by Chave et al. (2014), the assumption is not made that there
is a single drought season. Internally, the function first identifies dry months as months where
the balance of precipitation minus potential evapotranspiration is negative. Then dry seasons are
identified as consecutive dry months. For each dry season, the total sum of balances is calculated.
The function finally identifies and returns the largest of these balances.

The algorithm of the function should obtain the same values of the Maximum Cumulative Water
Deficit as from rules described by Aragao et al. 2007 (section 2.2), when using fixed monthly PET

94 ensemble.PET.seasons

values of 100 mm instead of calculated monthly PET values (calculated, for example, from monthly
mean temperatures and extraterrestrial solar radiation through the Hargreaves method).

Note that calculation may take a while for larger raster data sets.

Value

The function returns and writes a raster layer

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Chave J et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical
trees. Global Change Biology 20: 3177-3190.

Aragao LZ et al. 2007. Spatial patterns and fire response of recent Amazonian droughts. Geophys-
ical Research Letters 34 L07701

See Also

ensemble.batch

Examples

Not run:

Not run:

library(raster)
stack1 <- stack(monthly.prec.files)
stack2 <- stack(monthly.PET.files)
note that the stacks should be of the same extend and resolution
ensemble.PET.season(PREC.stack=stack1, PET.stack=stack2,

filename=paste(getwd(), '//Aridity.deficit.tif', sep=""))

End(Not run)

ensemble.PET.seasons Raster calculations of beginnings and lengths of growing seasons from
the difference between precipitation (P) and potential evapotranspira-
tion (PET), defining dry months with 2 * P < PET.

ensemble.PET.seasons 95

Description

The main function of ensemble.PET.seasons calculates the number of growing seasons and their
starts and lengths from the dry period criterion of 2 * P < PET (https://www.fao.org/4/w2962e/
w2962e-03.htm). Functions ensemble.PREC.season and ensemble.TMEAN.season calculate the
total precipitation and average temperature for provided starts and lengths of a growing season. To-
gether with data on optimal and absolute precipitation and temperature limits for a selected crop (as
available from FAO’s ECOCROP database), these layers enable the calculation of crop suitability
using methods detailed in Chapman et al. (2020).

Usage

ensemble.PET.seasons(PREC.stack=NULL, PET.stack=NULL,
index=c("seasons", "start1", "length1", "start2", "length2", "start3", "length3"),
filename=NULL, overwrite=TRUE,
CATCH.OFF=FALSE, ...)

ensemble.prec.season(PREC.stack=NULL,
start.layer=NULL, length.layer=NULL,
filename=NULL, overwrite=TRUE,
CATCH.OFF=FALSE, ...)

ensemble.tmean.season(TMEAN.stack=NULL,
start.layer=NULL, length.layer=NULL,
filename=NULL, overwrite=TRUE,
CATCH.OFF=FALSE, ...)

ensemble.season.suitability(season.raster=NULL,
thresholds=NULL,
filename=NULL, overwrite=TRUE,
CATCH.OFF=FALSE, ...)

Arguments

PREC.stack stack object (stack) with monthly precipitation values.
PET.stack stack object (stack) with monthly potential evapotranspiration values.
TMEAN.stack stack object (stack) with monthly average temperature values.
index selection of type of output - see details.
start.layer raster layer with index of the month of the start of the growing season.
length.layer raster layer with index of the length of the growing season.
season.raster raster layer with seasonal precipitation or mean temperature.
thresholds optimal and absolute thresholds of crop suitability, defined similarly as by ECOCROP.
filename Name for writing the resulting raster layer (as in writeRaster).
overwrite Replace a previous version of the same file.
CATCH.OFF Disable calls to function tryCatch.
... Additional arguments for writeRaster.

https://www.fao.org/4/w2962e/w2962e-03.htm
https://www.fao.org/4/w2962e/w2962e-03.htm

96 ensemble.PET.seasons

Details

Function ensemble.PET.seasons calculates the number, starts and lengths of growing seasons
after first internally determining dry periods from the criterion of 2 * P < PET. The function was
developed with data sets with monthly precipitatin and PET values, but probably can also work with
data sets of other temporal resolution. Where there are multiple gaps between dry seasons, different
growing periods are identified.

The definition of dry periods is less strict than the definition of P < PET used in ensemble.PET.season,
following the methodologies for this function.

Argument index determines the contents of the output rasters: - seasons selects the number of
growing periods to be returned; - start1 selects the index of the start of the first or only growing
period to be returned; - length1 selects the index of the end of the first or only growing period to
be returned; - start2 selects the index of the start of the second growing period to be returned; -
length2 selects the index of the end of the second growing period to be returned; - start3 selects
the index of the start of the third growing period to be returned; and - length3 selects the index of
the end of the third growing period to be returned.

The methodology of calculating crop suitability is directly based on Chapman et al. (2020), follow-
ing their equations 2 (temperature suitability, based on the mean temperature of the growing season)
and 3 (precipitation suitability, based on the total precipitation of the growing season). The meth-
ods of Chapman et al. (2020) are based on Ramirez-Villegas et al. (2013), including the calculation
of crop suitability as the product of temperature suitability and crop suitability (their respective
equations 1 and 3).

Crop thresholds are available from the FAO ECOCROP database, which are also available via func-
tion getCrop.

Note that calculations can take a while for larger data sets.

Value

The function returns and writes raster layers.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Ramirez-Villegas J, Jarvis A and Laderach P. 2013. Empirical approaches for assessing impacts of
climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricul-
tural and Forest Meteorology doi:10.1016/j.agrformet.2011.09.005

Chapman et al. 2020. Impact of climate change on crop suitability in sub-Saharan Africa in pa-
rameterized and convection-permitting regional climate models. Environmental Research Letters
15:094086.

See Also

ensemble.PET.season

https://doi.org/10.1016/j.agrformet.2011.09.005

ensemble.PET.seasons 97

Examples

Not run:

Not run:

library(raster)
P.stack <- stack(monthly.prec.files)
PE.stack <- stack(monthly.PET.files)

Calculate average monthly values similarly as in
TMIN.stack <- stack(monthly.tmin.files)
TMAX.stack <- stack(monthly.tmax.files)
T.stack <- stack(0.5*(TMIN.stack + TMAX.stack))

step 1: determine number of seasons, start and length of season 1

seasons.raster <- ensemble.PET.seasons(PREC.stack=P.stack, PET.stack=PE.stack,
index="seasons", filename="seasons.tif", CATCH.OFF=TRUE)

start1.raster <- ensemble.PET.seasons(PREC.stack=P.stack, PET.stack=PE.stack,
index="start1", filename="start1.tif", CATCH.OFF=TRUE)

length1.raster <- ensemble.PET.seasons(PREC.stack=P.stack, PET.stack=PE.stack,
index="length1", filename="length1.tif", CATCH.OFF=TRUE)

start2.raster <- ensemble.PET.seasons(PREC.stack=P.stack, PET.stack=PE.stack,
index="start2", filename="start2.tif", CATCH.OFF=TRUE)

length2.raster <- ensemble.PET.seasons(PREC.stack=P.stack, PET.stack=PE.stack,
index="length2", filename="length2.tif", CATCH.OFF=TRUE)

step 2: calculate total precipitation in first rainy season,
then use this value to calculate precipitation suitability

prec.season <- ensemble.prec.season(PREC.stack=P.stack,
start.layer=start1.raster, length.layer=length1.raster,
filename="precSeason.tif", CATCH.OFF=FALSE)

dismo::getCrop("Sorghum (med. altitude)")

prec.suit <- ensemble.season.suitability(season.raster=prec.season,
thresholds=c(300, 500, 1000, 3000),
filename="precSuitability.tif", CATCH.OFF=FALSE)

step 3: calculate average temperature in first rainy season,
then use this value to calculate temperature suitability

tmean.season <- ensemble.tmean.season(TMEAN.stack=T.stack,
start.layer=start1.raster, length.layer=length1.raster,
filename="tmeanSeason.tif", CATCH.OFF=FALSE)

temp.suit <- ensemble.season.suitability(season.raster=tmean.season,

98 ensemble.raster

thresholds=c(10, 24, 35, 40),
filename="tempSuitability.tif", CATCH.OFF=FALSE)

step 4: seasonal crop suitability is product of precipitation suitability
and temperature suitability

sorghum.suit <- prec.suit * temp.suit
plot(sorghum.suit)

End(Not run)

ensemble.raster Suitability mapping based on ensembles of modelling algorithms: con-
sensus mapping

Description

The basic function ensemble.raster creates two consensus raster layers, one based on a (weighted)
average of different suitability modelling algorithms, and a second one documenting the number of
modelling algorithms that predict presence of the focal organisms. Modelling algorithms include
maximum entropy (MAXENT), boosted regression trees, random forests, generalized linear mod-
els (including stepwise selection of explanatory variables), generalized additive models (including
stepwise selection of explanatory variables), multivariate adaptive regression splines, regression
trees, artificial neural networks, flexible discriminant analysis, support vector machines, the BIO-
CLIM algorithm, the DOMAIN algorithm and the Mahalonobis algorithm. These sets of functions
were developed in parallel with the biomod2 package, especially for inclusion of the maximum
entropy algorithm, but also to allow for a more direct integration with the BiodiversityR package,
more direct handling of model formulae and greater focus on mapping. Researchers and students
of species distribution are strongly encouraged to familiarize themselves with all the options of the
biomod2 and dismo packages.

Usage

ensemble.raster(xn = NULL,
models.list = NULL,
input.weights = models.list$output.weights,
thresholds = models.list$thresholds,
RASTER.species.name = models.list$species.name,
RASTER.stack.name = xn@title,
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
RASTER.models.overwrite = TRUE,
evaluate = FALSE, SINK = FALSE,
p = models.list$p, a = models.list$a,
pt = models.list$pt, at = models.list$at,
CATCH.OFF = FALSE)

ensemble.habitat.change(base.map = file.choose(),

ensemble.raster 99

other.maps = utils::choose.files(),
change.folder = "ensembles/change",
RASTER.names = "changes",
RASTER.format = "GTiff", RASTER.datatype = "INT1U", RASTER.NAflag = 255)

ensemble.area(x=NULL, km2=TRUE)

Arguments

xn RasterStack object (stack) containing all layers that correspond to explanatory
variables of an ensemble calibrated earlier with ensemble.calibrate.models.
See also predict.

models.list list with ’old’ model objects such as MAXENT or RF.

input.weights array with numeric values for the different modelling algorithms; if NULL then
values provided by parameters such as MAXENT and GBM will be used. As an
alternative, the output from ensemble.calibrate.weights can be used.

thresholds array with the threshold values separating predicted presence for each of the
algorithms.

RASTER.species.name

First part of the names of the raster files that will be generated, expected to
identify the modelled species (or organism).

RASTER.stack.name

Last part of the names of the raster files that will be generated, expected to
identify the predictor stack used.

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.
RASTER.models.overwrite

Overwrite the raster files that correspond to each suitability modelling algorithm
(if TRUE). (Overwriting actually implies that raster files are created or overwrit-
ten that start with "working_").

evaluate if TRUE, then evaluate the created raster layers at locations p, a, pt and at (if
provided). See also evaluate

SINK Append the results to a text file in subfolder ’outputs’ (if TRUE). The name of
file is based on argument RASTER.species.name. In case the file already exists,
then results are appended. See also sink.

p presence points used for calibrating the suitability models, typically available in
2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

a background points used for calibrating the suitability models, typically available
in 2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

pt presence points used for evaluating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData

100 ensemble.raster

at background points used for calibrating the suitability models, typicall available
in 2-column (lon, lat) dataframe; see also prepareData and extract

CATCH.OFF Disable calls to function tryCatch.

base.map filename with baseline map used to produce maps that show changes in suitable
habitat

other.maps files with other maps used to produce maps that show changes in suitable habitat
from a defined base.map

change.folder folder where new maps documenting changes in suitable habitat will be stored.
NOTE: please ensure that the base folder (eg: ../ensembles) exists already.

RASTER.names names for the files in the change.folder (previously set as names of the other
maps).

x RasterLayer object (raster) in a longitude-latitude coordinate system

km2 Provide results in square km rather than square m. See also areaPolygon

Details

The basic function ensemble.raster fits individual suitability models for all models with positive
input weights. In subfolder "models" of the working directory, suitability maps for the individ-
ual suitability modelling algorithms are stored. In subfolder "ensembles", a consensus suitability
map based on a weighted average of individual suitability models is stored. In subfolder "ensem-
bles/presence", a presence-absence (1-0) map will be provided. In subfolder "ensembles/count", a
consensus suitability map based on the number of individual suitability models that predict presence
of the focal organism is stored.

Note that values in suitability maps are integer values that were calculated by multiplying probabil-
ities by 1000 (see also trunc).

The ensemble.habitat.change function produces new raster layers that show changes in suitable
and not suitable habitat between a base raster and a list of other rasters. The output uses the fol-
lowing coding: 0 = areas that remain unsuitable, 11 = areas that remain suitable, 10 = areas of lost
habitat, 1 = areas of new habitat. (Codes are inspired on a binary classification of habitat suitability
in base [1- or 0-] and other layer [-1 or -0], eg new habitat is coded 01 = 1).

The ensemble.area function calculates the area of different categories with areaPolygon

Value

The basic function ensemble.raster mainly results in the creation of raster layers that correspond
to fitted probabilities of presence of individual suitability models (in folder "models") and consensus
models (in folder "ensembles"), and the number of suitability models that predict presence (in folder
"ensembles"). Prediction of presence is based on a threshold usually defined by maximizing the sum
of the true presence and true absence rates (see threshold.method and also ModelEvaluation).

If desired by the user, the ensemble.raster function also saves details of fitted suitability models
or data that can be plotted with the evaluation.strip.plot function.

Author(s)

Roeland Kindt (World Agroforestry Centre), Eike Luedeling (World Agroforestry Centre) and Evert
Thomas (Bioversity International)

ensemble.raster 101

References

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Buisson L, Thuiller W, Casajus N, Lek S and Grenouillet G. 2010. Uncertainty in ensemble fore-
casting of species distribution. Global Change Biology 16: 1145-1157

See Also

evaluation.strip.plot, ensemble.calibrate.models, ensemble.calibrate.weights, ensemble.batch

Examples

Not run:
based on examples in the dismo package

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17"))
predictors
predictors@title <- "base"

presence points
presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

choose background points
background <- randomPoints(predictors, n=1000, extf = 1.00)

if desired, change working directory where subfolders of "models" and
"ensembles" will be created
raster layers will be saved in subfolders of /models and /ensembles:
getwd()

first calibrate the ensemble
calibration is done in two steps
in step 1, a k-fold procedure is used to determine the weights
in step 2, models are calibrated for all presence and background locations
factor is not used as it is not certain whether correct levels will be used
it may therefore be better to use dummy variables

step 1: determine weights through 4-fold cross-validation
ensemble.calibrate.step1 <- ensemble.calibrate.weights(

x=predictors, p=pres, a=background, k=4,
SINK=TRUE, species.name="Bradypus",
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,

https://doi.org/10.1016/j.envsoft.2017.11.009

102 ensemble.raster

GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.tune=TRUE, PROBIT=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=c(0.65, 0.7),
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

step 1 generated the weights for each algorithm
model.weights <- ensemble.calibrate.step1$output.weights
x.batch <- ensemble.calibrate.step1$x
p.batch <- ensemble.calibrate.step1$p
a.batch <- ensemble.calibrate.step1$a
MAXENT.a.batch <- ensemble.calibrate.step1$MAXENT.a
factors.batch <- ensemble.calibrate.step1$factors
dummy.vars.batch <- ensemble.calibrate.step1$dummy.vars

step 2: calibrate models with all available presence locations
weights determined in step 1 calculate ensemble in step 2
ensemble.calibrate.step2 <- ensemble.calibrate.models(

x=x.batch, p=p.batch, a=a.batch, MAXENT.a=MAXENT.a.batch,
factors=factors.batch, dummy.vars=dummy.vars.batch,
SINK=TRUE, species.name="Bradypus",
models.keep=TRUE,
input.weights=model.weights,
ENSEMBLE.tune=FALSE, PROBIT=TRUE,
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

step 3: use previously calibrated models to create ensemble raster layers
re-evaluate the created maps at presence and background locations
(note that re-evaluation will be different due to truncation of raster layers
as they wered saved as integer values ranged 0 to 1000)
ensemble.raster.results <- ensemble.raster(xn=predictors,

models.list=ensemble.calibrate.step2$models,
input.weights=model.weights,
SINK=TRUE, evaluate=TRUE,
RASTER.species.name="Bradypus", RASTER.stack.name="base")

use the base map to check for changes in suitable habitat
this type of analysis is typically done with different predictor layers
(for example, predictor layers representing different possible future climates)
In this example, changes from a previous model (ensemble.raster.results)
are contrasted with a newly calibrated model (ensemble.raster.results2)
step 1: 4-fold cross-validation
ensemble.calibrate2.step1 <- ensemble.calibrate.weights(

x=x.batch, p=p.batch, a=a.batch, MAXENT.a=MAXENT.a.batch,
factors=factors.batch, dummy.vars=dummy.vars.batch,
k=4,
SINK=TRUE, species.name="Bradypus",
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,

ensemble.raster 103

EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.tune=TRUE, PROBIT=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=c(0.65, 0.7),
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

model.weights2 <- ensemble.calibrate2.step1$output.weights

ensemble.calibrate2.step2 <- ensemble.calibrate.models(
x=x.batch, p=p.batch, a=a.batch, MAXENT.a=MAXENT.a.batch,
factors=factors.batch, dummy.vars=dummy.vars.batch,
SINK=TRUE, species.name="Bradypus",
models.keep=TRUE,
input.weights=model.weights2,
ENSEMBLE.tune=FALSE, PROBIT=TRUE,
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

ensemble.raster.results2 <- ensemble.raster(
xn=predictors,
models.list=ensemble.calibrate2.step2$models,
input.weights=model.weights2,
SINK=TRUE, evaluate=TRUE,
RASTER.species.name="Bradypus", RASTER.stack.name="recalibrated")

base.file <- paste(getwd(), "/ensembles/presence/Bradypus_base.tif", sep="")
other.file <- paste(getwd(), "/ensembles/presence/Bradypus_recalibrated.tif", sep="")

changed.habitat <- ensemble.habitat.change(base.map=base.file,
other.maps=c(other.file),
change.folder="ensembles/change",
RASTER.names="Bradypus_recalibrated")

change.file <- paste(getwd(), "/ensembles/change/Bradypus_recalibrated.tif", sep="")

par.old <- graphics::par(no.readonly=T)
dev.new()
par(mfrow=c(2,2))
raster::plot(raster(base.file), breaks=c(-1, 0, 1), col=c("grey", "green"),

legend.shrink=0.8, main="base presence")
raster::plot(raster(other.file), breaks=c(-1, 0, 1), col=c("grey", "green"),

legend.shrink=0.8, main="other presence")
raster::plot(raster(change.file), breaks=c(-1, 0, 1, 10, 11),

col=c("grey", "blue", "red", "green"),
legend.shrink=0.8, main="habitat change", sub="11 remaining, 10 lost, 1 new")

graphics::par(par.old)

areas <- ensemble.area(raster(change.file))
areas

End(Not run)

104 ensemble.red

ensemble.red Area of Occupancy (AOO) and Extent of Occurrence (EOO) via the
red library.

Description

Function ensemble.red is a wrapper function for estimation of AOO and EOO computed for
redlisting of species based on IUCN criteria (https://www.iucnredlist.org/about/regional).
Function ensemble.chull.create creates a mask layer based on a convex hull around known
presence locations, inspired by mcp argument of the map.sdm function.

Usage

ensemble.red(x)

ensemble.chull.create(x.pres = NULL, p = NULL, buffer.width = 0.2,
buffer.maxmins = FALSE, lonlat.dist = FALSE,
poly.only = FALSE,
RASTER.format = "GTiff", RASTER.datatype = "INT1U", RASTER.NAflag = 255,
overwrite = TRUE, ...)

ensemble.chull.apply(x.spec = NULL, mask.layer=NULL, keep.old=T,
RASTER.format="GTiff", RASTER.datatype="INT1U", RASTER.NAflag = 255,
overwrite=TRUE, ...)

ensemble.chull.buffer.distances(p = NULL,
buffer.maxmins = FALSE, lonlat.dist = FALSE)

ensemble.chull.MSDM(p = NULL, a = NULL, species.name = NULL,
suit.file = NULL, suit.divide = 1000, MSDM.dir = NULL,
method = "BMCP", threshold = "spec_sens",
buffer = "species_specific")

Arguments

x RasterLayer object (raster), representing ’count’ suitability layers (available
from the ’count’ and ’consensuscount’ subdirectories of the ’ensembles’ direc-
tory)

x.pres RasterLayer object (raster), representing ’presence’ suitability layers (avail-
able from the ’presence’ and ’consensuspresence’ subdirectories of the ’ensem-
bles’ directory)

p known presence locations, available in 2-column (lon, lat) dataframe; see also
prepareData and extract

buffer.width multiplier to create buffer (via st_buffer) by multiplying the maximum dis-
tance among the presence locations (calculated via pointDistance)

https://www.iucnredlist.org/about/regional

ensemble.red 105

buffer.maxmins Calculate the buffer width based on the two neighbouring locations that are fur-
thest apart (maximum of minimum distances from each location).

lonlat.dist Estimate the distance in km for longitude latitude data.

poly.only Only return the polygon with the convex hull, but do not create the mask layer.

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.

overwrite Overwrite existing raster files. See writeRaster.

... Additional arguments for writeRaster.

x.spec RasterLayer object (raster), representing any suitability layer for the species
under investigation)

mask.layer RasterLayer object (raster), representing the mask based on the convex hull
around known presence locations. The function will replace all values in x.spec
to zero where corresponding values in the mask.layer are zero.

keep.old keep a copy of the RasterLayer before the mask is applied.

a absence of background locations, available in 2-column (lon, lat) dataframe.

species.name name of the species, ideally without spaces.

suit.file file with raster data corresponding to suitability values of the focal species.

suit.divide number by which values in the suitability raster should be divided to result in
probabilities (BiodiversityR saves data as 1000 * suitability, hence these values
need to be divided by 1000).

MSDM.dir name of the directory where input and processed raster files will be saved.

method method for MSDM_Posteriori function from c("OBR", "PRES", "LQ", "MCP",
"BMCP").

threshold threshold for MSDM_Posteriori function from c("kappa", "spec_sens", "no_omission",
"prevalence", "equal_sens_spec", "sensitivty").

buffer buffer for MSDM_Posteriori function.

Details

Function ensemble.red calculates AOO (aoo) and EOO (aoo) statistics calculated for areas with
different consensus levels on species presence (1 model predicting presence, 2 models predicting
presence, ...). In case that these statistics are within IUCN criteria for Critically Endangered (CR),
Endangered (EN) or Vulnerable (VU), then this information is added in columns documenting the
types of AOO and EOO.

Function ensemble.chull.create first creates a convex hull around known presence locations.
Next, a buffer is created around the convex hull where the width of this buffer is calculated as the
maximum distance among presence locations (pointDistance) multiplied by argument buffer.width.
Finally, the mask is created by including all polygons of predicted species presence that are partially
covered by the convex hull and its buffer.

106 ensemble.red

Value

Function ensemble.red returns an array with AOO and EOO Function ensemble.chull.create
creates a mask layer based on a convex hull around known presence locations. Function ensemble.chull.MSDM
prepares the input data and script for the MSDM_Posteriori function of the MSDM package.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Cardoso P. 2017. red - an R package to facilitate species red list assessments according to the IUCN
criteria. Biodiversity Data Journal 5:e20530. doi:10.3897/BDJ.5.e20530

Mendes, P.; Velazco S.J.E.; Andrade, A.F.A.; De Marco, P. (2020) Dealing with overprediction in
species distribution models: how adding distance constraints can improve model accuracy, Ecolog-
ical Modelling, in press. doi:10.1016/j.ecolmodel.2020.109180

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

See Also

ensemble.batch

Examples

Not run:

Not run:
based on examples in the dismo package

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17"))
predictors
predictors@title <- "red"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')

fit 4 ensemble models (could take some time!)
(examples for the red package use 100 models)
ensembles <- ensemble.batch(x=predictors,

xn=c(predictors),
species.presence=pres,

https://doi.org/10.3897/BDJ.5.e20530
https://doi.org/10.1016/j.ecolmodel.2020.109180
https://doi.org/10.1016/j.envsoft.2017.11.009

ensemble.red 107

thin.km=100,
k.splits=4, k.test=0,
n.ensembles=4,
SINK=TRUE,
ENSEMBLE.best=10, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.6,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=0,
GLM=0, GLMSTEP=1, GAM=1, GAMSTEP=0, MGCV=1, MGCVFIX=0,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1,
BIOCLIM.O=0, BIOCLIM=1, DOMAIN=0, MAHAL=0, MAHAL01=0,
PROBIT=TRUE,
Yweights="BIOMOD",
formulae.defaults=TRUE)

first application of ensemble.red before applying the convex hull mask
AOO and EOO are determined for each count level
library(red)
count.file <- paste(getwd(),

"/ensembles/consensuscount/Bradypus variegatus_red.tif", sep="")
count.raster <- raster(count.file)
ensemble.red(count.raster)

do not predict presence in polygons completely outside convex hull
of known presence locations
pres.file <- paste(getwd(),

"/ensembles/consensuspresence/Bradypus variegatus_red.tif", sep="")
pres.raster <- raster(pres.file)
pres1 <- pres[, -1]
chull.created <- ensemble.chull.create(x.pres=pres.raster, p=pres1)

mask.raster <- chull.created$mask.layer
plot(mask.raster, col=c("black", "green"))
mask.poly <- chull.created$convex.hull

pres.chull <- ensemble.chull.apply(pres.raster, mask=mask.raster, keep.old=T)

par.old <- graphics::par(no.readonly=T)
par(mfrow=c(1,2))
plot(pres.raster, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="before convex hull")
points(pres1, col="blue")

load new
pres.file.new <- paste(getwd(),

"/ensembles/chull/Bradypus variegatus_red.tif", sep="")
pres.raster.new <- raster(pres.file.new)
plot(pres.raster.new, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="after convex hull")
plot(mask.poly, add=T, border="blue")

create a smaller hull (0.05 * largest distance)
chull.created <- ensemble.chull.create(x.pres=pres.raster, p=pres1,

buffer.width=0.05, lonlat.dist=TRUE)

108 ensemble.spatialBlock

mask.raster <- chull.created$mask.layer
mask.poly <- chull.created$convex.hull
pres.chull <- ensemble.chull.apply(pres.raster, mask=mask.raster, keep.old=T)

par(mfrow=c(1,2))
plot(pres.raster, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="before convex hull")
points(pres1, col="blue")
pres.raster.new <- raster(pres.file.new)
plot(pres.raster.new, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="after convex hull")
plot(mask.poly, add=T, border="blue")

create a hull based on the distance to the location with the farthest neighbour
chull.created <- ensemble.chull.create(x.pres=pres.raster, p=pres1,

buffer.maxmins=TRUE, buffer.width=0.9, lonlat.dist=TRUE)
mask.raster <- chull.created$mask.layer
mask.poly <- chull.created$convex.hull
pres.chull <- ensemble.chull.apply(pres.raster, mask=mask.raster, keep.old=T)

par(mfrow=c(1,2))
plot(pres.raster, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="before convex hull")
points(pres1, col="blue")
pres.raster.new <- raster(pres.file.new)
plot(pres.raster.new, breaks=c(-1, 0, 1), col=c("grey", "green"),

main="after convex hull")
plot(mask.poly, add=T, border="blue")

par.old <- graphics::par(no.readonly=T)

how distances were derived
maximum distance between observations
ensemble.chull.buffer.distances(pres1, lonlat.dist=TRUE)
the closest neigbhour that is farthest away from each observation
this is the distance calculated by MSDM_posteriori for buffer="species_specific"
ensemble.chull.buffer.distances(pres1, buffer.maxmins=TRUE, lonlat.dist=TRUE)

End(Not run)

ensemble.spatialBlock Spatially or environmentally separated folds for cross-validation via
blockCV::spatialBlock or blockCV::envBlock

Description

The functions internally calls blockCV::spatialBlock and blockCV::envBlock. Syntax is very simi-
lar to that of BiodiversityR::ensemble.calibrate.weights.

ensemble.spatialBlock 109

Usage

ensemble.spatialBlock(x = NULL, p = NULL,
a = NULL, an = 1000, EPSG=NULL,
excludep = FALSE, target.groups = FALSE, k = 4,
factors = NULL,
theRange = NULL, return.object = FALSE, ...)

ensemble.envBlock(x = NULL, p = NULL,
a = NULL, an = 1000, EPSG=NULL,
excludep = FALSE, target.groups = FALSE, k = 4,
factors = NULL,
return.object = FALSE, ...)

Arguments

x RasterStack object (stack) containing all layers that correspond to explanatory
variables

p presence points used for calibrating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData and extract

a background points used for calibrating the suitability models, typically available
in 2-column (lon, lat) dataframe; see also prepareData and extract

an number of background points for calibration to be selected with randomPoints
in case argument a is missing

EPSG EPSG number (see https://spatialreference.org/) to be assigned internally to the
coordinate reference system of the locations via st_crs. Although the function
internally first assigns the coordinate reference from the RasterStack x via crs,
this method fails in some situations as in the example shown below. In such
cases, manually assigning the EPSG could resolve this problem.

excludep parameter that indicates (if TRUE) that presence points will be excluded from the
background points; see also randomPoints

target.groups Parameter that indicates (if TRUE) that the provided background points (argument
a) represent presence points from a target group sensu Phillips et al. 2009 (these
are species that are all collected or observed using the same methods or equip-
ment). Setting the parameter to TRUE results in selecting the centres of cells of
the target groups as background points, while avoiding to select the same cells
twice. Via argument excludep, it is possible to filter out cells with presence
observations (argument p).

k Integer value. The number of desired folds for cross-validation. The default is k
= 4. The interpretation of the argument is exactly the same as in ensemble.calibrate.models
and kfold.

factors vector that indicates which variables are factors; see also prepareData

theRange Numeric value of the specified range by which blocks are created and train-
ing/testing data are separated. This distance should be in metres. See also
spatialBlock.

110 ensemble.spatialBlock

return.object If TRUE, then also return (’block.object’) the complete result of spatialBlock or
envBlock. In addtion (if TRUE), return the species data (’speciesData’) that was
created for blockCV. To visualize these results, see below or from foldExplorer.

... Other arguments to pass to spatialBlock or envBlock, such numLimit (The
minimum number of points in each fold for training-presence, training-absence,
testing-presence and testing-absence) and iteration (The number of attempts
to create folds that fulfil the numLimit requirement).

Details

The functions internally call spatialBlock or envBlock.

The result of the function includes a list (k) with following elements. This list can be directly
imported into ensemble.calibrate.weights, but only elements groupp and groupa will be used.

- p : Presence locations, created by ensemble.calibrate.models where points with missing data
were excluded and possibly points were added for missing factor levels

- a : Background locations, created by ensemble.calibrate.models where points with missing
data were excluded and possibly points were added for missing factor levels

- groupp : k-fold identities for the presence locations

- groupa : k-fold identities for the background locations

Optionally the function also returns elements block.object and speciesData. These can be used
to visualize data with foldExplorer.

Value

The function returns a list with the following elements:.

k A list with data on folds that can be directly used by ensemble.calibrate.weights.

block.object the results of spatialBlock or envBlock

speciesData a SpatialPointsDataFrame with species data

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Roberts et al., 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

Examples

Not run:

library(blockCV)
library(sf)

get predictor variables

ensemble.spatialBlock 111

library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17"))
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[, -1]

choose background points
background <- randomPoints(predictors, n=1000, p=pres, excludep=T, extf=1.00)
background <- data.frame(background)
colnames(background)=c('lon', 'lat')

spatial blocking with square blocks of 1000 km and minimum 20 points in each categor
fails if EPSG is not assigned
block.data <- ensemble.spatialBlock(x=predictors, p=pres, a=background,

EPSG=NULL,
showBlocks=F, theRange=1000000, k=4, numLimit=20, iteration=1000, return.object=T)

block.data <- ensemble.spatialBlock(x=predictors, p=pres, a=background,
EPSG=4326,
showBlocks=F, theRange=1000000, k=4, numLimit=20, iteration=1000, return.object=T)

explore the results
foldExplorer(blocks=block.data$block.object, rasterLayer=predictors,

speciesData=block.data$speciesData)

apply in calibration of ensemble weights
make sure that folds apply to subset of points
p.spatial <- block.datakp
a.spatial <- block.dataka
k.spatial <- block.data$k

ensemble.w1 <- ensemble.calibrate.weights(x=predictors,
p=p.spatial, a=a.spatial, k=k.spatial,
species.name="Bradypus",
SINK=FALSE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=0, CF=1,
GLM=1, GLMSTEP=0, GAM=1, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=1, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=0, MAHAL=0, MAHAL01=0,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
Yweights="BIOMOD",
formulae.defaults=TRUE)

112 ensemble.spatialThin

confirm that correct folds were used
all.equal(ensemble.w1$groupp, block.data$k$groupp)
all.equal(ensemble.w1$groupa, block.data$k$groupa)

environmental blocking with minimum 5 points in each category
block.data2 <- ensemble.envBlock(x=predictors, p=pres, a=background,

factors="biome",
k=4, numLimit=5, return.object=T)

explore the results
foldExplorer(blocks=block.data2$block.object, rasterLayer=predictors,

speciesData=block.data2$speciesData)

apply in calibration of ensemble weights
make sure that folds apply to subset of points
p.env <- block.data2kp
a.env <- block.data2ka
k.env <- block.data2$k

ensemble.w2 <- ensemble.calibrate.weights(x=predictors,
p=p.env, a=a.env, k=k.env,
species.name="Bradypus",
SINK=FALSE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=0, CF=1,
GLM=1, GLMSTEP=0, GAM=1, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=1, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=0, MAHAL=0, MAHAL01=0,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
factors="biome",
Yweights="BIOMOD",
formulae.defaults=TRUE)

confirm that correct folds were used
all.equal(ensemble.w2$groupp, block.data2$k$groupp)
all.equal(ensemble.w2$groupa, block.data2$k$groupa)

End(Not run)

ensemble.spatialThin Thinning of presence point coordinates in geographical or environ-
mental space

Description

Function ensemble.spatialThin creates a randomly selected subset of point coordinates where
the shortest distance (geodesic) is above a predefined minimum. The geodesic is calculated more
accurately (via distGeo) than in the spThin or red packages.

ensemble.spatialThin 113

Usage

ensemble.spatialThin(x, thin.km = 0.1,
runs = 100, silent = FALSE, verbose = FALSE,
return.notRetained = FALSE)

ensemble.spatialThin.quant(x, thin.km = 0.1,
runs = 100, silent = FALSE, verbose = FALSE,
LON.length = 21, LAT.length = 21)

ensemble.environmentalThin(x, predictors.stack = NULL,
extracted.data=NULL, thin.n = 50,
runs = 100, pca.var = 0.95, silent = FALSE, verbose = FALSE,
return.notRetained = FALSE)

ensemble.environmentalThin.clara(x, predictors.stack = NULL, thin.n = 20,
runs = 100, pca.var = 0.95, silent = FALSE, verbose = FALSE,
clara.k = 100)

ensemble.outlierThin(x, predictors.stack = NULL, k = 10,
quant = 0.95, pca.var = 0.95,
return.outliers = FALSE)

Arguments

x Point locations provided in 2-column (lon, lat) format.

thin.km Threshold for minimum distance (km) in final point location data set.

runs Number of runs to maximize the retained number of point coordinates.

silent Do not provide any details on the process.

verbose Provide some details on each run.
return.notRetained

Return in an additional data set the point coordinates that were thinned out.

LON.length Number of quantile limits to be calculated from longitudes; see also quantile

LAT.length Number of quantile limits to be calculated from latitudes; see also quantile

predictors.stack

RasterStack object (stack) containing environmental layers that define the en-
vironmental space of point observations.

extracted.data Data set with the environmental data at the point locations. If this data is pro-
vided, then this data will be used in the analysis and data will not be extracted
from the predictors.stack.

thin.n Target number of environmentally thinned points.

pca.var Minimum number of axes based on the fraction of variance explained (default
value of 0.95 indicates that at least 95 percent of variance will be explained on
the selected number of axes). Axes and coordinates are obtained from Principal
Components Analysis (scores).

114 ensemble.spatialThin

clara.k The number of clusters in which the point coordinates will be divided by clara.
Clustering is done in environmental space with point coordinates determined
from Principal Components Analysis.

k The number of neighbours for the Local Outlier Factor analysis; see lof

quant The quantile probability above with local outlier factors are classified as outliers;
see also quantile

return.outliers

Return in an additional data set the point coordinates that were flagged as out-
liers.

Details

Locations with distances smaller than the threshold distance are randomly removed from the data
set until no distance is smaller than the threshold. The function uses a similar algorithm as functions
in the spThin or red packages, but the geodesic is more accurately calculated via distGeo.

With several runs (default of 100 as in the red package or some spThin examples), the (first) data
set with the maximum number of records is retained.

Function ensemble.spatialThin.quant was designed to be used with large data sets where the
size of the object with pairwise geographical distances could create memory problems. With this
function, spatial thinning is only done within geographical areas defined by quantile limits of geo-
graphical coordinates.

Function ensemble.environmentalThin performs an analysis in environmental space similar to
the analysis in geographical space by ensemble.spatialThin. However, the target number of re-
tained point coordinates needs to be defined by the user. Coordinates are obtained in environmental
space by a principal components analysis (function rda). Internally, first points are randomly se-
lected from the pair with the smallest environmental distance until the selected target number of
retained point coordinates is reached. From the retained point coordinates, the minimum environ-
mental distance is determined. In a second step (more similar to spatial thinning), locations are
randomly removed from all pairs that have a distance larger than the minimum distance calculated
in step 1.

Function ensemble.environmentalThin.clara was designed to be used with large data sets
where the size of the object with pairwise environmental distances could create memory problems.
With this function, environmental thinning is done sequentially for each of the clusters defined by
clara. Environmental space is obtained by by a principal components analysis (function rda). En-
vironmental distances are calculated as the pairwise Euclidean distances between the point locations
in the environmental space.

Function ensemble.outlierThin selects point coordinates that are less likely to be local outliers
based on a Local Outlier Factor analysis (lof). Since LOF does not result in strict classification of
outliers, a user-defined quantile probability is used to identify outliers.

Value

The function returns a spatially or environmentally thinned point location data set.

Author(s)

Roeland Kindt (World Agroforestry Centre)

ensemble.spatialThin 115

References

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B and Anderson RP. 2015. spThin: an
R package for spatial thinning of species occurrence records for use in ecological niche models.
Ecography 38: 541-545

See Also

ensemble.batch

Examples

Not run:
get predictor variables, only needed for plotting
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17", "biome"))
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[, -1]

number of locations
nrow(pres)

par.old <- graphics::par(no.readonly=T)
par(mfrow=c(2,2))

pres.thin1 <- ensemble.spatialThin(pres, thin.km=100, runs=10, verbose=T)
plot(predictors[[1]], main="5 runs", ext=extent(SpatialPoints(pres.thin1)))
points(pres, pch=20, col="black")
points(pres.thin1, pch=20, col="red")

pres.thin2 <- ensemble.spatialThin(pres, thin.km=100, runs=10, verbose=T)
plot(predictors[[1]], main="5 runs (after fresh start)", ext=extent(SpatialPoints(pres.thin2)))
points(pres, pch=20, col="black")
points(pres.thin2, pch=20, col="red")

pres.thin3 <- ensemble.spatialThin(pres, thin.km=100, runs=100, verbose=T)
plot(predictors[[1]], main="100 runs", ext=extent(SpatialPoints(pres.thin3)))
points(pres, pch=20, col="black")
points(pres.thin3, pch=20, col="red")

pres.thin4 <- ensemble.spatialThin(pres, thin.km=100, runs=100, verbose=T)
plot(predictors[[1]], main="100 runs (after fresh start)", ext=extent(SpatialPoints(pres.thin4)))
points(pres, pch=20, col="black")
points(pres.thin4, pch=20, col="red")

116 ensemble.spatialThin

graphics::par(par.old)

thinning in environmental space

env.thin <- ensemble.environmentalThin(pres, predictors.stack=predictors, thin.n=60,
return.notRetained=T)

pres.env1 <- env.thin$retained
pres.env2 <- env.thin$not.retained

plot in geographical space
par.old <- graphics::par(no.readonly=T)
par(mfrow=c(1, 2))

plot(predictors[[1]], main="black = not retained", ext=extent(SpatialPoints(pres.thin3)))
points(pres.env2, pch=20, col="black")
points(pres.env1, pch=20, col="red")

plot in environmental space
background.data <- data.frame(raster::extract(predictors, pres))
rda.result <- vegan::rda(X=background.data, scale=T)
select number of axes
ax <- 2
while ((sum(vegan::eigenvals(rda.result)[c(1:ax)])/

sum(vegan::eigenvals(rda.result))) < 0.95) {ax <- ax+1}
rda.scores <- data.frame(vegan::scores(rda.result, display="sites", scaling=1, choices=c(1:ax)))
rownames(rda.scores) <- rownames(pres)
points.in <- rda.scores[which(rownames(rda.scores) %in% rownames(pres.env1)), c(1:2)]
points.out <- rda.scores[which(rownames(rda.scores) %in% rownames(pres.env2)), c(1:2)]
plot(points.out, main="black = not retained", pch=20, col="black",

xlim=range(rda.scores[, 1]), ylim=range(rda.scores[, 2]))
points(points.in, pch=20, col="red")

graphics::par(par.old)

removing outliers
out.thin <- ensemble.outlierThin(pres, predictors.stack=predictors, k=10,

return.outliers=T)
pres.out1 <- out.thin$inliers
pres.out2 <- out.thin$outliers

plot in geographical space
par.old <- graphics::par(no.readonly=T)
par(mfrow=c(1, 2))

plot(predictors[[1]], main="black = outliers", ext=extent(SpatialPoints(pres.thin3)))
points(pres.out2, pch=20, col="black")
points(pres.out1, pch=20, col="red")

plot in environmental space
background.data <- data.frame(raster::extract(predictors, pres))
rda.result <- vegan::rda(X=background.data, scale=T)
select number of axes

ensemble.terra 117

ax <- 2
while ((sum(vegan::eigenvals(rda.result)[c(1:ax)])/

sum(vegan::eigenvals(rda.result))) < 0.95) {ax <- ax+1}
rda.scores <- data.frame(vegan::scores(rda.result, display="sites", scaling=1, choices=c(1:ax)))
rownames(rda.scores) <- rownames(pres)
points.in <- rda.scores[which(rownames(rda.scores) %in% rownames(pres.out1)), c(1:2)]
points.out <- rda.scores[which(rownames(rda.scores) %in% rownames(pres.out2)), c(1:2)]
plot(points.out, main="black = outliers", pch=20, col="black",

xlim=range(rda.scores[, 1]), ylim=range(rda.scores[, 2]))
points(points.in, pch=20, col="red")

graphics::par(par.old)

End(Not run)

ensemble.terra Suitability mapping based on ensembles of modelling algorithms: con-
sensus mapping via the terra package

Description

The function ensemble.terra creates two consensus raster layers, one based on a (weighted) av-
erage of different suitability modelling algorithms, and a second one documenting the number of
modelling algorithms that predict presence of the focal organisms. This function has the same
behaviour as ensemble.raster.

Usage

ensemble.terra(xn = NULL,
models.list = NULL,
input.weights = models.list$output.weights,
thresholds = models.list$thresholds,
RASTER.species.name = models.list$species.name,
RASTER.stack.name = "xnTitle",
RASTER.filetype = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
RASTER.models.overwrite = TRUE,
evaluate = FALSE, SINK = FALSE,
p = models.list$p, a = models.list$a,
pt = models.list$pt, at = models.list$at,
CATCH.OFF = FALSE)

Arguments

xn SpatRaster object (rast) containing all layers that correspond to explanatory
variables of an ensemble calibrated earlier with ensemble.calibrate.models.
See also predict.

118 ensemble.terra

models.list list with ’old’ model objects such as MAXENT or RF.

input.weights array with numeric values for the different modelling algorithms; if NULL then
values provided by parameters such as MAXENT and GBM will be used. As an
alternative, the output from ensemble.calibrate.weights can be used.

thresholds array with the threshold values separating predicted presence for each of the
algorithms.

RASTER.species.name

First part of the names of the raster files that will be generated, expected to
identify the modelled species (or organism).

RASTER.stack.name

Last part of the names of the raster files that will be generated, expected to
identify the predictor stack used.

RASTER.filetype

Format of the raster files that will be generated. See writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.
RASTER.models.overwrite

Overwrite the raster files that correspond to each suitability modelling algorithm
(if TRUE). (Overwriting actually implies that raster files are created or overwrit-
ten that start with "working_").

evaluate if TRUE, then evaluate the created raster layers at locations p, a, pt and at (if
provided). See also evaluate

SINK Append the results to a text file in subfolder ’outputs’ (if TRUE). The name of
file is based on argument RASTER.species.name. In case the file already exists,
then results are appended. See also sink.

p presence points used for calibrating the suitability models, typically available in
2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

a background points used for calibrating the suitability models, typically available
in 2-column (x, y) or (lon, lat) dataframe; see also prepareData and extract

pt presence points used for evaluating the suitability models, typically available in
2-column (lon, lat) dataframe; see also prepareData

at background points used for calibrating the suitability models, typicall available
in 2-column (lon, lat) dataframe; see also prepareData and extract

CATCH.OFF Disable calls to function tryCatch.

Details

The basic function ensemble.terra fits individual suitability models for all models with positive
input weights. In subfolder "models" of the working directory, suitability maps for the individ-
ual suitability modelling algorithms are stored. In subfolder "ensembles", a consensus suitability
map based on a weighted average of individual suitability models is stored. In subfolder "ensem-
bles/presence", a presence-absence (1-0) map will be provided. In subfolder "ensembles/count", a
consensus suitability map based on the number of individual suitability models that predict presence
of the focal organism is stored.

ensemble.terra 119

Note that values in suitability maps are integer values that were calculated by multiplying probabil-
ities by 1000 (see also trunc).

Value

The basic function ensemble.terra mainly results in the creation of raster layers that correspond to
fitted probabilities of presence of individual suitability models (in folder "models") and consensus
models (in folder "ensembles"), and the number of suitability models that predict presence (in folder
"ensembles"). Prediction of presence is based on a threshold usually defined by maximizing the sum
of the true presence and true absence rates (see threshold.method and also ModelEvaluation).

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Buisson L, Thuiller W, Casajus N, Lek S and Grenouillet G. 2010. Uncertainty in ensemble fore-
casting of species distribution. Global Change Biology 16: 1145-1157

See Also

ensemble.raster, evaluation.strip.plot, ensemble.calibrate.models, ensemble.calibrate.weights,
ensemble.batch

Examples

Not run:
based on examples in the dismo package

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17"))
predictors
predictors@title <- "base"

make a SpatRaster object
Ideally this should not be created from files in the 'raster' grd format
(so a better method would be to create instead from 'tif' files).

predictors.terra <- terra::rast(predictors)
predictors@title <- "base"
crs(predictors.terra) <- c("+proj=longlat +datum=WGS84")
predictors.terra

https://doi.org/10.1016/j.envsoft.2017.11.009

120 ensemble.terra

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

choose background points
background <- dismo::randomPoints(predictors, n=1000, extf = 1.00)

if desired, change working directory where subfolders of "models" and
"ensembles" will be created
raster layers will be saved in subfolders of /models and /ensembles:
getwd()

first calibrate the ensemble
calibration is done in two steps
in step 1, a k-fold procedure is used to determine the weights
in step 2, models are calibrated for all presence and background locations

Although a spatRaster (predictors.terra) object is used as input for
ensemble.calibrate.weights and ensemble.calibrate.models,
internally the spatRaster will be converted to a rasterStack for these
functions (among other things, to allow for dismo::prepareData)

step 1: determine weights through 4-fold cross-validation
ensemble.calibrate.step1 <- ensemble.calibrate.weights(

x=predictors.terra, p=pres, a=background, k=4,
SINK=TRUE, species.name="Bradypus",
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1, GLMNET=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
ENSEMBLE.tune=TRUE, PROBIT=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=c(0.65, 0.7),
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

step 1 generated the weights for each algorithm
model.weights <- ensemble.calibrate.step1$output.weights
x.batch <- ensemble.calibrate.step1$x
p.batch <- ensemble.calibrate.step1$p
a.batch <- ensemble.calibrate.step1$a
MAXENT.a.batch <- ensemble.calibrate.step1$MAXENT.a
factors.batch <- ensemble.calibrate.step1$factors
dummy.vars.batch <- ensemble.calibrate.step1$dummy.vars

step 2: calibrate models with all available presence locations
weights determined in step 1 calculate ensemble in step 2
ensemble.calibrate.step2 <- ensemble.calibrate.models(

x=x.batch, p=p.batch, a=a.batch, MAXENT.a=MAXENT.a.batch,
factors=factors.batch, dummy.vars=dummy.vars.batch,
SINK=TRUE, species.name="Bradypus",
models.keep=TRUE,

ensemble.zones 121

input.weights=model.weights,
ENSEMBLE.tune=FALSE, PROBIT=TRUE,
Yweights="BIOMOD",
PLOTS=FALSE, formulae.defaults=TRUE)

step 3: use previously calibrated models to create ensemble raster layers
re-evaluate the created maps at presence and background locations
(note that re-evaluation will be different due to truncation of raster layers
as they wered saved as integer values ranged 0 to 1000)
ensemble.terra.results <- ensemble.terra(xn=predictors.terra,

models.list=ensemble.calibrate.step2$models,
input.weights=model.weights,
SINK=TRUE, evaluate=TRUE,
RASTER.species.name="Bradypus", RASTER.stack.name="base")

End(Not run)

ensemble.zones Mapping of environmental zones based on the Mahalanobis distance
from centroids in environmental space.

Description

Function ensemble.zones maps the zone of each raster cell within a presence map based on the
minimum Mahalanobis distance (via mahalanobis) to different centroids. Function ensemble.centroids
defines centroids within a presence map based on Principal Components Analysis (via rda) and K-
means clustering (via kmeans).

Usage

ensemble.zones(presence.raster = NULL, centroid.object = NULL,
x = NULL, ext = NULL,
RASTER.species.name = centroid.object$name, RASTER.stack.name = x@title,
RASTER.format = "GTiff", RASTER.datatype = "INT2S", RASTER.NAflag = -32767,
CATCH.OFF = FALSE)

ensemble.centroids(presence.raster = NULL, x = NULL, categories.raster = NULL,
an = 10000, ext = NULL, name = "Species001",
pca.var = 0.95, centers = 0, use.silhouette = TRUE,
plotit = FALSE, dev.new.width = 7, dev.new.height = 7)

Arguments

presence.raster

RasterLayer object (raster) documenting presence (coded 1) of an organism

122 ensemble.zones

centroid.object

Object listing values for centroids and covariance to be used with the mahalanobis
distance (used internally by the prediction function called from predict).

x RasterStack object (stack) containing all environmental layers that correspond
to explanatory variables

ext an Extent object to limit the predictions and selection of background points to a
sub-region of presence.raster and x, typically provided as c(lonmin, lonmax,
latmin, latmax). See also randomPoints and extent.

RASTER.species.name

First part of the names of the raster file that will be generated, expected to iden-
tify the modelled species (or organism)

RASTER.stack.name

Last part of the names of the raster file that will be generated, expected to iden-
tify the predictor stack used

RASTER.format Format of the raster files that will be generated. See writeFormats and writeRaster.
RASTER.datatype

Format of the raster files that will be generated. See dataType and writeRaster.

RASTER.NAflag Value that is used to store missing data. See writeRaster.

CATCH.OFF Disable calls to function tryCatch.
categories.raster

RasterLayer object (raster) documenting predefined zones such as vegetation
types. In case this object is provided, then centroids will be calculated for each
zone.

an Number of presence points to be used for Principal Components Analysis (via
rda); see also prepareData and extract

name Name for the centroid object, for example identifying the species and area for
which centroids are calculated

pca.var Minimum number of axes based on the fraction of variance explained (default
value of 0.95 indicates that at least 95 percent of variance will be explained on
the selected number of axes). Axes and coordinates are obtained from Principal
Components Analysis (scores).

centers Number of centers (clusters) to be used for K-means clustering (kmeans). In case
a value smaller than 1 is provided, function cascadeKM is called to determine the
optimal number of centers via the Calinski-Harabasz criterion.

use.silhouette If TRUE, then centroid values are only based on presence points that have silhou-
ette values (silhouette) larger than 0.

plotit If TRUE, then a plot is provided that shows the locations of centroids in geo-
graphical and environmental space. Plotting in geographical space is based on
determination of the presence location (analogue) with smallest Mahalanobis
distance to the centroid in environmental space.

dev.new.width Width for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

dev.new.height Heigth for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

ensemble.zones 123

Details

Function ensemble.zones maps the zone of each raster cell of a predefined presence map, whereby
the zone is defined as the centroid with the smallest Mahalanobis distance. The function returns a
RasterLayer object (raster) and possibly a KML layer.

Function ensemble.centroid provides the centroid locations in environmental space and a covari-
ance matrix (cov) to be used with mahalanobis. Also provided is information on the analogue
presence location that is closest to the centroid in environmental space.

Value

Function ensemble.centroid returns a list with following objects:

centroids Location of centroids in environmental space
centroid.analogs

Location of best analogs to centroids in environmental space

cov.mahal Covariance matrix

Author(s)

Roeland Kindt (World Agroforestry Centre)

See Also

ensemble.raster

Examples

Not run:
get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio7", "bio8",

"bio12", "bio16", "bio17"))
predictors
predictors@title <- "base"

choose background points
background <- randomPoints(predictors, n=1000, extf=1.00)

predicted presence from GLM
ensemble.calibrate.step1 <- ensemble.calibrate.models(

x=predictors, p=pres, a=background,
species.name="Bradypus",
MAXENT=0, MAXLIKE=0, MAXNET=0, CF=0,
GBM=0, GBMSTEP=0, RF=0, GLM=1, GLMSTEP=0,
GAM=0, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=0, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=0, BIOCLIM=0, DOMAIN=0, MAHAL=0, MAHAL01=0,

124 evaluation.strip.data

Yweights="BIOMOD",
models.keep=TRUE)

ensemble.raster.results <- ensemble.raster(xn=predictors,
models.list=ensemble.calibrate.step1$models,
RASTER.species.name="Bradypus", RASTER.stack.name="base")

get presence map as for example created with ensemble.raster in subfolder 'ensemble/presence'
presence values are values equal to 1
presence.file <- paste("ensembles//presence//Bradypus_base.tif", sep="")
presence.raster <- raster(presence.file)

let cascadeKM decide on the number of clusters
dev.new()
centroids <- ensemble.centroids(presence.raster=presence.raster,

x=predictors, an=1000, plotit=T)
ensemble.zones(presence.raster=presence.raster, centroid.object=centroids,

x=predictors, RASTER.species.name="Bradypus")

dev.new()
zones.file <- paste("ensembles//zones//Bradypus_base.tif", sep="")
zones.raster <- raster(zones.file)
max.zones <- maxValue(zones.raster)
plot(zones.raster, breaks=c(0, c(1:max.zones)),

col = grDevices::rainbow(n=max.zones), main="zones")
ensemble.zones(presence.raster=presence.raster, centroid.object=centroids,

x=predictors, RASTER.species.name="Bradypus")

manually choose 6 zones
dev.new()
centroids6 <- ensemble.centroids(presence.raster=presence.raster,

x=predictors, an=1000, plotit=T, centers=6)
ensemble.zones(presence.raster=presence.raster, centroid.object=centroids6,

x=predictors, RASTER.species.name="Bradypus6")

dev.new()
zones.file <- paste("ensembles//zones//Bradypus6_base.tif", sep="")
zones.raster <- raster(zones.file)
max.zones <- maxValue(zones.raster)
plot(zones.raster, breaks=c(0, c(1:max.zones)),

col = grDevices::rainbow(n=max.zones), main="six zones")

End(Not run)

evaluation.strip.data Evaluation strips for ensemble suitability mapping

evaluation.strip.data 125

Description

These functions provide a dataframe which can subsequently be used to evaluate the relationship
between environmental variables and the fitted probability of occurrence of individual or ensemble
suitability modelling algorithms. The biomod2 package provides an alternative implementation of
this approach (response.plot2).

Usage

evaluation.strip.data(xn = NULL, ext = NULL,
models.list = NULL,
input.weights = models.list$output.weights,
steps=200, CATCH.OFF = FALSE

)

evaluation.strip.plot(data, TrainData=NULL,
variable.focal = NULL, model.focal = NULL,
ylim=c(0, 1.25),
dev.new.width = 7, dev.new.height = 7, ...

)

Arguments

xn RasterStack object (stack) containing all layers that correspond to explanatory
variables of an ensemble calibrated earlier with ensemble.calibrate.models.
See also predict.

ext an Extent object to limit the prediction to a sub-region of xn and the selection of
background points to a sub-region of x, typically provided as c(lonmin, lonmax,
latmin, latmax); see also predict, randomPoints and extent

models.list list with ’old’ model objects such as MAXENT or RF.

input.weights array with numeric values for the different modelling algorithms; if NULL then
values provided by parameters such as MAXENT and GBM will be used. As an
alternative, the output from ensemble.calibrate.weights can be used.

steps number of steps within the range of a continuous explanatory variable

CATCH.OFF Disable calls to function tryCatch.

data data set with ranges of environmental variables and fitted suitability models,
typically returned by evaluation.strip.data

TrainData Data set representing the calibration data set. If provided, then a boxplot will be
added for presence locations via boxplot

variable.focal focal explanatory variable for plots with evaluation strips

model.focal focal model for plots with evaluation strips

ylim range of Y-axis

dev.new.width Width for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

126 evaluation.strip.data

dev.new.height Heigth for new graphics device (dev.new). If < 0, then no new graphics device
is opened.

... Other arguments passed to plot

Details

These functions are mainly intended to be used internally by the ensemble.raster function.

evaluation.strip.data creates a data frame with variables (columns) corresponding to the en-
vironmental variables encountered in the RasterStack object (x) and the suitability modelling ap-
proaches that were defined. The variable of focal.var is an index of the variable for which values
are ranged. The variable of categorical is an index for categorical (factor) variables.

A continuous (numeric) variable is ranged between its minimum and maximum values in the num-
ber of steps defined by argument steps. When a continuous variable is not the focal variable, then
the average (mean) is used.

A categorical (factor) variable is ranged for all the encountered levels (levels) for this variable.
When a categorical variable is not the focal variable, then the most frequent level is used.

Value

function evaluation.strip.data creates a data frame, function evaluation.strip.data allows
for plotting.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Envi-
ronmental Modelling & Software 100: 136-145. doi:10.1016/j.envsoft.2017.11.009

Elith J, Ferrier S, Huettmann F & Leathwick J. 2005. The evaluation strip: A new and robust
method for plotting predicted responses from species distribution models. Ecological Modelling
186: 280-289

See Also

ensemble.calibrate.models and ensemble.raster

Examples

Not run:

get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

https://doi.org/10.1016/j.envsoft.2017.11.009

evaluation.strip.data 127

"bio16", "bio17"))
predictors <- stack(predictors)
predictors
predictors@title <- "base"

presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]

the kfold function randomly assigns data to groups;
groups are used as calibration (1/5) and training (4/5) data
groupp <- kfold(pres, 5)
pres_train <- pres[groupp != 1,]
pres_test <- pres[groupp == 1,]

choose background points
background <- randomPoints(predictors, n=1000, extf=1.00)
colnames(background)=c('lon', 'lat')
groupa <- kfold(background, 5)
backg_train <- background[groupa != 1,]
backg_test <- background[groupa == 1,]

calibrate the models
MAXLIKE not included as does not allow predictions for data.frames
ENSEMBLE.min and ENSEMBLE.weight.min set very low to explore all
algorithms.
If focus is on actual ensemble, then set ENSEMBLE.min and
ENSEMBLE.weight.min to more usual values
ensemble.calibrate <- ensemble.calibrate.models(x=predictors,

p=pres_train, a=backg_train,
pt=pres_test, at=backg_test,
ENSEMBLE.min=0.5, ENSEMBLE.weight.min = 0.001,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=1, CF=1,
GLM=1, GLMSTEP=1, GAM=1, GAMSTEP=1, MGCV=1, MGCVFIX=1,
EARTH=1, RPART=1, NNET=1, FDA=1, SVM=1, SVME=1,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=1, MAHAL=0, MAHAL01=1,
Yweights="BIOMOD",
PLOTS=FALSE, models.keep=TRUE)

obtain data for plotting the evaluation strip
strip.data <- evaluation.strip.data(xn=predictors, steps=500,

models.list=ensemble.calibrate$models)

in case predictions for DOMAIN failed
however, ENSEMBLE should also be recalculated
DOMAIN.model <- ensemble.calibrate$models$DOMAIN
strip.data$plot.data[, "DOMAIN"] <- dismo::predict(object=DOMAIN.model,

x=strip.data$plot.data)

in case predictions for MAHAL01 failed
predict.MAHAL01 <- function(model, newdata, MAHAL.shape) {

p <- dismo::predict(object=model, x=newdata)
p <- p - 1 - MAHAL.shape

128 faramea

p <- abs(p)
p <- MAHAL.shape / p
return(as.numeric(p))

}

MAHAL01.model <- ensemble.calibrate$models$MAHAL01
MAHAL.shape1 <- ensemble.calibrate$models$formulae$MAHAL.shape
strip.data$plot.data[, "MAHAL01"] <- predict.MAHAL01(model=MAHAL01.model,

newdata=strip.data$plot.data, MAHAL.shape=MAHAL.shape1)

create graphs
evaluation.strip.plot(data=strip.data$plot.data, variable.focal="bio6",

TrainData=strip.data$TrainData,
type="o", col="red")

evaluation.strip.plot(data=strip.data$plot.data, model.focal="ENSEMBLE",
TrainData=strip.data$TrainData,
type="o", col="red")

End(Not run)

faramea Faramea occidentalis abundance in Panama

Description

This dataset describes the abundance (number of trees with diameter at breast height equal or larger
than 10 cm) of the tree species Faramea occidentalis as observed in a 1-ha quadrat survey from the
Barro Colorada Island of Panama. For each quadrat, some environmental characteristics are also
provided.

Usage

data(faramea)

Format

A data frame with 45 observations on the following 8 variables.

UTM.EW a numeric vector

UTM.NS a numeric vector

Precipitation a numeric vector

Elevation a numeric vector

Age a numeric vector

Age.cat a factor with levels c1 c2 c3

Geology a factor with levels pT Tb Tbo Tc Tcm Tgo Tl

Faramea.occidentalis a numeric vector

ifri 129

Details

Although the original survey documented tree species composition of all 1-ha subplots of larger
(over 1 ha) sample plot, only the first (and sometimes the last) quadrats of the larger plots were
included. This selection was made to avoid that larger sample plots dominated the analysis. This
selection of sites is therefore different from the selection of the 50 1-ha quadrats of the largest
sample plot of the same survey (BCI and BCI.env)

This dataset is the main dataset used for the examples provided in chapters 6 and 7 of the Tree
Diversity Analysis manual (Kindt & Coe, 2005).

References

Pyke CR, Condit R, Aguilar S and Lao S. (2001). Floristic composition across a climatic gradient
in a neotropical lowland forest. Journal of Vegetation Science 12: 553-566.

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nunez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295: 666-669.

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

data(faramea)

ifri Example data from the International Forestry Resources and Institu-
tions (IFRI) research network

Description

This data set contains information on the number of stems (individuals) and basal areas for 34 veg-
etation plots inventoried in February 1997 in Lothlorien forest, 37 vegetation plots inventoried in
February 1996 in May Creek Forest and 36 vegetation plots inventoried in May 1995 in Yellow-
wood State Forest. All three sites are in Indiana, USA. Data were gathered through IFRI inventory
protocols to record any tree, palm and woody climber with diameter at breast height greater than or
equal to 10 cm in 10-m radius circular plots; only tree species data were kept in the example data
sets (IFRI research instruments and IFRI manual section P: Forest Plot Form, section D1: Tree,
Palm and Woody Climber Information).

Usage

data(ifri)

https://www.worldagroforestry.org/output/tree-diversity-analysis

130 importancevalue

Format

A data frame with 486 observations on the following 5 variables.

forest a factor with 3 levels: "LOT" (Lothlorien forest), "MCF" (May Creek Forest) and "YSF"
(Yellowwood State Forest)

plotID a factor with 107 levels providing an identification code for a 314.16 square metres (10 m
radius) vegetation plot

species a factor with 50 levels providing an 8 character code for a tree species

count a numeric vector providing the number of stems (individuals) for each species in each veg-
etation plot

basal a numeric vector providing the basal area (calculated from the diameter at breast height) in
square cm for each species in each vegetation plot

Source

IFRI (2014) Data from the International Forestry Resources and Institutions (IFRI) research net-
work. http://ifri.forgov.org/

Examples

data(ifri)

importancevalue Importance Value

Description

Calculates the importance values of tree species based on frequency (calculated from number of
plots), density (calculated from number of individuals) and dominance (calculated from basal area).
See details.

Usage

importancevalue(x, site="plotID", species="species",
count="count", basal="basal",
factor="forest", level="")

importancevalue.comp(x, site="plotID", species="species",
count="count", basal="basal",
factor="forest")

http://ifri.forgov.org/

importancevalue 131

Arguments

x data frame with information on plot identities, species identities, number of in-
dividuals and basal areas

site factor variable providing the identities of survey plots

species factor variable providing the identities of tree species

count number of individuals for each tree species in each survey plot

basal basal area for each tree species in each survey plot

factor factor variable used to define subsets (typically different forest reserves)

level level of the factor variable used to create a subset from the original data

Details

The importance value is calculated as the sum from (i) the relative frequency; (ii) the relative den-
sity; and (iii) the relative dominance. The importance value ranges between 0 and 300.

Frequency is calculated as the number of plots where a species is observed divided by the total
number of survey plots. Relative frequency is calculated by dividing the frequency by the sum of
the frequencies of all species, multiplied by 100 (to obtain a percentage).

Density is calculated as the total number of individuals of a species. Relative density is calculated
by dividing the density by the sum of the densities of all species, multiplied by 100 (to obtain a
percentage).

Dominance is calculated as the total basal area of a species. Relative dominance is calculated by
dividing the dominance by the sum of the dominance of all species, multiplied by 100 (to obtain a
percentage).

Functions importancevalue.comp applies function importancevalue to all available levels of a
factor variable.

Value

Provides information on the importance value for all tree species

Author(s)

Roeland Kindt (World Agroforestry Centre), Peter Newton (University of Michigan)

References

Curtis, J.T. & McIntosh, R. P. (1951) An Upland Forest Continuum in the Prairie-Forest Border
Region of Wisconsin. Ecology 32: 476-496.

Kent, M. (2011) Vegetation Description and Data Analysis: A Practical Approach. Second edition.
428 pages.

See Also

ifri

132 loaded.citations

Examples

data(ifri)
importancevalue(ifri, site='plotID', species='species', count='count',

basal='basal', factor='forest', level='YSF')
importancevalue.comp(ifri, site='plotID', species='species', count='count',

basal='basal', factor='forest')

When all survey plots are the same size, importance value
is not affected. Counts and basal areas now calculated per square metre
ifri$count <- ifri$count/314.16
ifri$basal <- ifri$basal/314.16

importancevalue(ifri, site='plotID', species='species', count='count',
basal='basal', factor='forest', level='YSF')

importancevalue.comp(ifri, site='plotID', species='species', count='count',
basal='basal', factor='forest')

Calculate diversity profiles from importance values
imp <- importancevalue.comp(ifri, site='plotID', species='species',

count='count', basal='basal', factor='forest')
vals <- imp[["values"]]
for (i in 1:length(vals)) {

imp.i <- data.frame(imp[[vals[i]]])
name.i <- paste(vals[[i]], ".Renyi", sep="")
imp[[name.i]] <- renyi(imp.i$importance.value)

}

LOT more diverse
imp$LOT.Renyi - imp$MCF.Renyi
imp$LOT.Renyi - imp$YSF.Renyi

YSF and MCF different richness and evenness
imp$YSF.Renyi - imp$MCF.Renyi

loaded.citations Give Citation Information for all Loaded Packages

Description

This function provides citation information for all loaded packages.

Usage

loaded.citations()

Details

The function checks for the loaded packages via .packages. Citation information is provided for
the base package and for all the non-standard packages via citation.

makecommunitydataset 133

Value

The function provides a list of all loaded packages and the relevant citation information.

Author(s)

Roeland Kindt (World Agroforestry Centre)

makecommunitydataset Make a Community Dataset from a Stacked Dataset

Description

Makes a community data set from a stacked dataset (with separate variables for the site identities,
the species identities and the abundance).

Usage

makecommunitydataset(x, row, column, value, factor="", level="", drop=F)
stackcommunitydataset(comm, remove.zeroes=FALSE, order.sites=FALSE, order.species=FALSE)

Arguments

x Data frame.

row Name of the categorical variable for the rows of the crosstabulation (typically
indicating sites)

column Name of the categorical variable for the columns of the crosstabulation (typi-
cally indicating species)

value Name of numerical variable for the cells of the crosstabulation (typically indi-
cating abundance). The cells provide the sum of all values in the data frame.

factor Name of the variable to calculate a subset of the data frame.

level Value of the subset of the factor variable to calculate a subset of the data frame.

drop Drop rows without species (species with total abundance of zero are always
dropped)

comm Community data set

remove.zeroes Should rows with zero abundance be removed?

order.sites Should sites be ordered alphabetically?

order.species Should species be ordered alphabetically?

Details

makecommunitydataset calculates a cross-tabulation from a data frame, summing up all the values
of the numerical variable identified as variable for the cell values. If factor="", then no subset is
calculated from the data frame in the first step.

stackcommunitydataset reverses the actions of makecommunitydataset and recreates the data in
stacked format.

134 multiconstrained

Value

The function provides a community dataset from another data frame.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

Not run:
dune.file <- normalizePath(paste(system.file(package="BiodiversityR"),

'/etc/dunestacked.csv', sep=''))
dune.stacked <- read.csv(dune.file)

dune.stacked has different variables for sites, species and abundance
head(dune.stacked)
dune.comm2 <- makecommunitydataset(dune.stacked, row='sites', column='species',

value='abundance')

recreate the original stack
dune.stacked2 <- stackcommunitydataset(dune.comm2, remove.zeroes=T)

End(Not run)

multiconstrained Pairwise Comparisons for All Levels of a Categorical Variable by
RDA, CCA or Capscale

Description

This function implements pairwise comparisons for categorical variable through capscale, cca,
dbrda or rda followed by anova.cca. The function simply repeats constrained ordination analysis
by selecting subsets of data that correspond to two factor levels.

Usage

multiconstrained(method="capscale", formula, data, distance = "bray"
, comm = NULL, add = FALSE, multicomp="", contrast=0, ...)

https://www.worldagroforestry.org/output/tree-diversity-analysis

multiconstrained 135

Arguments

method Method for constrained ordination analysis; one of "rda", "cca", "dbrda" or "cap-
scale".

formula Model formula as in capscale, cca or rda. The LHS can be a community data
matrix or a distance matrix for capscale.

data Data frame containing the variables on the right hand side of the model formula
as in capscale, cca or rda.

distance Dissimilarity (or distance) index in vegdist used if the LHS of the formula is
a data frame instead of dissimilarity matrix; used only with function vegdist
and partial match to "manhattan", "euclidean", "canberra", "bray", "kulczynski",
"jaccard", "gower", "morisita", "horn" or "mountford". This argument is only
used for capscale in case that the LHS of the formula is a community matrix.

comm Community data frame which will be used for finding species scores when the
LHS of the formula was a dissimilarity matrix as only allowed for capscale.
This is not used if the LHS is a data frame.

add Logical indicating if an additive constant should be computed, and added to
the non-diagonal dissimilarities such that all eigenvalues are non-negative in
underlying Principal Co-ordinates Analysis; only applicable in capscale.

multicomp Categorical variable used to construct the contrasts from. In case that this vari-
able is missing, then the first explanatory variable of the formula will be used.

contrast Return the ordination results for the particular contrast indicated by this number
(e.g. with 5 levels, one can choose in between contrast 1-10). In case=0, then
the first row of the anova.cca results for all contrasts is provided.

... Other parameters passed to anova.cca.

Details

This function provides a simple expansion of capscale, cca and rda by conducting the analysis
for subsets of the community and environmental datasets that only contain two levels of a categoricl
variable.

When the choice is made to return results from all contrasts (contrast=0), then the first row of the
anova.cca tables for each contrast are provided. It is therefore possible to compare differences in
results by modifying the "by" argument of this function (i.e. obtain the total of explained variance,
the variance explained on the first axis or the variance explained by the variable alone).

When the choice is made to return results from a particular contrast (contrast>0), then the ordination
result is returned and two new datasets ("newcommunity" and "newenvdata") are created that only
contain data for the two selected contrasts.

Value

The function returns an ANOVA table that contains the first rows of the ANOVA tables obtained for
all possible combinations of levels of the first variable. Alternatively, it returns an ordination result
for the selected contrast and creates two new datasets ("newcommunity" and "newenvdata")

136 nested.anova.dbrda

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Anderson, M.J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24.

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84: 511-525.

Examples

Not run:
library(vegan)
library(MASS)
data(dune)
data(dune.env)
multiconstrained(method="capscale", dune~Management, data=dune.env,

distance="bray",add=TRUE)
multiconstrained(method="capscale", dune~Management, data=dune.env,

distance="bray", add=TRUE, contrast=3)

End(Not run)

nested.anova.dbrda Nested Analysis of Variance via Distance-based Redundancy Analysis
or Non-parametric Multivariate Analysis of Variance

Description

The functions provide nested analysis of variance for a two-level hierarchical model. The functions
are implemented by estimating the correct F-ratio for the main and nested factors (assuming the
nested factor is random) and using the recommended permutation procedures to test the significance
of these F-ratios. F-ratios are estimated from variance estimates that are provided by distance-based
redundancy analysis (capscale) or non-parametric multivariate analysis of variance (adonis2).

Usage

nested.anova.dbrda(formula, data, method="euc", add=FALSE,
permutations=100, warnings=FALSE)

nested.npmanova(formula, data, method="euc",
permutations=100, warnings=FALSE)

nested.anova.dbrda 137

Arguments

formula Formula with a community data frame (with sites as rows, species as columns
and species abundance as cell values) or (for nested.anova.dbrda only) dis-
tance matrix on the left-hand side and two categorical variables on the right-hand
side (with the second variable assumed to be nested within the first).

data Environmental data set.

method Method for calculating ecological distance with function vegdist: partial match
to "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower",
"morisita", "horn" or "mountford". This argument is ignored in case that the left-
hand side of the formula already is a distance matrix.

add Should a constant be added to the off-diagonal elements of the distance-matrix
(TRUE) or not.

permutations The number of permutations for significance testing.

warnings Should warnings be suppressed (TRUE) or not.

Details

The functions provide two alternative procedures for multivariate analysis of variance on the ba-
sis of any distance measure. Function nested.anova.dbrda proceeds via capscale, whereas
nested.npmanova proceeds via adonis2. Both methods are complementary to each other as
nested.npmanova always provides correct F-ratios and estimations of significance, whereas nested.anova.dbrda
does not provide correct F-ratios and estimations of significance when negative eigenvalues are en-
countered or constants are added to the distance matrix, but always provides an ordination diagram.

The F-ratio for the main factor is estimated as the mean square of the main factor divided by the
mean square of the nested factor. The significance of the F-ratio of the main factor is tested by
permuting entire blocks belonging to levels of the nested factor. The significance of the F-ratio of
the nested factor is tested by permuting sample units within strata defined by levels of the main
factor.

Value

The functions provide an ANOVA table.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1-24.

Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32-46.

McArdle, B.H. and M.J. Anderson. (2001). Fitting multivariate models to community data: A
comment on distance-based redundancy analysis. Ecology, 82: 290-297.

138 NMSrandom

Examples

Not run:
library(vegan)
data(warcom)
data(warenv)
use larger number of permutations for real studies
nested.npmanova(warcom~rift.valley+popshort, data=warenv, method="jac",

permutations=5)
nested.anova.dbrda(warcom~rift.valley+popshort, data=warenv, method="jac",

permutations=5)

End(Not run)

NMSrandom Calculate the NMS Result with the Smallest Stress from Various Ran-
dom Starts

Description

This function provides a simplified version of the method of calculating NMS results implemented
by the function metaMDS (vegan).

Usage

NMSrandom(x,perm=100,k=2,stressresult=F,method="isoMDS")

Arguments

x Distance matrix.

perm Number of permutations to select the configuration with the lowest stress.

k Number of dimensions for the non metric scaling result; passed to isoMDS or
sammon.

stressresult Provide the calculated stress for each permutation.

method Method for calculating the NMS: isoMDS or sammon.

Details

This function is an easier method of calculating the best NMS configuration after various random
starts than implemented in the metaMDS function (vegan). The function uses a distance matrix (as
calculated for example by function vegdist from a community data set) and calculates random
starting positions by function initMDS (vegan) analogous to metaMDS.

Value

The function returns the NMS ordination result with the lowest stress (calculated by isoMDS or
sammon.), or the stress of each NMS ordination.

nnetrandom 139

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
library(MASS)
data(dune)
distmatrix <- vegdist(dune)
Ordination.model1 <- NMSrandom(distmatrix, perm=100, k=2)
Ordination.model1 <- add.spec.scores(Ordination.model1, dune,

method='wa.scores')
Ordination.model1

nnetrandom Calculate the NNET Result with the Smallest Value from Various Ran-
dom Starts

Description

This function provides the best solution from various calls to the nnet feed-forward artificial neural
networks function (nnet).

Usage

nnetrandom(formula,data,tries=10,leave.one.out=F,...)

Arguments

formula Formula as passed to nnet.

data Data as passed to nnet.

tries Number of calls to nnet to obtain the best solution.

leave.one.out Calculate leave-one-out predictions.

... Other arguments passed to nnet.

Details

This function makes various calls to nnet. If desired by the user, leave-one-out statistics are pro-
vided that report the prediction if one particular sample unit was not used for iterating the networks.

https://www.worldagroforestry.org/output/tree-diversity-analysis

140 ordicoeno

Value

The function returns the same components as nnet, but adds the following components:

range Summary of the observed "values".

tries Number of different attempts to iterate an ANN.

CV Predicted class when not using the respective sample unit for iterating ANN.

succesful Test whether leave-one-out statistics provided the same class as the original
class.

Author(s)

Roeland Kindt (World Agroforestry Centre)

Examples

Not run:
data(faramea)
faramea <- na.omit(faramea)
faramea$presence <- as.numeric(faramea$Faramea.occidentalis > 0)
attach(faramea)
library(nnet)
result <- nnetrandom(presence ~ Elevation, data=faramea, size=2,

skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=100,
leave.one.out=FALSE)

summary(result)
result$fitted.values
result$value
result2 <- nnetrandom(presence ~ Elevation, data=faramea, size=2,

skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=50,
leave.one.out=TRUE)

result2$range
result2$CV
result2$successful

End(Not run)

ordicoeno Coenoclines for an Ordination Axis

Description

A graph is produced that summarizes (through GAM as implemented by gam) how the abundance
of all species of the community data set change along an ordination axis (based on the position of
sites along the axis and the information from the community data set).

Usage

ordicoeno(x, ordiplot, axis = 1, legend = FALSE, cex = 0.8, ncol = 4, ...)

ordicoeno 141

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

ordiplot Ordination plot created by ordiplot.

axis Axis of the ordination graph (1: horizontal, 2: vertical).

legend if TRUE, then add a legend to the plot.

cex the amount by which plotting text and symbols should be magnified relative to
the default; see also par

ncol the number of columns in which to set the legend items; see also legend

... Other arguments passed to functions plot and points.

Details

This functions investigates the relationship between the species vectors and the position of sites on
an ordination axis. A GAM (gam) investigates the relationship by using the species abundances of
each species as response variable, and the site position as the explanatory variable. The graph shows
how the abundance of each species changes over the gradient of the ordination axis.

Value

The function plots coenoclines and provides the expected degrees of freedom (complexity of the
relationship) estimated for each species by GAM.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
library(mgcv)
data(dune)
Ordination.model1 <- rda(dune)
plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=1)
ordicoeno(dune, ordiplot=plot1, legend=TRUE)

https://www.worldagroforestry.org/output/tree-diversity-analysis

142 ordisymbol

ordisymbol Add Other Graphical Items to Ordination Diagrams

Description

Functions to add some other graphical itmes to ordination diagrams than provided within vegan by
ordihull, ordispider, ordiarrows, ordisegments, ordigrid, ordiellipse, ordicluster and
lines.spantree.

Usage

ordisymbol(ordiplot, y, factor, col = 1, colors = TRUE, pchs = TRUE,
rainbow_hcl = TRUE, rainbow_hcl.c = 90, rainbow_hcl.l = 50,
rainbow = TRUE, heat.colors = FALSE, terrain.colors = FALSE,
topo.colors = FALSE, cm.colors = FALSE,
legend = TRUE, legend.x = "topleft", legend.ncol = 1, ...)

ordibubble(ordiplot,var,...)
ordicluster2(ordiplot, cluster, mingroups = 1, maxgroups = nrow(ordiplot$sites), ...)
ordinearest(ordiplot, dist,...)
ordivector(ordiplot, spec, lty=2,...)

Arguments

ordiplot An ordination graph created by ordiplot (vegan).

y Environmental data frame.

factor Variable of the environmental data frame that defines subsets to be given differ-
ent symbols.

var Continous variable of the environmental dataset or species from the community
dataset.

col Colour (as points).

colors Apply different colours to different factor levels

pchs Apply different symbols (plotting characters) to different factor levels (as in
points))

rainbow_hcl Use rainbow_hcl colours (rainbow_hcl)

rainbow_hcl.c Set the chroma value

rainbow_hcl.l Set the luminance value

rainbow Use rainbow colours

heat.colors Use heat colours

terrain.colors Use terrain colours

topo.colors Use topo colours

cm.colors Use cm colours

legend Add the legend.

ordisymbol 143

legend.x Location of the legend; see also legend.

legend.ncol the number of columns in which to set the legend items; see also legend

cluster Cluster object.

mingroups Minimum of clusters to be plotted.

maxgroups Maximum of clusters to be plotted..

dist Distance matrix.

spec Species name from the community dataset.

lty Line type as specified for par.

... Other arguments passed to functions points, symbols, ordihull or arrows.

Details

Function ordisymbol plots different levels of the specified variable in different symbols and dif-
ferent colours. In case more than one colour palettes are selected, the last palette selected will be
used.

Function ordibubble draws bubble diagrams indicating the value of the specified continuous vari-
able. Circles indicate positive values, squares indicate negative values.

Function ordicluster2 provides an alternative method of overlaying information from hierarchical
clustering on an ordination diagram than provided by function ordicluster. The method draws
convex hulls around sites that are grouped into the same cluster. You can select the minimum and
maximum number of clusters that are plotted (i.e. the range of clustering steps to be shown).

Function ordinearest draws a vector from each site to the site that is nearest to it as determined
from a distance matrix. When you combine the method with lines.spantree using the same
distance measure, then you can evaluate in part how the minimum spanning tree was constructed.

Function ordivector draws a vector for the specified species on the ordination diagramme and
draws perpendicular lines from each site to a line that connects the origin and the head of species
vector. This method helps in the biplot interpretation of a species vector as described by Jongman,
ter Braak and van Tongeren (1995).

Value

These functions add graphical items to an existing ordination diagram.

Author(s)

Roeland Kindt (World Agroforestry Centre) and Jari Oksanen (ordinearest)

References

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community
and Landscape Ecology. Pudog, Wageningen.

Kindt, R. & Coe, R. (2005). Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://www.worldagroforestry.org/output/tree-diversity-analysis

144 PCAsignificance

Examples

library(vegan)
data(dune)
data(dune.env)
Ordination.model1 <- rda(dune)
plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=2)
ordisymbol(plot1, dune.env, "Management", legend=TRUE,

legend.x="topleft", legend.ncol=1)
plot2 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=1)
distmatrix <- vegdist(dune, method='bray')
cluster <- hclust(distmatrix, method='single')
ordicluster2(plot2, cluster)
ordinearest(plot2, distmatrix, col=2)
ordivector(plot2, "Agrostol", lty=2)

PCAsignificance PCA Significance

Description

Calculates the number of significant axes from a Principal Components Analysis based on the
broken-stick criterion, or adds an equilibrium circle to an ordination diagram.

Usage

PCAsignificance(pca,axes=8)
ordiequilibriumcircle(pca,ordiplot,...)

Arguments

pca Principal Components Analysis result as calculated by rda (vegan).
axes Number of axes to calculate results for.
ordiplot Ordination plot created by ordiplot (vegan)
... Other arguments passed to function arrows.

Details

These functions provide two methods of providing some information on significance for a Principal
Components Analysis (PCA).

Function PCAsignificance uses the broken-stick distribution to evaluate how many PCA axes
are significant. This criterion is one of the most reliable to check how many axes are significant.
PCA axes with larger percentages of (accumulated) variance than the broken-stick variances are
significant (Legendre and Legendre, 1998).

Function ordiequilibriumcircle draws an equilibirum circle to a PCA ordination diagram. Only
species vectors with heads outside of the equilibrium circle significantly contribute to the ordina-
tion diagram (Legendre and Legendre, 1998). Vectors are drawn for these species. The function
considers the scaling methods used by rda for scaling=1. The method should only be used for
scaling=1 and PCA calculated by function rda.

radfitresult 145

Value

Function PCAsignificance returns a matrix with the variances that are explained by the PCA axes
and by the broken-stick criterion.

Function ordiequilibriumcircle plots an equilibirum circle and returns a list with the radius and
the scaling constant used by rda.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Legendre, P. & Legendre, L. (1998). Numerical Ecology. 2nd English Edition. Elsevier.

Kindt, R. & Coe, R. (2005). Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune)
Ordination.model1 <- rda(dune)
PCAsignificance(Ordination.model1)
plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=1)
ordiequilibriumcircle(Ordination.model1,plot1)

radfitresult Alternative Rank Abundance Fitting Results

Description

Provides alternative methods of obtaining rank abundance curves than provided by functions radfit,
fisherfit and prestonfit (vegan), although these same functions are called.

Usage

radfitresult(x,y="",factor="",level,plotit=T)

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

y Environmental data frame.
factor Variable of the environmental data frame that defines subsets to calculate fitted

rank-abundance curves for.
level Level of the variable to create the subset to calculate fitted rank-abundance

curves.
plotit Plot the results obtained by plot.radfit .

https://www.worldagroforestry.org/output/tree-diversity-analysis

146 rankabundance

Details

These functions provide some alternative methods of obtaining fitted rank-abundance curves, al-
though functions radfit, fisherfit and prestonfit (vegan) are called to calculate the actual
results.

Value

The function returns the results from three methods of fitting rank-abundance curves:

radfit results of radfit.

fisherfit results of fisherfit.

prestonfit results of prestonfit.

Optionally, a plot is provided of the radfit results by plot.radfit.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(BCI)
BCIall <- t(as.matrix(colSums(BCI)))
radfitresult(BCIall)

rankabundance Rank Abundance Curves

Description

Provides methods of calculating rank-abundance curves.

Usage

rankabundance(x, y="", factor="", level, digits=1, t=qt(0.975, df=n-1))

rankabunplot(xr, addit=F, labels="", scale="abundance", scaledx=F, type="o",
xlim=c(min(xpos), max(xpos)),
ylim=c(0, max(x[,scale])),
specnames=c(1:5), srt=0, ...)

https://www.worldagroforestry.org/output/tree-diversity-analysis

rankabundance 147

rankabuncomp(x, y="", factor, return.data=T, specnames=c(1:3),
scale="abundance", scaledx=F, type="o", rainbow=T,
legend=T, xlim=c(1, max1), ylim=c(0, max2), ...)

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

y Environmental data frame.

factor Variable of the environmental data frame that defines subsets to calculate rank
abundance curves for.

level Level of the variable to create the subset to calculate rank abundance curves.

digits Number of digits in the results.

t t-value to calculate confidence interval limits for the species proportion for clus-
ter sampling (following Hayek and Buzas 1997).

xr Result from rankabundance.

addit Add rank abundance curve to an existing graph.

labels Labels to plot at left of the rank abundance curves.

scale Method of scaling the vertical axis. Method "abundance" uses abundance, "pro-
portion" uses proportional abundance (species abundance / total abundance),
"logabun" calculates the logarithm of abundance using base 10 and "accumfreq"
accumulates the proportional abundance.

scaledx Scale the horizontal axis to 100 percent of total number of species.

type Type of plot (as in function plot)

xlim Limits for the horizontal axis.

ylim Limits for the vertical axis.

specnames Vector positions of species names to add to the rank-abundance curve.

srt The string rotation in degrees of the species names (as in par).

return.data Return the data used for plotting.

rainbow Use rainbow colouring for the different curves.

legend Add the legend (you need to click in the graph where the legend needs to be
plotted).

... Other arguments to be passed to functions plot or points.

Details

These functions provide methods of calculating and plotting rank-abundance curves.

The vertical axis can be scaled by various methods. Method "abundance" uses abundance, "propor-
tion" uses proportional abundance (species abundance / total abundance), "logabun" calculates the
logarithm of abundance using base 10 and "accumfreq" accumulates the proportional abundance.

The horizontal axis can be scaled by the total number of species, or by 100 percent of all species by
option "scaledx".

148 rankabundance

The method of calculating the confidence interval for species proportion is described in Hayek and
Buzas (1997).

Functions rankabundance and rankabuncomp allow to calculate rank abundance curves for subsets
of the community and environmental data sets. Function rankabundance calculates the rank abun-
dance curve for the specified level of a selected environmental variable. Method rankabuncomp
calculates the rank abundance curve for all levels of a selected environmental variable separatedly.

Value

The functions provide information on rankabundance curves. Function rankabundance provides
information on abundance, proportional abundance, logarithmic abundance and accumulated pro-
portional abundance. The function also provides confidence interval limits for the proportion of
each species (plower, pupper) and the proportion of species ranks (in percentage).

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Hayek, L.-A. C. & Buzas, M.A. (1997). Surveying Natural Populations. Columbia University
Press.

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune.env)
data(dune)
RankAbun.1 <- rankabundance(dune)
RankAbun.1
rankabunplot(RankAbun.1, scale='abundance', addit=FALSE, specnames=c(1,2,3))
rankabunplot(RankAbun.1, scale='logabun', addit=FALSE, specnames=c(1:30),

srt=45, ylim=c(1,100))
rankabuncomp(dune, y=dune.env, factor='Management',

scale='proportion', legend=FALSE)
CLICK IN THE GRAPH TO INDICATE WHERE THE LEGEND NEEDS TO BE PLACED
IF YOU OPT FOR LEGEND=TRUE.

Not run:
ggplot2 plotting method

Only label the two most abundant species
RA.data <- rankabuncomp(dune, y=dune.env, factor='Management',

return.data=TRUE, specnames=c(1:2), legend=FALSE)

library(ggplot2)
library(ggrepel)

https://www.worldagroforestry.org/output/tree-diversity-analysis

rankabundance 149

possibly need for extrafont::loadfonts(device="win") to have Arial
as alternative, use library(ggThemeAssist)
BioR.theme <- theme(

panel.background = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.line = element_line("gray25"),
text = element_text(size = 12, family="Arial"),
axis.text = element_text(size = 10, colour = "gray25"),
axis.title = element_text(size = 14, colour = "gray25"),
legend.title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.key = element_blank())

plotgg1 <- ggplot(data=RA.data, aes(x = rank, y = abundance)) +
scale_x_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_line(aes(colour=Grouping), size=1) +
geom_point(aes(colour=Grouping, shape=Grouping), size=5, alpha=0.7) +
geom_text_repel(data=subset(RA.data, labelit == TRUE),

aes(colour=Grouping, label=species),
angle=45, nudge_x=1, nudge_y=1, show.legend=FALSE) +

BioR.theme +
scale_color_brewer(palette = "Set1") +
labs(x = "rank", y = "abundance", colour = "Management", shape = "Management")

plotgg1

use different facets
now label first 10 species
RA.data <- rankabuncomp(dune, y=dune.env, factor='Management',

return.data=TRUE, specnames=c(1:10), legend=FALSE)

plotgg2 <- ggplot(data=RA.data, aes(x = rank, y = abundance)) +
scale_x_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_line(aes(colour=Grouping), size=1) +
geom_point(aes(colour=Grouping), size=5, alpha=0.7) +
geom_text_repel(data=subset(RA.data, labelit == TRUE),

aes(label=species),
angle=45, nudge_x=1, nudge_y=1, show.legend=FALSE) +

BioR.theme +
scale_color_brewer(palette = "Set1") +
facet_wrap(~ Grouping) +
labs(x = "rank", y = "abundance", colour = "Management")

plotgg2

End(Not run) # dontrun

150 removeNAcomm

removeNAcomm Synchronize Community and Environmental Datasets

Description

These functions may assist to ensure that the sites of the community dataset are the same sites as
those from the environmental dataset, something that is assumed to be the case for the Biodiversi-
tyR and vegan packages.

Usage

same.sites(x, y)
check.datasets(x, y)
check.ordiscores(x, ord, check.species = TRUE)
removeNAcomm(x, y, variable)
removeNAenv(x, variable)
removezerospecies(x)
subsetcomm(x, y, factor, level, returncomm = TRUE)

import.with.readxl(file = file.choose(), data.type = "community", sheet = NULL,
sitenames = "sites", column = "species", value = "abundance",
factor = "", level = "", cepnames = FALSE,
write.csv = FALSE, csv.file = paste(data.type, ".csv", sep=""))

Arguments

x Data frame assumed to be the community dataset with variables corresponding
to species.

y Data frame assumed to be the environmental dataset with variables correspond-
ing to descriptors of sites.

ord Ordination result.

check.species Should the species scores be checked (TRUE) or not.

variable Name of the variable from the environmental dataset with NA values that indi-
cate those sites that should be removed.

factor Variable of the environmental data frame that defines subsets for the data frame.

level Level of the variable to create the subsets for the data frame.

returncomm For the selected sites, return the community dataset (TRUE) or the environmen-
tal dataset.

file Location of the Excel (or Access) file.

data.type Type of the data set to be imported: one of "community", "environmental" or
"stacked".

removeNAcomm 151

sheet Name of the sheet of the Excel file to import from (if missing, then data.type
is used)

sitenames Name of categorical variable that provides the names for the sites.

column Name of the categorical variable for the columns of the crosstabulation (typi-
cally indicating species); passed to makecommunitydataset.

value Name of numerical variable for the cells of the crosstabulation (typically indi-
cating abundance). The cells provide the sum of all values in the data frame;
passed to makecommunitydataset.

cepnames Should the names of columns be abbreviated via make.cepnames (TRUE) or not
(FALSE).

write.csv Create a comma-delimited text file in the working directory (if TRUE).

csv.file Name of the comma-delimited text file to be created.

Details

Function same.sites provides a new data frame that has the same row names as the row names
of the environmental data set and the same (species) variables as the original community data set.
Sites from the original community data set that have no corresponding sites in the environmental
data set are not included in the new community data set. (Hint: this function can be especially
useful when some sites do not contain any species and where a community dataset was generated
by the makecommunitydataset function.)

Function check.datasets checks whether the community and environmental data sets have the
same number of rows, and (if this was the case) whether the rownames of both data sets are the
same. The function also returns the dimensions of both data sets.

Function check.ordiscores checks whether the community data set and the ordination result have
the same number of rows (sites) and columns (species, optional for check.species==TRUE), and
(if this was the case) whether the row and column names of both data sets are the same. Site and
species scores for the ordination result are obtained via function scores (vegan).

Functions removeNAcomm and removeNAenv provide a new data frame that does not contain NA for
the specified variable. The specifed variable is part of the environmental data set. These func-
tions are particularly useful when using community and environmental datasets, as new community
and environmental datasets can be calculated that contain information from the same sample plots
(sites). An additional result of removeNAenv is that factor levels of any categorical variable that do
not occur any longer in the new data set are removed from the levels of the categorical variable.

Function replaceNAcomm substitutes cells containing NA with 0 in the community data set.

Function removezerospecies removes species from a community dataset that have total abundance
that is smaller or equal to zero.

Function subsetcomm makes a subset of sites that contain a specified level of a categorical variable
from the environmental data set. The same functionality of selecting subsets of the community
or environmental data sets are implemented in various functions of BiodiversityR (for example
diversityresult, renyiresult and accumresult) and have the advantage that it is not neces-
sary to create a new data set. If a community dataset is returned, species that did not contain any
individuals were removed from the data set. If an environmental dataset is returned, factor levels
that did not occur were removed from the data set.

152 removeNAcomm

Function import.with.readxl provides methods of importing community or environmental datasets
through read_excel.

For stacked datasets, a community data set is created with function makecommunitydataset. For
community data with more species than the limited number of columns in Excel, this may be the
only option of importing a community dataset.

An additional advantage of the function is that the community and environmental data can be stored
in the same file.

You may want to check compatibility of the community and environmental datasets with functions
check.datasets and modify the community dataset through same.sites.

Value

The functions return a data frame or results of tests on the correspondence between community and
environmental data sets.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(vegan)
data(dune.env)
data(dune)
dune.env2 <- dune.env
dune.env2[1:4,"Moisture"] <- NA
dune2 <- removeNAcomm(dune,dune.env2,"Moisture")
dune.env2 <- removeNAenv(dune.env2,"Moisture")
dune3 <- same.sites(dune,dune.env2)
check.datasets(dune,dune.env2)
check.datasets(dune2,dune.env2)
check.datasets(dune3,dune.env2)
dune4 <- subsetcomm(dune,dune.env,"Management","NM",returncomm=TRUE)
dune.env4 <- subsetcomm(dune,dune.env,"Management","NM",returncomm=FALSE)
dune5 <- same.sites(dune,dune.env4)
check.datasets(dune4,dune5)

https://www.worldagroforestry.org/output/tree-diversity-analysis

renyiresult 153

renyiresult Alternative Renyi Diversity Results

Description

Provides some alternative methods of obtaining results on Renyi diversity profile values than pro-
vided by renyi (vegan).

Usage

renyiresult(x, y=NULL, factor, level, method = "all",
scales = c(0, 0.25, 0.5, 1, 2, 4, 8, Inf), evenness = FALSE ,...)

renyiplot(xr, addit=FALSE, pch = 1,
xlab = "alpha", ylab = "H-alpha", ylim = NULL,
labelit = TRUE, legend = TRUE, legend.x="topleft", legend.ncol = 8,
col = 1, cex = 1, rainbow = TRUE, evenness = FALSE, ...)

renyiaccumresult(x, y=NULL, factor, level,
scales=c(0, 0.25, 0.5, 1, 2, 4, 8, Inf), permutations = 100,...)

renyicomp(x, y, factor, sites=Inf,
scales = c(0, 0.25, 0.5, 1, 2, 4, 8, Inf), permutations = 100, plotit = FALSE, ...)

Arguments

x Community data frame with sites as rows, species as columns and species abun-
dance as cell values.

y Environmental data frame.

factor Variable of the environmental data frame that defines subsets to calculate diver-
sity profiles for.

level Level of the variable to create the subset to calculate diversity profiles.

method Method of calculating the diversity profiles: "all" calculates the diversity of the
entire community (all sites pooled together), "s" calculates the diversity of each
site separatedly.

scales Scale parameter values as in function renyi (vegan).

evenness Calculate or plot the evenness profile.

xr Result from renyi or renyiresult.

addit Add diversity profile to an existing graph.

pch Symbol used for drawing the diversity profiles (as in function points).

xlab Label for the horizontal axis.

ylab Label for the vertical axis.

ylim Limits of the vertical axis.

154 renyiresult

labelit Provide site labels (site names) at beginning and end of the diversity profiles.

legend Add the legend (you need to click in the graph where the legend needs to be
plotted).

legend.x Location of the legend; see also legend.

legend.ncol number of columns for the legend (as in function legend).

col Colour for the diversity profile (as in function points).

cex Character expansion factor (as in function points).

rainbow Use rainbow colours for the diversity profiles.

sites Number of accumulated sites to provide profile values.

permutations Number of permutations for the Monte-Carlo simulations for accumulated renyi
diversity profiles (estimated by renyiaccum).

plotit Plot the results (you need to click in the graph where the legend should be plot-
ted).

... Other arguments to be passed to functions renyi or plot.

Details

These functions provide some alternative methods of obtaining results with diversity profiles, al-
though function renyi is always used to calculate the diversity profiles.

The method of calculating the diversity profiles: "all" calculates the diversity profile of the entire
community (all sites pooled together), whereas "s" calculates the diversity profile of each site sep-
aratedly. The evenness profile is calculated by subtracting the profile value at scale 0 from all the
profile values.

Functions renyiresult, renyiaccumresult and renyicomp allow to calculate diversity profiles
for subsets of the community and environmental data sets. functions renyiresult and renyiaccumresult
calculate the diversity profiles for the specified level of a selected environmental variable. Method
renyicomp calculates the diversity profile for all levels of a selected environmental variable sepa-
ratedly.

Functions renyicomp and renyiaccumresult calculate accumulation curves for the Renyi diver-
sity profile by randomised pooling of sites and calculating diversity profiles for the pooled sites as
implemented in renyiaccum. The method is similar to the random method of species accumulation
(specaccum). If the number of "sites" is not changed from the default, it is replaced by the sample
size of the level with the fewest number of sites.

Value

The functions provide alternative methods of obtaining Renyi diversity profiles.

Author(s)

Roeland Kindt (World Agroforestry Centre)

renyiresult 155

References

Kindt R., Degrande A., Turyomurugyendo L., Mbosso C., Van Damme P., Simons A.J. (2001).
Comparing species richness and evenness contributions to on-farm tree diversity for data sets with
varying sample sizes from Kenya, Uganda, Cameroon and Nigeria with randomised diversity pro-
files. Paper presented at IUFRO conference on forest biometry, modeling and information science,
26-29 June, University of Greenwich, UK

Kindt R. (2002). Methodology for tree species diversification planning for African agroecosys-
tems. Thesis submitted in fulfilment of the requirement of the degree of doctor (PhD) in applied
biological sciences. Faculty of agricultural and applied biological sciences, Ghent University, Ghent
(Belgium), 332+xi pp.

Kindt R., Van Damme P. & Simons A.J. (2006). Tree diversity in western Kenya: using diversity
profiles to characterise richness and evenness. Biodiversity and Conservation 15: 1253-1270.

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://rpubs.com/Roeland-KINDT

See Also

renyi.long, renyicomp.long

Examples

library(vegan)
data(dune.env)
data(dune)
Renyi.1 <- renyiresult(dune, y=dune.env, factor='Management', level='NM',

method='s')
Renyi.1
renyiplot(Renyi.1, evenness=FALSE, addit=FALSE, pch=1,col='1', cex=1,

legend=FALSE)
CLICK IN THE GRAPH TO INDICATE WHERE THE LEGEND NEEDS TO BE PLACED
IN CASE THAT YOU OPT FOR LEGEND=TRUE

Not run:
ggplot2 plotting method

Renyi.2 <- renyicomp(dune, y=dune.env, factor='Management',
scales=c(0, 0.25, 0.5, 1, 2, 4, 8, Inf), permutations=100, plotit=F)

Renyi.2

library(ggplot2)

change the theme
possibly need for extrafont::loadfonts(device="win") to have Arial
as alternative, use library(ggThemeAssist)
BioR.theme <- theme(

panel.background = element_blank(),
panel.border = element_blank(),

https://www.worldagroforestry.org/output/tree-diversity-analysis
https://rpubs.com/Roeland-KINDT

156 renyiresult

panel.grid = element_blank(),
axis.line = element_line("gray25"),
text = element_text(size = 12, family="Arial"),
axis.text = element_text(size = 10, colour = "gray25"),
axis.title = element_text(size = 14, colour = "gray25"),
legend.title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.key = element_blank())

renyi.long2 <- renyicomp.long(Renyi.2, label.freq=1)

plotgg1 <- ggplot(data=renyi.long2, aes(x=Scales, y=Diversity, ymax=UPR, ymin=LWR)) +
scale_x_discrete() +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_line(data=renyi.long2, aes(x=Obs, colour=Grouping), size=2) +
geom_point(data=subset(renyi.long2, labelit==TRUE),

aes(colour=Grouping, shape=Grouping), size=5) +
geom_ribbon(data=renyi.long2, aes(x=Obs, colour=Grouping), alpha=0.2, show.legend=FALSE) +
BioR.theme +
scale_color_brewer(palette = "Set1") +
labs(x=expression(alpha), y = "Diversity", colour = "Management", shape = "Management")

plotgg1

calculate a separate diversity profile for each site
Renyi.3 <- renyiresult(dune, evenness=FALSE, method="s",

scales=c(0, 0.25, 0.5, 1, 2, 4, 8, Inf))
Renyi.3

renyi.long3 <- renyi.long(Renyi.3, env.data=dune.env, label.freq=2)

plotgg2 <- ggplot(data=renyi.long3, aes(x=Scales, y=Diversity, group=Grouping)) +
scale_x_discrete() +
scale_y_continuous(sec.axis = dup_axis(name=NULL)) +
geom_line(aes(colour=Management), size=2) +
geom_point(data=subset(renyi.long3, labelit==TRUE),

aes(colour=Management, shape=Management), size=5) +
BioR.theme +
scale_color_brewer(palette = "Set1") +
labs(x=expression(alpha), y="Diversity", colour="Management")

plotgg2

plotgg3 <- ggplot(data=renyi.long3, aes(x=Scales, y=Diversity, group=Grouping)) +
scale_x_discrete() +
scale_y_continuous(sec.axis = dup_axis(name=NULL)) +
geom_line(aes(colour=Management), size=1) +
geom_point(data=subset(renyi.long3, labelit==TRUE),

aes(colour=Management, shape=Management), size=2) +
BioR.theme +
scale_color_brewer(palette = "Set1") +
facet_wrap(~ Management) +
labs(x=expression(alpha), y="Diversity", colour="Management")

sites.long 157

plotgg3

End(Not run) # dontrun

sites.long Helper Functions to Prepare Plotting of Accumulation, Diversity Pro-
file and Ordiplot Results via ggplot2

Description

These functions organize outputs from ordiplot, accumcomp and renyicomp so these can be plot-
ted with ggplot.

Usage

sites.long(x, env.data = NULL)

species.long(x, spec.data = NULL)

centroids.long(y, grouping, FUN = mean, centroids.only = FALSE)

vectorfit.long(z)

ordisurfgrid.long(z)

ordiellipse.long(z, grouping.name = "Grouping")

pvclust.long(cl, cl.data)

axis.long(w, choices = c(1, 2), cmdscale.model=FALSE, CAPdiscrim.model=FALSE)

accumcomp.long(x, ci = 2, label.freq = 1)

renyicomp.long(x, label.freq = 1)

renyi.long(x, env.data=NULL, label.freq = 1)

Arguments

x Result of ordiplot, accumcomp or renyicomp

env.data Environmental descriptors for each site.

spec.data Descriptors for each species.

y Result of function sites.long.

grouping Variable defining the centroids

158 sites.long

FUN A function to compute the summary statistics which can be applied to all data
subsets, as in aggregate

centroids.only Return the coordinates for the centroids

z Result of envfit, ordisurf or ordiellipse

grouping.name Name for the categorical variable, expected as the factor used in the earlier or-
diellipse call.

cl Result of pvclust

cl.data Result of ordicluster

w Ordination object from which the ordiplot was obtained, expected to be fitted
in vegan.

choices Ordination axes selected, as in ordiplot

cmdscale.model Use TRUE is the model was fitted via cmdscale
CAPdiscrim.model

Use TRUE is the model was fitted via CAPdiscrim

ci Multiplier for confidence intervals as in specaccum. In case ’NA’ is provided,
then the multiplier is calculated via qt.

label.freq Frequency of labels along the x-axis (count between labels).

Details

Examples for ordiplot results are shown below.

Function pvclust.long combines data from pvclust with coordinates of nodes and branches from
ordicluster. The variable of prune allows to remove higher levels of nodes and branches in the
clustering hierarchy in a similar way as argument prune for ordicluster - see examples.

See also section: see examples for species accumulation curves and Renyi diversity profiles

Value

These functions produce data.frames that can subsequentially be plotted via ggplot methods.

Author(s)

Roeland Kindt

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

https://rpubs.com/Roeland-KINDT

See Also

accumcomp, renyicomp

https://www.worldagroforestry.org/output/tree-diversity-analysis
https://rpubs.com/Roeland-KINDT

sites.long 159

Examples

Not run:
ggplot2 plotting method
library(ggplot2)
library(ggforce)
library(concaveman)
library(ggrepel)
library(ggsci)
library(dplyr)

library(vegan)
data(dune)
data(dune.env)

attach(dune)
attach(dune.env)

Ordination.model1 <- capscale(dune ~ Management, data=dune.env,
distance='kulczynski', sqrt.dist=F, add='cailliez')

plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling='species')

obtain 'long' data from the ordiplot object
sites1 <- sites.long(plot1, env.data=dune.env)
species1 <- species.long(plot1)
centroids1 <- centroids.long(sites1, Management, FUN=median)
centroids2 <- centroids.long(sites1, Management, FUN=median, centroids.only=TRUE)

information on percentage variation from the fitted ordination
axislabs <- axis.long(Ordination.model1, choices=c(1 , 2))

change the theme
possibly need for extrafont::loadfonts(device="win") to have Arial
as alternative, use library(ggThemeAssist)
BioR.theme <- theme(

panel.background = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.line = element_line("gray25"),
text = element_text(size = 12, family="Arial"),
axis.text = element_text(size = 10, colour = "gray25"),
axis.title = element_text(size = 14, colour = "gray25"),
legend.title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.key = element_blank())

no species scores
centroids calculated directly via the centroids.long function
plotgg1 <- ggplot() +

geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +

160 sites.long

ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_mark_hull(data=sites1, aes(x=axis1, y=axis2, colour = Management),

concavity = 0.1, alpha=0.8, size=0.2, show.legend=FALSE) +
geom_point(data=sites1, aes(x=axis1, y=axis2, colour=Management, shape=Management),

size=5) +
geom_segment(data=species1, aes(x=0, y=0, xend=axis1*2, yend=axis2*2),
size=1.2, arrow=arrow()) +
geom_label_repel(data=species1, aes(x=axis1*2, y=axis2*2, label=labels)) +

geom_point(data=centroids.long(sites1, grouping=Management, centroids.only=TRUE),
aes(x=axis1c, y=axis2c, colour=Centroid, shape=Centroid), size=10, show.legend=FALSE) +

geom_segment(data=centroids.long(sites1, grouping=Management),
aes(x=axis1c, y=axis2c, xend=axis1, yend=axis2, colour=Management),
size=1, show.legend=FALSE) +

BioR.theme +
ggsci::scale_colour_npg() +
coord_fixed(ratio=1)

plotgg1

select species to plot based on goodness of fit
spec.envfit <- envfit(plot1, env=dune)
spec.data1 <- data.frame(r=spec.envfit$vectors$r, p=spec.envfit$vectors$pvals)
species2 <- species.long(plot1, spec.data=spec.data1)
species2 <- species2[species2$r > 0.6,]

after_scale introduced in ggplot2 3.3.0
plotgg2 <- ggplot() +

geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_mark_ellipse(data=sites1, aes(x=axis1, y=axis2,

colour=Management, fill=after_scale(alpha(colour, 0.2))),
expand=0, size=0.2, show.legend=TRUE) +

geom_point(data=sites1, aes(x=axis1, y=axis2, colour=Management, shape=Management),
size=5) +

geom_segment(data=centroids.long(sites1, grouping=Management),
aes(x=axis1c, y=axis2c, xend=axis1, yend=axis2, colour=Management),
size=1, show.legend=FALSE) +

geom_segment(data=species2, aes(x=0, y=0, xend=axis1*2, yend=axis2*2),
size=1.2, arrow=arrow()) +

geom_label_repel(data=species2, aes(x=axis1*2, y=axis2*2, label=labels)) +
BioR.theme +
ggsci::scale_colour_npg() +
coord_fixed(ratio=1)

plotgg2

Add contour and vector for a continuous explanatory variable

sites.long 161

Ordination.model2 <- capscale(dune ~ Management, data=dune.env,
distance='kulczynski', sqrt.dist=F, add='cailliez')

plot2 <- ordiplot(Ordination.model2, choices=c(1,2), scaling='species')

sites2 <- sites.long(plot2, env.data=dune.env)
axislabs <- axis.long(Ordination.model2, choices=c(1 , 2))

dune.envfit <- envfit(plot2, dune.env)
vectors2 <- vectorfit.long(dune.envfit)

A1.surface <- ordisurf(plot2, y=A1)
A1.surface
A1.grid <- ordisurfgrid.long(A1.surface)

plotgg3 <- ggplot() +
geom_contour_filled(data=A1.grid, aes(x=x, y=y, z=z)) +
geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +

geom_point(data=sites2, aes(x=axis1, y=axis2, size=A1), shape=21, colour="black", fill="red") +
geom_segment(data=subset(vectors2, vector=A1), aes(x=0, y=0, xend=axis1*2, yend=axis2*2),

size=1.2, arrow=arrow()) +
geom_label_repel(data=subset(vectors2, vector=A1), aes(x=axis1*2, y=axis2*2,

label=vector), size=5) +
BioR.theme +
scale_fill_viridis_d() +
scale_size(range=c(1, 20)) +
labs(fill="A1") +
coord_fixed(ratio=1)

plotgg3

after_stat introduced in ggplot2 3.3.0
plotgg4 <- ggplot() +

geom_contour(data=A1.grid, aes(x=x, y=y, z=z, colour=factor(after_stat(level))), size=2) +
geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +

geom_point(data=sites2, aes(x=axis1, y=axis2, size=A1), shape=21, colour="black", fill="red") +
geom_label_repel(data=sites2, aes(x=axis1, y=axis2, label=labels),

colour='black', size=4) +
BioR.theme +
scale_colour_viridis_d() +
scale_size(range=c(1, 20)) +
labs(colour="A1") +
coord_fixed(ratio=1)

162 sites.long

plotgg4

example of Voronoi segmentation
plotgg5 <- ggplot(data=sites2, aes(x=axis1, y=axis2)) +

geom_voronoi_tile(aes(fill = Management, group=-1L), max.radius=0.2) +
geom_voronoi_segment(colour="grey50") +
geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_point() +
BioR.theme +
ggsci::scale_colour_npg() +
coord_fixed(ratio=1)

plotgg5

adding ellipse via ordiellipse

plot3 <- ordiplot(Ordination.model1, choices=c(1,2), scaling='species')
axislabs <- axis.long(Ordination.model1, choices=c(1 , 2))

Management.ellipses <- ordiellipse(plot3, groups=Management, display="sites", kind="sd")
Management.ellipses.long2 <- ordiellipse.long(Management.ellipses, grouping.name="Management")

plotgg6 <- ggplot() +
geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_polygon(data=Management.ellipses.long2,

aes(x=axis1, y=axis2, colour=Management,
fill=after_scale(alpha(colour, 0.2))),

size=0.2, show.legend=FALSE) +
geom_point(data=sites1, aes(x=axis1, y=axis2, colour=Management, shape=Management),

size=5) +
geom_segment(data=centroids.long(sites1, grouping=Management),

aes(x=axis1c, y=axis2c, xend=axis1, yend=axis2, colour=Management),
size=1, show.legend=FALSE) +

BioR.theme +
ggsci::scale_colour_npg() +
coord_fixed(ratio=1)

plotgg6

adding cluster results via pvclust.long

library(pvclust)

sites.long 163

transformation as pvclust works with Euclidean distance
dune.Hellinger <- disttransform(dune, method='hellinger')
dune.pv <- pvclust(t(dune.Hellinger),

method.hclust="mcquitty",
method.dist="euclidean",
nboot=1000)

plot(dune.pv)
pvrect(dune.pv, alpha=0.89, pv="au")

Model fitted earlier
plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling='species')
cl.data1 <- ordicluster(plot1, cluster=as.hclust(dune.pv$hclust))

sites1 <- sites.long(plot1, env.data=dune.env)
axislabs <- axis.long(Ordination.model1, choices=c(1 , 2))

cl.data1 <- ordicluster(plot2, cluster=as.hclust(dune.pv$hclust))
pvlong <- pvclust.long(dune.pv, cl.data1)

as in example for ordicluster, prune higher level hierarchies
plotgg7 <- ggplot() +

geom_vline(xintercept = c(0), color = "grey70", linetype = 2) +
geom_hline(yintercept = c(0), color = "grey70", linetype = 2) +
xlab(axislabs[1, "label"]) +
ylab(axislabs[2, "label"]) +
scale_x_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
geom_segment(data=subset(pvlong$segments, pvlong$segments$prune > 3),

aes(x=x1, y=y1, xend=x2, yend=y2, colour=au>=0.89,
size=au),

show.legend=TRUE) +
geom_point(data=subset(pvlong$nodes, pvlong$nodes$prune > 3),

aes(x=x, y=y, fill=au>=0.89),
shape=21, size=2, colour="black") +

geom_point(data=sites1,
aes(x=axis1, y=axis2, shape=Management),
colour="darkolivegreen4", alpha=0.9, size=5) +

geom_text(data=sites1,
aes(x=axis1, y=axis2, label=labels)) +

BioR.theme +
ggsci::scale_colour_npg() +
scale_size(range=c(0.3, 2)) +
scale_shape_manual(values=c(15, 16, 17, 18)) +
guides(shape = guide_legend(override.aes = list(linetype = 0))) +
coord_fixed(ratio=1)

plotgg7

End(Not run) # dontrun

164 spatialsample

spatialsample Spatial Sampling within a Polygon

Description

Spatial sampling within a polygon provides several methods of selecting rectangular sample plots
within a polygon. Using a GIS package may be preferred for actual survey design.

Usage

spatialsample(x,method="random",n=5,xwidth=0.5,ywidth=0.5,xleft=0,
ylower=0,xdist=0,ydist=0,plotit=T,plothull=F)

Arguments

x 2-column matrix with the coordinates of the vertices of the polygon. The first
column contains the horizontal (x) position, the second column contains the
vertical (y) position.

method Method of sampling, any of "random", "grid" or "random grid".

n Number of sample plots to be selected, or number of horizontal and vertical grid
positions.

xwidth Horizontal width of the sample plots.

ywidth Vertical width of the sample plots.

xleft Horizontal starting position of the grid.

ylower Vertical starting position of the grid.

xdist Horizontal distance between grid locations.

ydist Vertical distance between grid locations.

plotit Plot the sample plots on the current graph.

plothull Plot a convex hull around the sample plots.

Details

Spatial sampling within a polygon provides several methods of selecting the position of sample
plots.

Method "random" selects random positions of the sample plots using simple random sampling.

Method "grid" selects sample plots from a grid defined by "xleft", "ylower", "xdist" and "ydist".
In case xdist=0 or ydist=0, then the number of grid positions are defined by "n". In case "xleft"
or "ylower" are below the minimum position of any vertix of the polygon, then a random starting
position is selected for the grid.

Method "random grid" selects sample plots at random from the sampling grid using the same meth-
ods of defining the grid as for method "grid".

transfgradient 165

Value

The function returns a list of centres of rectangular sample plots.

Author(s)

Roeland Kindt (World Agroforestry Centre)

References

Kindt, R. & Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical
methods for ecological and biodiversity studies.

https://www.worldagroforestry.org/output/tree-diversity-analysis

Examples

library(splancs)
area <- array(c(10,10,15,35,40,35,5,35,35,30,30,10), dim=c(6,2))
landuse1 <- array(c(10,10,15,15,30,35,35,30), dim=c(4,2))
landuse2 <- array(c(10,10,15,15,35,30,10,30,30,35,30,15), dim=c(6,2))
landuse3 <- array(c(10,10,30,35,40,35,5,10,15,30,30,10), dim=c(6,2))
plot(area[,1], area[,2], type="n", xlab="horizontal position",

ylab="vertical position", lwd=2, bty="l")
polygon(landuse1)
polygon(landuse2)
polygon(landuse3)
spatialsample(area, method="random", n=20, xwidth=1, ywidth=1, plotit=TRUE,

plothull=FALSE)
spatialsample(area, method="grid", xwidth=1, ywidth=1, plotit=TRUE, xleft=12,

ylower=7, xdist=4, ydist=4)
spatialsample(area, method="random grid", n=20, xwidth=1, ywidth=1,

plotit=TRUE, xleft=12, ylower=7, xdist=4, ydist=4)

transfgradient Gradient for Hypothetical Example of Turover of Species Composition

Description

This dataset documents the site sequence of 19 sites on a gradient determined from unimodal species
distributions. The dataset is accompanied by transfspecies that documents the species compo-
sition of the sites. This is a hypothetical example that allows to investigate how well ecological
distance measures or ordination methods recover the expected best sequence of sites.

Usage

data(transfgradient)

https://www.worldagroforestry.org/output/tree-diversity-analysis

166 transfspecies

Format

A data frame with 19 observations on the following variable.

gradient a numeric vector

Source

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

References

Figure 3a.

Examples

data(transfspecies)
data(transfgradient)
plot(transfspecies[,1]~transfgradient[,1],xlab="gradient",

ylab="species abundance",type="n",ylim=c(0.5,8.5))
for (i in 1:9) {points(transfgradient[,1],transfspecies[,i],type="o",pch=i)}

transfspecies Hypothetical Example of Turover of Species Composition

Description

This dataset documents the species composition of 19 sites that follow a specific sequence of sites as
determined from unimodal species distributions. The dataset is accompanied by transfgradient
that documents the gradient in species turnover. This is a hypothetical example that allows to
investigate how well ecological distance measures or ordination methods recover the expected best
sequence of sites.

Usage

data(transfspecies)

Format

A data frame with 19 observations on the following 9 variables.

species1 a numeric vector

species2 a numeric vector

species3 a numeric vector

species4 a numeric vector

species5 a numeric vector

species6 a numeric vector

treegoer.score 167

species7 a numeric vector

species8 a numeric vector

species9 a numeric vector

Details

The example in the Tree Diversity Analysis manual only looks at the ecological distance from the
first site. Hence, only the first 10 sites that share some species with this site should be selected.

This dataset enables investigations of how well ecological distance measures and ordination dia-
grams reconstruct the gradient (sequence of sites). The gradient expresses how the sites would be
arranged based on their species composition.

Source

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

References

Figure 3a.

Examples

data(transfspecies)
data(transfgradient)
plot(transfspecies[,1]~transfgradient[,1],xlab="gradient",

ylab="species abundance",type="n",ylim=c(0.5,8.5))
for (i in 1:9) {points(transfgradient[,1],transfspecies[,i],type="o",pch=i)}

treegoer.score Calculate climate scores with the Tree Globally Observed Environ-
mental Ranges (TreeGOER) database.

Description

Function treegoer.score calculates a climate score via a similar algorithm that is used internally
in the GlobalUsefulNativeTrees (GlobUNT) database (Kindt et al. 2023, doi:10.1038/s41598023-
395521). The function depends on treegoer.filter and requires a data set (argument treegoer.wide)
as created from the Tree Globally Observed Environmental Ranges (TreeGOER) database (Kindt
2023, doi:10.1111/gcb.16914) via treegoer.widen.

https://doi.org/10.1038/s41598-023-39552-1
https://doi.org/10.1038/s41598-023-39552-1
https://doi.org/10.1111/gcb.16914

168 treegoer.score

Usage

treegoer.score(site.data,
site.species = treegoer.wide$species,
treegoer.wide,
filter.vars = c("bio05", "bio14", "climaticMoistureIndex"),
upper.only.vars = NULL,
lower.only.vars = NULL)

treegoer.filter(site.data,
treegoer.wide,
filter.vars = c("bio05", "bio14", "climaticMoistureIndex"),
upper.only.vars = NULL,
lower.only.vars = NULL,
limit.vars = c("Q05", "Q95"))

treegoer.widen(treegoer,
species = unique(treegoer$species)[1:100],
filter.vars = c("bio05", "bio14", "climaticMoistureIndex"))

treegoer.position(site.data,
treegoer.wide,
focal.var = "bio01")

treegoer.map(map.rast,
map.species=treegoer[1, "species"],
treegoer,
filter.vars=c("bio05", "bio14", "climaticMoistureIndex"),
upper.only.vars = NULL,
lower.only.vars = NULL,
verbose=FALSE)

Arguments

site.data Data set with 1 row, containing the environmental conditions at the planting
site for the selected environmental variables of the TreeGOER database. This
data set can be set by selecting a city from the CitiesGOER datase (https:
//zenodo.org/records/10004594) or a weather station from the ClimateFore-
casts database (https://zenodo.org/records/10726088).

site.species Species for which the climate score will be calculated.

treegoer.wide Data set created by treegoer.widen from the TreeGOER database, or another
data set with the same variables.

filter.vars Environmental variables for which ranges (minimum, maximum and 0.05, 0.25,
0.75 and 0.95 quantile) are documented in the treegoer.wide data set.

limit.vars Selection of the lower and upper limits for the environmental ranges, typically
set as c("MIN", "MAX") (marginal bioclimatic species domain as in the BIO-

https://zenodo.org/records/10004594
https://zenodo.org/records/10004594
https://zenodo.org/records/10726088

treegoer.score 169

CLIM algorithm; see Booth 2018, doi:10.1111/aec.12628), c("Q05", "Q95")
(core of the domain) or c("QRT1", "QRT3") (middle of the domain).

upper.only.vars

Selection of variables that will only be checked at the upper limits.
lower.only.vars

Selection of variables that will only be checked at the lower limits.

treegoer Data set with environmental limits that was locally downloaded file (TreeGOER_2023.txt)
that was downloaded from the archive (https://zenodo.org/records/10008994).

species Selection of species to document in the wide format.

focal.var Selection of variable to calculate the position of planting site in environmental
space.

map.rast SpatRaster object (rast) with layers showing the environmental conditions of
planting sites.

map.species Species selected for mapping.

verbose Report progress on the creation of the suitability map (when TRUE).

Details

The calculation of the climate score uses an expanded version of the algorithms used by BIOCLIM
(Booth 2018, doi:10.1111/aec.12628).

- A score of 3 indicates that for all selected variables, the planting site has environmental conditions
that are within the middle (0.25 to 0.75 quantiles) of the species range.

- A score of 2 indicates that for all selected variables, the planting site has environmental conditions
that are within the core (0.05 to 0.95 quantiles) of the species range. For some variables, the planting
conditions are outside the middle of the species range.

- A score of 1 indicates that for all selected variables, the planting site has environmental conditions
that are within the documented limits (minimum to maximum) of the species range. For some
variables, the planting conditions are outside the core of the species range; the BIOCLIM algorithm
defines this domain as the ’marginal domain’.

- A score of 0 indicates that for some of the selected variables, the planting site has environmental
conditions that are outside the documented limits (< minimum or > maximum) of the species range.

- A score of 0.5 indicates that for some of the selected variables, the planting site has environmental
conditions that are outside the documented limits (< minimum or > maximum) of the species range.
However, for none of the selected variables the planting has environmental conditions larger than
those for variables that are checked only at the lower side, or smaller than those for variables that
are checked only at the upper side.

- A score of -1 indicates that there was no information on the environmental ranges of the species.

The calculation of the position of the planting site via treegoer.position is done as follows:

- For sites where the conditions of the planting location (PL) are above the median, the position is
calculated as:

(PL - MEDIAN) / (MAX - MEDIAN)

- For sites where the conditions of the planting location (PL) are below the median, the position is
calculated as:

https://doi.org/10.1111/aec.12628
https://zenodo.org/records/10008994
https://doi.org/10.1111/aec.12628

170 treegoer.score

(PL - MEDIAN) / (MEDIAN - MIN)

The sign (positive or negative) will therefore indicate the position (respectively, lower or higher) of
the planting site with respect to the median of the species.

The magnitude of the metric will indicate the relative distance of the planting site with respect
to the difference between median and extremes. Values that are lower than -1 will indicate novel
conditions below the minimum. Values that are above +1 will indicate novel conditions above the
maximum.

The same algorithms and similar scripts are used internally in the GlobalUsefulNativeTrees database
(see Kindt et al. 2023). The internal scripts also resemble scripts provided here: https://rpubs.
com/Roeland-KINDT/1114902.

Function treegoer.map creates a raster layer with the climate scores.

Value

Function treegoer.score returns a data set that includes a climate score representing the position
of the planting site within the environmental range of species documented by the Tree Globally
Observed Environmental Ranges database.

Author(s)

Roeland Kindt (World Agroforestry, CIFOR-ICRAF)

References

Booth TH. 2018. Why understanding the pioneering and continuing contributions of BIOCLIM to
species distribution modelling is important. Austral Ecology 43: 852-860. doi:10.1111/aec.12628

Kindt R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129
tree species. Global Change Biology. doi:10.1111/gcb.16914

Kindt R., Graudal L, Lilleso J.P.-B. et al. 2023. GlobalUsefulNativeTrees, a database document-
ing 14,014 tree species, supports synergies between biodiversity recovery and local livelihoods in
landscape restoration. Scientific Reports. doi:10.1038/s41598023395521

Kindt R. 2023. Using the Tree Globally Observed Environmental Ranges and CitiesGOER databases
to Filter GlobalUsefulNativeTrees Species lists. https://rpubs.com/Roeland-KINDT/1114902

Kindt R. 2023. CitiesGOER: Globally Observed Environmental Data for 52,602 Cities with a
Population >= 5000 (version 2023.10). doi:10.5281/zenodo.10004594

Kindt R. 2024. ClimateForecasts: Globally Observed Environmental Data for 15,504 Weather
Station Locations (version 2024.03). doi:10.5281/zenodo.10776414

Examples

Not run:

Example adapted from https://rpubs.com/Roeland-KINDT/1114902

treegoer.file <- choose.files()
Provide the location where the TreeGOER file was downloaded locally
(https://zenodo.org/records/10008994: TreeGOER_2023.txt)

https://rpubs.com/Roeland-KINDT/1114902
https://rpubs.com/Roeland-KINDT/1114902
https://doi.org/10.1111/aec.12628
https://doi.org/10.1111/gcb.16914
https://doi.org/10.1038/s41598-023-39552-1
https://rpubs.com/Roeland-KINDT/1114902
https://doi.org/10.5281/zenodo.10004594
https://doi.org/10.5281/zenodo.10776414

treegoer.score 171

treegoer <- fread(treegoer.file, sep="|", encoding="UTF-8")
nrow(treegoer)
length(unique(treegoer$species)) # 48129

A data set of tree species
Example has useful tree species filtered
for Kenya and human food from the GlobalUsefulNativeTrees database
(https://worldagroforestry.org/output/globalusefulnativetrees)
globunt.file <- choose.files()
globunt <- fread(globunt.file, sep="|", encoding="UTF-8")
nrow(globunt) # 461

Environmental variables used for filtering or scoring species
focal.vars <- c("bio01", "bio12",

"climaticMoistureIndex", "monthCountByTemp10",
"growingDegDays5",
"bio05", "bio06", "bio16", "bio17",
"MCWD")

Use treegoer.widen()
treegoer.wide <- treegoer.widen(treegoer=treegoer,

species=globunt$Switchboard,
filter.vars=focal.vars)

names(treegoer.wide)

Environmental conditions at the planting site
Provide the locations where the CitiesGOER files were downloaded locally
(https://zenodo.org/records/10004594: CitiesGOER_baseline.xlsx).
Alternatively, the ClimateForecasts database can be used
(https://zenodo.org/records/10726088: ClimateForecasts_baseline.xlsx)
baseline.file <- choose.files()
site.baseline <- data.frame(read_excel(baseline.file,

sheet="Cities data",
skip=6))

Set the planting location in Nairobi
site.planting <- site.baseline[site.baseline$Name == "Nairobi",]
site.planting

Calculate the climate scores
treegoer.scores <- treegoer.score(site.species=globunt$Switchboard,

treegoer.wide=treegoer.wide,
filter.vars=focal.vars,
site.data=site.planting)

Calculate the climate score for a single environmental variable
treegoer.score <- treegoer.score(site.species=globunt$Switchboard,

treegoer.wide=treegoer.wide,
filter.vars="bio01",
site.data=site.planting)

library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),

172 warcom

pattern='grd', full.names=TRUE)
predictors <- rast(predictor.files)
subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",

"bio16", "bio17"))
predictors

names(predictors)[1:2] <- c("bio05", "bio06")
WorldClim1 had temperature values multiplied by 10
if(t(minmax(predictors[["bio05"]]))[1] > 25) {

predictors[["bio05"]] <- predictors[["bio05"]]/10
predictors[["bio06"]] <- predictors[["bio06"]]/10

}

map.test2 <- treegoer.map(map.rast=predictors,
map.species="Bertholletia excelsa",
treegoer=treegoer,
filter.vars=c("bio05", "bio06", "bio16", "bio17"),
upper.only.vars=c("bio05", "bio06"),
lower.only.vars=c("bio16", "bio17"))

map.test2
plot(map.test2)

End(Not run)

warcom Warburgia ugandensis AFLP Scores

Description

This data set contains scores for 185 loci for 100 individuals of the Warburgia ugandensis tree
species (a medicinal tree species native to Eastern Africa). Since the data set is a subset of a larger
data set that originated from a study of several Warburgia species, some of the loci did not produce
bands for W. ugandensis (i.e. some loci only contain zeroes). This data set is accompanied by
warenv that describes population and regional structure of the 100 individuals.

Usage

data(warcom)

Format

A data frame with 100 observations on the following 185 variables.

locus001 a numeric vector

locus002 a numeric vector

warcom 173

locus003 a numeric vector

locus004 a numeric vector

locus005 a numeric vector

locus006 a numeric vector

locus007 a numeric vector

locus008 a numeric vector

locus009 a numeric vector

locus010 a numeric vector

locus011 a numeric vector

locus012 a numeric vector

locus013 a numeric vector

locus014 a numeric vector

locus015 a numeric vector

locus016 a numeric vector

locus017 a numeric vector

locus018 a numeric vector

locus019 a numeric vector

locus020 a numeric vector

locus021 a numeric vector

locus022 a numeric vector

locus023 a numeric vector

locus024 a numeric vector

locus025 a numeric vector

locus026 a numeric vector

locus027 a numeric vector

locus028 a numeric vector

locus029 a numeric vector

locus030 a numeric vector

locus031 a numeric vector

locus032 a numeric vector

locus033 a numeric vector

locus034 a numeric vector

locus035 a numeric vector

locus036 a numeric vector

locus037 a numeric vector

locus038 a numeric vector

locus039 a numeric vector

174 warcom

locus040 a numeric vector

locus041 a numeric vector

locus042 a numeric vector

locus043 a numeric vector

locus044 a numeric vector

locus045 a numeric vector

locus046 a numeric vector

locus047 a numeric vector

locus048 a numeric vector

locus049 a numeric vector

locus050 a numeric vector

locus051 a numeric vector

locus052 a numeric vector

locus053 a numeric vector

locus054 a numeric vector

locus055 a numeric vector

locus056 a numeric vector

locus057 a numeric vector

locus058 a numeric vector

locus059 a numeric vector

locus060 a numeric vector

locus061 a numeric vector

locus062 a numeric vector

locus063 a numeric vector

locus064 a numeric vector

locus065 a numeric vector

locus066 a numeric vector

locus067 a numeric vector

locus068 a numeric vector

locus069 a numeric vector

locus070 a numeric vector

locus071 a numeric vector

locus072 a numeric vector

locus073 a numeric vector

locus074 a numeric vector

locus075 a numeric vector

locus076 a numeric vector

warcom 175

locus077 a numeric vector

locus078 a numeric vector

locus079 a numeric vector

locus080 a numeric vector

locus081 a numeric vector

locus082 a numeric vector

locus083 a numeric vector

locus084 a numeric vector

locus085 a numeric vector

locus086 a numeric vector

locus087 a numeric vector

locus088 a numeric vector

locus089 a numeric vector

locus090 a numeric vector

locus091 a numeric vector

locus092 a numeric vector

locus093 a numeric vector

locus094 a numeric vector

locus095 a numeric vector

locus096 a numeric vector

locus097 a numeric vector

locus098 a numeric vector

locus099 a numeric vector

locus100 a numeric vector

locus101 a numeric vector

locus102 a numeric vector

locus103 a numeric vector

locus104 a numeric vector

locus105 a numeric vector

locus106 a numeric vector

locus107 a numeric vector

locus108 a numeric vector

locus109 a numeric vector

locus110 a numeric vector

locus111 a numeric vector

locus112 a numeric vector

locus113 a numeric vector

176 warcom

locus114 a numeric vector

locus115 a numeric vector

locus116 a numeric vector

locus117 a numeric vector

locus118 a numeric vector

locus119 a numeric vector

locus120 a numeric vector

locus121 a numeric vector

locus122 a numeric vector

locus123 a numeric vector

locus124 a numeric vector

locus125 a numeric vector

locus126 a numeric vector

locus127 a numeric vector

locus128 a numeric vector

locus129 a numeric vector

locus130 a numeric vector

locus131 a numeric vector

locus132 a numeric vector

locus133 a numeric vector

locus134 a numeric vector

locus135 a numeric vector

locus136 a numeric vector

locus137 a numeric vector

locus138 a numeric vector

locus139 a numeric vector

locus140 a numeric vector

locus141 a numeric vector

locus142 a numeric vector

locus143 a numeric vector

locus144 a numeric vector

locus145 a numeric vector

locus146 a numeric vector

locus147 a numeric vector

locus148 a numeric vector

locus149 a numeric vector

locus150 a numeric vector

warcom 177

locus151 a numeric vector

locus152 a numeric vector

locus153 a numeric vector

locus154 a numeric vector

locus155 a numeric vector

locus156 a numeric vector

locus157 a numeric vector

locus158 a numeric vector

locus159 a numeric vector

locus160 a numeric vector

locus161 a numeric vector

locus162 a numeric vector

locus163 a numeric vector

locus164 a numeric vector

locus165 a numeric vector

locus166 a numeric vector

locus167 a numeric vector

locus168 a numeric vector

locus169 a numeric vector

locus170 a numeric vector

locus171 a numeric vector

locus172 a numeric vector

locus173 a numeric vector

locus174 a numeric vector

locus175 a numeric vector

locus176 a numeric vector

locus177 a numeric vector

locus178 a numeric vector

locus179 a numeric vector

locus180 a numeric vector

locus181 a numeric vector

locus182 a numeric vector

locus183 a numeric vector

locus184 a numeric vector

locus185 a numeric vector

Source

Muchugi, A.N. (2007) Population genetics and taxonomy of important medicinal tree species of the
genus Warburgia. PhD Thesis. Kenyatta University, Kenya.

178 warenv

Examples

data(warcom)

warenv Warburgia ugandensis Population Structure

Description

This data set contains population and regional locations for 100 individuals of the Warburgia ugan-
densis tree species (a medicinal tree species native to Eastern Africa). This data set is associated
with warcom that contains scores for 185 AFLP loci.

Usage

data(warenv)

Format

A data frame with 100 observations on the following 4 variables.

population a factor with levels Kibale Kitale Laikipia Lushoto Mara

popshort a factor with levels KKIT KLAI KMAR TLUS UKIB

country a factor with levels Kenya Tanzania Uganda

rift.valley a factor with levels east west

Source

Muchugi, A.N. (2007) Population genetics and taxonomy of important medicinal tree species of the
genus Warburgia. PhD Thesis. Kenyatta University, Kenya.

Examples

data(warenv)

Index

∗ datasets
BCI.env, 11
CucurbitaClim, 19
faramea, 128
ifri, 129
transfgradient, 165
transfspecies, 166
warcom, 172
warenv, 178

∗ multivariate
accumresult, 4
add.spec.scores, 7
balanced.specaccum, 9
BiodiversityRGUI, 12
CAPdiscrim, 14
caprescale, 16
crosstabanalysis, 18
deviancepercentage, 20
dist.eval, 21
dist.zeroes, 22
distdisplayed, 24
disttransform, 25
diversityresult, 26
importancevalue, 130
loaded.citations, 132
makecommunitydataset, 133
multiconstrained, 134
nested.anova.dbrda, 136
NMSrandom, 138
nnetrandom, 139
ordicoeno, 140
ordisymbol, 142
PCAsignificance, 144
radfitresult, 145
rankabundance, 146
removeNAcomm, 150
renyiresult, 153
sites.long, 157
spatialsample, 164

∗ package
BiodiversityR-package, 3

.packages, 132

accumcomp, 157, 158
accumcomp (accumresult), 4
accumcomp.long, 6
accumcomp.long (sites.long), 157
accumplot (accumresult), 4
accumresult, 4, 9, 10, 151
add.spec.scores, 7, 15
addLayer, 39, 61
adonis2, 136, 137
aggregate, 158
anova.cca, 134, 135
anova.glm, 20
anova.negbin, 20
aoo, 105
areaPolygon, 100
arrows, 143, 144
as.dist, 13
axis.long (sites.long), 157

balanced.specaccum, 9
BCI, 11, 129
BCI.env, 11, 129
bioclim, 39, 46, 48, 60
BiodiversityR (BiodiversityR-package), 3
BiodiversityR-package, 3
BiodiversityR.changeLog, 12
BiodiversityRGUI, 3, 12
bioenv, 21, 22
biovars, 80, 81
boxplot, 125

CAPdiscrim, 14, 158
caprescale, 16, 73
capscale, 14, 16, 17, 134–137
cascadeKM, 122
cca, 134, 135

179

180 INDEX

centroids.long (sites.long), 157
cforest, 38, 40, 59, 62
cforest_control, 40, 41, 62
check.datasets, 152
check.datasets (removeNAcomm), 150
check.ordiscores (removeNAcomm), 150
chisq.test, 18
circles, 36, 37, 58
citation, 132
clara, 114
cmdscale, 8, 14–16, 158
complete.cases, 72
concaveman, 72
cor, 8, 24, 58
cov, 31, 123
coverscale, 25, 26
crosstabanalysis, 18
crs, 109
CucurbitaClim, 19

dataType, 30, 37, 79, 90, 99, 105, 122
dbrda, 134
decostand, 25
dev.new, 42, 122, 125, 126
deviancepercentage, 20
dispweight, 25, 26
dist.eval, 21
dist.zeroes, 22
distconnected, 21
distdisplayed, 24
distGeo, 112, 114
disttransform, 25
diversity, 27, 28
diversitycomp (diversityresult), 26
diversityresult, 26, 151
diversityvariables (diversityresult), 26
domain, 39, 60

earth, 39, 41, 60, 62
ecocrop, 80
ensemble.accepted.categories

(ensemble.dummy.variables), 76
ensemble.analogue, 30
ensemble.analogue.object, 30
ensemble.area (ensemble.raster), 98
ensemble.batch, 34, 67, 87, 94, 101, 106,

115, 119
ensemble.bioclim, 39, 42, 46, 51, 60, 63, 91
ensemble.bioclim.graph, 48, 50, 50, 91

ensemble.bioclim.object, 46, 50
ensemble.calibrate.models, 34, 43, 44, 52,

77, 83, 99, 101, 109, 110, 117, 119,
125, 126

ensemble.calibrate.weights, 34, 37, 43,
44, 83, 101, 110, 119

ensemble.calibrate.weights
(ensemble.calibrate.models), 52

ensemble.centroids (ensemble.zones), 121
ensemble.chull.apply (ensemble.red), 104
ensemble.chull.buffer.distances

(ensemble.red), 104
ensemble.chull.create (ensemble.red),

104
ensemble.chull.MSDM (ensemble.red), 104
ensemble.concave.hull, 19, 71, 71, 72, 73
ensemble.concave.union, 71, 73
ensemble.concave.union

(ensemble.concave.hull), 71
ensemble.concave.venn, 19, 71–73
ensemble.concave.venn

(ensemble.concave.hull), 71
ensemble.drop1

(ensemble.calibrate.models), 52
ensemble.dummy.variables, 76
ensemble.ecocrop, 79
ensemble.ecocrop.object, 79
ensemble.envBlock

(ensemble.spatialBlock), 108
ensemble.envirem.masterstack, 82, 83
ensemble.envirem.run

(ensemble.envirem.masterstack),
82

ensemble.envirem.solradstack, 83
ensemble.envirem.solradstack

(ensemble.envirem.masterstack),
82

ensemble.environmentalThin
(ensemble.spatialThin), 112

ensemble.evaluate, 85
ensemble.formulae, 39, 61
ensemble.formulae

(ensemble.calibrate.models), 52
ensemble.habitat.change

(ensemble.raster), 98
ensemble.mean (ensemble.batch), 34
ensemble.novel, 32, 47, 48, 51, 89
ensemble.novel.object, 90

INDEX 181

ensemble.outliers, 73
ensemble.outliers

(ensemble.concave.hull), 71
ensemble.outlierThin

(ensemble.spatialThin), 112
ensemble.pairs

(ensemble.calibrate.models), 52
ensemble.PET.season, 93, 96
ensemble.PET.seasons, 94
ensemble.plot (ensemble.batch), 34
ensemble.prec.season

(ensemble.PET.seasons), 94
ensemble.raster, 34, 43, 44, 58, 65–67, 77,

91, 98, 117, 119, 123, 126
ensemble.red, 104
ensemble.season.suitability

(ensemble.PET.seasons), 94
ensemble.SEDI (ensemble.evaluate), 86
ensemble.simplified.categories

(ensemble.dummy.variables), 76
ensemble.spatialBlock, 108
ensemble.spatialThin, 36, 43, 112
ensemble.strategy

(ensemble.calibrate.models), 52
ensemble.terra, 117
ensemble.threshold, 86
ensemble.threshold

(ensemble.calibrate.models), 52
ensemble.Tjur (ensemble.evaluate), 86
ensemble.tmean.season

(ensemble.PET.seasons), 94
ensemble.VIF, 37, 43
ensemble.VIF

(ensemble.calibrate.models), 52
ensemble.VIF.dataframe, 72
ensemble.weights

(ensemble.calibrate.models), 52
ensemble.zones, 121
envBlock, 110
envfit, 73, 158
estimateR, 28
evaluate, 58, 64, 66, 86, 99, 118
evaluation.strip.data, 124
evaluation.strip.plot, 100, 101, 119
evaluation.strip.plot

(evaluation.strip.data), 124
extent, 122, 125
extract, 31, 40, 42, 47, 57, 61, 77, 99, 100,

104, 109, 118, 122

faramea, 128
fda, 39, 41, 60, 63
fisher.alpha, 27, 28
fisherfit, 145, 146
foldExplorer, 110
freq, 76, 77

gam, 24, 38, 39, 41, 60, 62, 140, 141
gam.control, 40, 61
gbm, 38, 40, 59, 61
gbm.step, 38, 40, 59, 61–63, 65
generateEnvirem, 82, 83
get.block, 36, 63
getCrop, 80, 96
ggplot, 157
glm, 20, 38, 39, 41, 60, 62
glm.control, 40, 61
glm.nb, 20
glmnet, 39, 41, 60, 63

ifri, 129, 131
import.with.readxl (removeNAcomm), 150
importancevalue, 130
initMDS, 138
isoMDS, 8, 138

kfold, 36, 37, 57, 63, 65, 109
kmeans, 121, 122
ksvm, 39, 41, 60, 63

lda, 14, 15
legend, 141, 143, 154
levels, 126
lines.spantree, 142, 143
loaded.citations, 132
lof, 114

mahal, 39, 42, 60, 63, 64
mahalanobis, 31, 121–123
make.cepnames, 151
makecommunitydataset, 133, 151, 152
mantel, 24
map.sdm, 104
mask, 90
maxent, 38, 40, 57–59, 61
maxlike, 38, 40, 59, 61
maxnet, 38, 40, 59, 61
mean, 126

182 INDEX

mess, 90
metaMDS, 8, 138
ModelEvaluation, 100, 119
multiconstrained, 134

na.omit, 20
nested.anova.dbrda, 136
nested.npmanova (nested.anova.dbrda),

136
nicheOverlap, 43
NMSrandom, 8, 138
nnet, 39–41, 60, 61, 63, 65, 139, 140
nnetrandom, 139

optim, 40, 61
optimal.thresholds, 37, 58, 66
ordiarrows, 142
ordibubble (ordisymbol), 142
ordicluster, 142, 143, 158
ordicluster2 (ordisymbol), 142
ordicoeno, 140
ordiellipse, 142, 158
ordiellipse.long (sites.long), 157
ordiequilibriumcircle

(PCAsignificance), 144
ordigrid, 142
ordihull, 142, 143
ordinearest (ordisymbol), 142
ordiplot, 15–17, 24, 141, 142, 144, 157, 158
ordisegments, 142
ordispider, 142
ordisurf, 158
ordisurfgrid.long (sites.long), 157
ordisymbol, 142
ordivector (ordisymbol), 142

pairs, 66
par, 5, 141, 143, 147
PCAsignificance, 144
plot, 5, 43, 126, 141, 147, 154
plot.radfit, 145, 146
plot.specaccum, 4–6, 9
pointDistance, 104, 105
points, 5, 141–143, 147, 153, 154
postMDS, 8
prcomp, 72
predict, 30, 36, 46, 79, 89, 90, 99, 117, 122,

125
predict.cca, 73

predict.glmnet, 42, 63, 64
predict.maxnet, 40, 61
predict.prcomp, 73
prepare.bioenv (dist.eval), 21
prepareData, 39, 40, 42, 47, 57, 58, 61, 63,

77, 99, 100, 104, 109, 118, 122
prestonfit, 145, 146
pvclust, 158
pvclust.long (sites.long), 157

qnorm, 47
qt, 158
quantile, 31, 47, 90, 113, 114

radfit, 145, 146
radfitresult, 145
rainbow_hcl, 142
randomForest, 38, 40, 59, 62
randomPoints, 31, 36, 40, 57, 61, 109, 122,

125
rankabuncomp (rankabundance), 146
rankabundance, 146
rankabunplot (rankabundance), 146
rast, 82, 83, 117, 169
raster, 76, 77, 90, 100, 104, 105, 121–123
rda, 8, 72, 114, 121, 122, 134, 135, 144, 145
read_excel, 152
removeNAcomm, 150
removeNAenv (removeNAcomm), 150
removezerospecies (removeNAcomm), 150
renyi, 153, 154
renyi.long, 155
renyi.long (sites.long), 157
renyiaccum, 154
renyiaccumresult (renyiresult), 153
renyicomp, 157, 158
renyicomp (renyiresult), 153
renyicomp.long, 155
renyicomp.long (sites.long), 157
renyiplot (renyiresult), 153
renyiresult, 151, 153
replaceNAcomm (removeNAcomm), 150
round, 64
rpart, 39, 41, 60, 62
rpart.control, 41, 62

s, 41, 62
same.sites, 152
same.sites (removeNAcomm), 150

INDEX 183

sammon, 8, 138
scores, 72, 113, 122, 151
silhouette, 122
sink, 37, 58, 99, 118
sites.long, 157, 157
spatialBlock, 109, 110
SpatialPointsDataFrame, 110
spatialsample, 164
specaccum, 4–6, 9, 10, 154, 158
species.long (sites.long), 157
specnumber, 27, 28
specpool, 27, 28
ssb, 36, 58
st_buffer, 72, 104
st_crs, 109
st_union, 73
stack, 30, 31, 36, 46, 51, 57, 79, 82, 83, 90,

93, 95, 99, 109, 113, 122, 125
stackcommunitydataset

(makecommunitydataset), 133
step.gam, 38, 41, 60, 62
stepAIC, 38, 41, 60, 62
subsetcomm (removeNAcomm), 150
svm, 39, 41, 60, 63
symbols, 143

threshold, 37, 58, 86
title, 5
transfgradient, 165, 166
transfspecies, 165, 166
treegoer.filter, 167
treegoer.filter (treegoer.score), 167
treegoer.map (treegoer.score), 167
treegoer.position (treegoer.score), 167
treegoer.score, 167, 167
treegoer.widen, 167, 168
treegoer.widen (treegoer.score), 167
trunc, 100, 119
tryCatch, 31, 37, 47, 58, 79, 90, 93, 95, 100,

118, 122, 125

vectorfit.long (sites.long), 157
vegdist, 14, 21–24, 135, 137, 138
vif, 58, 64

warcom, 172
warenv, 178
wascores, 8
writeFormats, 30, 37, 46, 79, 90, 99, 105, 122

writeRaster, 30, 37, 46, 77, 79, 90, 93, 95,
99, 105, 118, 122

	BiodiversityR-package
	accumresult
	add.spec.scores
	balanced.specaccum
	BCI.env
	BiodiversityR.changeLog
	BiodiversityRGUI
	CAPdiscrim
	caprescale
	crosstabanalysis
	CucurbitaClim
	deviancepercentage
	dist.eval
	dist.zeroes
	distdisplayed
	disttransform
	diversityresult
	ensemble.analogue
	ensemble.batch
	ensemble.bioclim
	ensemble.bioclim.graph
	ensemble.calibrate.models
	ensemble.concave.hull
	ensemble.dummy.variables
	ensemble.ecocrop
	ensemble.envirem.masterstack
	ensemble.evaluate
	ensemble.novel
	ensemble.PET.season
	ensemble.PET.seasons
	ensemble.raster
	ensemble.red
	ensemble.spatialBlock
	ensemble.spatialThin
	ensemble.terra
	ensemble.zones
	evaluation.strip.data
	faramea
	ifri
	importancevalue
	loaded.citations
	makecommunitydataset
	multiconstrained
	nested.anova.dbrda
	NMSrandom
	nnetrandom
	ordicoeno
	ordisymbol
	PCAsignificance
	radfitresult
	rankabundance
	removeNAcomm
	renyiresult
	sites.long
	spatialsample
	transfgradient
	transfspecies
	treegoer.score
	warcom
	warenv
	Index

