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Asia Asia dataset

Description

A synthetic dataset from Lauritzen and Spiegelhalter (1988) about lung diseases (tuberculosis, lung
cancer or bronchitis) and visits to Asia.

Usage

Asia

Format

A data frame with 5000 rows and 8 binary variables:

• D (dyspnoea), binary 1/0 corresponding to "yes" and "no"

• T (tuberculosis), binary 1/0 corresponding to "yes" and "no"

• L (lung cancer), binary 1/0 corresponding to "yes" and "no"

• B (bronchitis), binary 1/0 corresponding to "yes" and "no"

• A (visit to Asia), binary 1/0 corresponding to "yes" and "no"

• S (smoking), binary 1/0 corresponding to "yes" and "no"

• X (chest X-ray), binary 1/0 corresponding to "yes" and "no"

• E (tuberculosis versus lung cancer/bronchitis), binary 1/0 corresponding to "yes" and "no"

Source

https://www.bnlearn.com/bnrepository/

https://www.bnlearn.com/bnrepository/
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References

Lauritzen S, Spiegelhalter D (1988). ‘Local Computation with Probabilities on Graphical Structures
and their Application to Expert Systems (with discussion)’. Journal of the Royal Statistical Society:
Series B 50, 157-224.

Asiamat Asiamat

Description

An adjacency matrix representing the ground truth DAG used to generate a synthetic dataset from
Lauritzen and Spiegelhalter (1988) about lung diseases (tuberculosis, lung cancer or bronchitis) and
visits to Asia.

Usage

Asiamat

Format

A binary matrix with 8 rows and 8 columns representing an adjacency matrix of a DAG with 8
nodes:

• D (dyspnoea), binary 1/0 corresponding to "yes" and "no"

• T (tuberculosis), binary 1/0 corresponding to "yes" and "no"

• L (lung cancer), binary 1/0 corresponding to "yes" and "no"

• B (bronchitis), binary 1/0 corresponding to "yes" and "no"

• A (visit to Asia), binary 1/0 corresponding to "yes" and "no"

• S (smoking), binary 1/0 corresponding to "yes" and "no"

• X (chest X-ray), binary 1/0 corresponding to "yes" and "no"

• E (tuberculosis versus lung cancer/bronchitis), binary 1/0 corresponding to "yes" and "no"

Source

https://www.bnlearn.com/bnrepository/

References

Lauritzen S, Spiegelhalter D (1988). ‘Local Computation with Probabilities on Graphical Structures
and their Application to Expert Systems (with discussion)’. Journal of the Royal Statistical Society:
Series B 50, 157-224.

https://www.bnlearn.com/bnrepository/
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bidag2coda Converting a single BiDAG chain to mcmc object

Description

This function converts a single object of one of the BiDAG classes, namely ’orderMCMC’ or ’par-
titionMCMC’ to an object of class ’mcmc’. This object can be further used for convergence and
mixing diagnostics implemented in the package coda

Usage

bidag2coda(
MCMCtrace,
edges = FALSE,
pdag = TRUE,
p = 0.1,
burnin = 0.2,
window = 100,
cumulative = FALSE

)

Arguments

MCMCtrace object of class orderMCMC or partitionMCMC

edges logical, when FALSE (default), then only DAG score trace is extracted; when
TRUE, a trace of posterior probabilities is extracted for every edge (based on the
sampled DAGs defined by parameters ’window’ and ’cumulative’) resulting in
up to n^2 trace vectors, where n is the number of nodes in the network

pdag logical, when edges=TRUE, defines if the DAGs are converted to CPDAGs prior
to computing posterior probabilities; ignored otherwise

p numeric, between 0 and 1; defines the minimum probability for including poste-
rior traces in the returned objects (for probabilities close to 0 PRSF diagnostics
maybe too conservative)

burnin numeric between 0 and 1, indicates the percentage of the samples which will be
discarded as ’burn-in’ of the MCMC chain; the rest of the samples will be used
to calculate the posterior probabilities; 0.2 by default

window integer, defines a number of DAG samples for averaging and computing edges’
posterior probabilities; ignored when edges=FALSE

cumulative logical, indicates if posterior probabilities should be calculated based on a cu-
mulative sample of DAGs, where 25% of the first samples are discarded

Value

Object of class mcmc from the package coda
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Author(s)

Polina Suter

Examples

## Not run:
library(coda)
myscore<-scoreparameters("bde",Asia)
ordersample<-sampleBN(myscore,"order")
order_mcmc<-bidag2coda(ordersample)
par(mfrow=c(1,2))
densplot(order_mcmc)
traceplot(order_mcmc)

## End(Not run)

bidag2codalist Converting multiple BiDAG chains to mcmc.list

Description

This function converts a list of objects of classes ’orderMCMC’ or ’partitionMCMC’ to an ob-
ject of class ’mcmc.list’. This object can be further used for convergence and mixing diagnostics
implemented in the R-package coda.

Usage

bidag2codalist(
MCMClist,
edges = FALSE,
pdag = TRUE,
p = 0.1,
burnin = 0.2,
window = 10,
cumulative = FALSE

)

Arguments

MCMClist a list of objects of classes orderMCMC or partitionMCMC

edges logical, when FALSE (default), then only DAG score trace is extracted; when
TRUE, a trace of posterior probabilities is extracted for every edge (based on the
sampled DAGs defined by parameters ’window’ and ’cumulative’) resulting in
up to n^2 trace vectors, where n is the number of nodes in the network

pdag logical, when edges=TRUE, defines if the DAGs are converted to CPDAGs prior
to computing posterior probabilities; ignored otherwise
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p numeric, between 0 and 1; defines the minimum probability for including poste-
rior traces in the returned objects (for probabilities close to 0, PRSF diagnostics
maybe too conservative; the threshold above 0 is recommended)

burnin numeric between 0 and 1, indicates the percentage of the samples which will be
discarded as ’burn-in’ of the MCMC chain; the rest of the samples will be used
to calculate the posterior probabilities; 0.2 by default

window integer, defines a number of DAG samples for averaging and computing edges’
posterior probabilities; ignored when edges=FALSE

cumulative logical, indicates if posterior probabilities should be calculated based on a cu-
mulative sample of DAGs, where 25% of the first samples are discarded

Value

Object of class mcmc.list from the package coda

Author(s)

Polina Suter

References

Robert J. B. Goudie and Sach Mukherjee (2016). A Gibbs Sampler for Learning DAGs. J Mach
Learn Res. 2016 Apr; 17(30): 1–39.

Examples

## Not run:
library(coda)
scoreBoston<-scoreparameters("bge",Boston)
ordershort<-list()
#run very short chains -> convergence issues
ordershort[[1]] <- sampleBN(scoreBoston, algorithm = "order", iterations=2000)
ordershort[[2]] <- sampleBN(scoreBoston, algorithm = "order", iterations=2000)
codashort_edges<-bidag2codalist(ordershort,edges=TRUE,pdag=TRUE,p=0.05,burnin=0.2,window=10)
gd_short<-gelman.diag(codashort_edges, transform=FALSE, autoburnin=FALSE, multivariate=FALSE)
length(which(gd_short$psrf[,1]>1.1))/(length(gd_short$psrf[,1]))
#=>more MCMC iterations are needed, try 100000

## End(Not run)

Boston Boston housing data

Description

A dataset containing information collected by the U.S Census Service concerning housing in the
area of Boston, originally published by Harrison and Rubinfeld (1978).



8 compact2full

Usage

Boston

Format

A data frame with 506 rows and 14 variables:

• CRIM - per capita crime rate by town

• ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS - proportion of non-retail business acres per town.

• CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

• NOX - nitric oxides concentration (parts per 10 million)

• RM - average number of rooms per dwelling

• AGE - proportion of owner-occupied units built prior to 1940

• DIS - weighted distances to five Boston employment centres

• TAX - full-value property-tax rate per $10,000

• RAD - index of accessibility to radial highways

• PTRATIO - pupil-teacher ratio by town

• B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

• LSTAT - percentage lower status of the population

• MEDV - Median value of owner-occupied homes in $1000’s

Source

http://lib.stat.cmu.edu/datasets/boston

References

Harrison, D and Rubinfeld, DL (1978) ‘Hedonic prices and the demand for clean air’, Journal of
Environmental Economics and Management 5, 81-102.

compact2full Deriving an adjecency matrix of a full DBN

Description

This function transforms a compact 2-slice adjacency matrix of DBN into full T-slice adjacency
matrix

Usage

compact2full(DBNmat, slices, b = 0)

http://lib.stat.cmu.edu/datasets/boston
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Arguments

DBNmat a square matrix, representing initial and transitional structure of a DBN; the size
of matrix is 2*dyn+b

slices integer, number of slices in an unrolled DBN

b integer, number of static variables

Value

an adjacency matrix of an unrolled DBN

Examples

compact2full(DBNmat, slices=5, b=3)

compareDAGs Comparing two graphs

Description

This function compares one (estimated) graph to another graph (true graph), returning a vector of 8
values:

• the number of true positive edges (’TP’) is the number of edges in the skeleton of ’egraph’
which are also present in the skeleton of ’truegraph’

• the number of false positive edges (’FP’) is the number of edges in the skeleton of ’egraph’
which are absent in the skeleton of ’truegraph’

• the number of fralse negative edges (’FN’) is the number of edges in the skeleton of ’truegraph’
which are absent in the skeleton of ’egraph’

• structural Hamming distance (’SHD’) between 2 graphs is computed as TP+FP+the number
of edges with an error in direction

• TPR equals TP/(TP+FN)

• FPR equals FP/(TN+FP) (TN stands for true negative edges)

• FPRn equals FP/(TP+FN)

• FDR equals FP/(TP+FP)

Usage

compareDAGs(egraph, truegraph, cpdag = FALSE, rnd = 2)
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Arguments

egraph an object of class graphNEL (package ‘graph’), representing the graph which
should be compared to a ground truth graph or an ajecency matrix corresponding
to the graph

truegraph an object of class graphNEL (package ‘graph’), representing the ground truth
graph or an ajecency matrix corresponding to this graph

cpdag logical, if TRUE (FALSE by default) both graphs are first converted to their
respective equivalence class (CPDAG); this affects SHD calculation

rnd integer, rounding integer indicating the number of decimal places (round) when
computing TPR, FPR, FPRn and FDR

Value

a named numeric vector 8 elements: SHD, number of true positive edges (TP), number of false
positive edges (FP), number of false negative edges (FN), true positive rate (TPR), false positive
rate (FPR), false positive rate normalized to the true number of edges (FPRn) and false discovery
rate (FDR)

Examples

Asiascore<-scoreparameters("bde", Asia)
## Not run:
eDAG<-learnBN(Asiascore,algorithm="order")
compareDAGs(eDAG$DAG,Asiamat)

## End(Not run)

compareDBNs Comparing two DBNs

Description

This function compares one (estimated) DBN structure to another DBN (true DBN). Comparisons
for initial and transitional structures are returned separately if equalstruct equals TRUE.

Usage

compareDBNs(eDBN, trueDBN, struct = c("init", "trans"), b = 0)

Arguments

eDBN an object of class graphNEL (or an ajacency matrix corresponding to this DBN),
representing the DBN which should be compared to a ground truth DBN

trueDBN an object of class graphNEL (or an ajacency matrix corresponding to this DBN),
representing the ground truth DBN
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struct option used to determine if the initial or the transitional structure should be
compared; accaptable values are init or trans

b number of static variables in one time slice of a DBN; note that for function to
work correctly all static variables have to be in the first b columns of the matrix

Value

a vector of 5: SHD, number of true positive edges, number of false positive edges, number of false
negative edges and true positive rate

Examples

testscore<-scoreparameters("bge", DBNdata, DBN=TRUE,
dbnpar=list(samestruct=TRUE, slices=5, b=3))
## Not run:
DBNfit<-learnBN(testscore, algorithm="orderIter",moveprobs=c(0.11,0.84,0.04,0.01))
compareDBNs(DBNfit$DAG,DBNmat, struct="trans", b=3)

## End(Not run)

connectedSubGraph Deriving connected subgraph

Description

This function derives an adjacency matrix of a subgraph whose nodes are connected to at least one
other node in a graph

Usage

connectedSubGraph(adj)

Arguments

adj square adjacency matrix with elements in {0,1}, representing a graph

Value

adjacency matrix of a subgraph of graph represented by ’adj’ whose nodes have at least one con-
nection

Examples

dim(gsimmat) #full graph contains 100 nodes
gconn<-connectedSubGraph(gsimmat) #removing disconnected nodes
dim(gconn) #connected subgraph contains 93 nodes
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DAGscore Calculating the BGe/BDe score of a single DAG

Description

This function calculates the score of a DAG defined by its adjacency matrix. Acceptable data
matrices are homogeneous with all variables of the same type: continuous, binary or categorical.
The BGe score is evaluated in the case of continuous data and the BDe score is evaluated for binary
and categorical variables.

Usage

DAGscore(scorepar, incidence)

Arguments

scorepar an object of class scoreparameters, containing the data and scoring parame-
ters; see constructor function scoreparameters

incidence a square matrix of dimensions equal to the number of nodes, representing the ad-
jacency matrix of a DAG; the matrix entries are in {0,1} such that incidence[i,j]
equals 1 if there is a directed edge from node i to node j in the DAG and
incidence[i,j] equals 0 otherwise

Value

the log of the BGe or BDe score of the DAG

Author(s)

Jack Kuipers, Polina Suter, the code partly derived from the order MCMC implementation from
Kuipers J, Moffa G (2017) <doi:10.1080/01621459.2015.1133426>

References

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Heckerman D and Geiger D (1995). Learning Bayesian networks: A unification for discrete and
Gaussian domains. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 274-284.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics 42, 1689-1691.

Examples

myScore<-scoreparameters("bde", Asia)
DAGscore(myScore, Asiamat)
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DBNdata Simulated data set from a 2-step dynamic Bayesian network

Description

A synthetic dataset containing 100 observations generated from a random dynamic Bayesian net-
work with 12 continuous dynamic nodes and 3 static nodes. The DBN includes observations from
5 time slices.

Usage

DBNdata

Format

A data frame with 100 rows and 63 (3+12*5) columns representing observations of 15 variables: 3
static variables (first 3 columns) which do not change over time and 12 dynamic variables observed
in 5 conseecutive time slices.

DBNmat An adjacency matrix of a dynamic Bayesian network

Description

An adjacency matrix representing the ground truth DBN used to generate a synthetic dataset DBNdata.
The matrix is a compact representation of a 2-step DBN, such that initial structure is stored in the
first 15 columns of the matrix and transitional structure is stored in the last 12 columns of the matrix.

Usage

DBNmat

Format

A binary matrix with 27 rows and 27 columns representing an adjacency matrix of a DBN. Rows
and columns of the matrix correspond to 15 variables of a DBN across 2 time slices.
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DBNscore Calculating the BGe/BDe score of a single DBN

Description

This function calculates the score of a DBN defined by its compact adjacency matrix. Acceptable
data matrices are homogeneous with all variables of the same type: continuous, binary or categor-
ical. The BGe score is evaluated in the case of continuous data and the BDe score is evaluated for
binary and categorical variables.

Usage

DBNscore(scorepar, incidence)

Arguments

scorepar an object of class scoreparameters, containing the data and scoring parame-
ters; see constructor function scoreparameters

incidence a square matrix, representing initial and transitional structure of a DBN; the
size of matrix is 2*nsmall+bgn, where nsmall is the number of variables per
time slice excluding static nodes and bgn is the number of static variables the
matrix entries are in {0,1} such that incidence[i,j] equals 1 if there is a
directed edge from node i to node j in the DAG and incidence[i,j] equals 0
otherwise

Value

the log of the BGe or BDe score of the DBN

Author(s)

Polina Suter, Jack Kuipers

Examples

testscore<-scoreparameters("bge", DBNdata, DBN=TRUE, dbnpar=list(slices=5, b=3))
DBNscore(testscore, DBNmat)
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DBNunrolled An unrolled adjacency matrix of a dynamic Bayesian network

Description

An adjacency matrix representing the ground truth DBN used to generate a synthetic dataset DBNdata.
The matrix is an unrolled representation of a 2-step DBN, such that the static variables are repre-
sented in the first 3 columns/rows of the matrix.

Usage

DBNunrolled

Format

A binary matrix with 63 rows and 63 columns representing an adjacency matrix of a DBN. Rows
and columns of the matrix correspond to 15 variables (s1, s2, s3, v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12) of a DBN across 5 time slices.

edgep Estimating posterior probabilities of single edges

Description

This function estimates the posterior probabilities of edges by averaging over a sample of DAGs
obtained via an MCMC scheme.

Usage

edgep(MCMCchain, pdag = FALSE, burnin = 0.2, endstep = 1)

Arguments

MCMCchain an object of class partitionMCMC, orderMCMC or iterativeMCMC, representing
the output of structure sampling function partitionMCMC or orderMCMC (the
latter when parameter chainout=TRUE;

pdag logical, if TRUE (FALSE by default) all DAGs in the MCMCchain are first
converted to equivalence class (CPDAG) before the averaging

burnin number between 0 and 1, indicates the percentage of the samples which will be
discarded as ‘burn-in’ of the MCMC chain; the rest of the samples will be used
to calculate the posterior probabilities; 0.2 by default

endstep number between 0 and 1; 1 by default
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Value

a square matrix with dimensions equal to the number of variables; each entry [i,j] is an estimate
of the posterior probability of the edge from node i to node j

Author(s)

Polina Suter

Examples

Bostonscore<-scoreparameters("bge", Boston)
## Not run:
samplefit<-sampleBN(Bostonscore, "order")
edgesposterior<-edgep(samplefit, pdag=TRUE, burnin=0.2)

## End(Not run)

full2compact Deriving a compact adjacency matrix of a DBN

Description

This function transforms an unrolled adjacency matrix of DBN into a compact representation

Usage

full2compact(DBNmat, b = 0)

Arguments

DBNmat a square matrix, representing the structure of an unrolled DBN; the size of matrix
is slices*dyn+b; all static variables are assumed to be in the first b rows and
columns of the matrix

b integer, number of static variables; 0 by default

Examples

full2compact(DBNunrolled,b=3)
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getDAG Extracting adjacency matrix (DAG) from MCMC object

Description

This function extracts an adjacency matrix of a maximum scoring DAG from the result of the
MCMC run.

Usage

getDAG(x, amat = TRUE, cp = FALSE)

Arguments

x object of class ’orderMCMC’,’partitionMCMC’ or ’iterativeMCMC’

amat logical, when TRUE adjacency matrix is returned and object of class ’graph-
NEL’ otherwise

cp logical, when TRUE the CPDAG (equivalence class) is returned and DAG oth-
erwise; FALSE by default

Value

adjacency matrix of a maximum scoring DAG (or CPDAG) discovered/sampled in one MCMC run

Examples

myscore<-scoreparameters("bge", Boston)
## Not run:
itfit<-learnBN(myscore,algorithm="orderIter")
maxEC<-getDAG(itfit,cp=TRUE)

## End(Not run)

getMCMCscore Extracting score from MCMC object

Description

This function extracts the score of a maximum DAG sampled in the MCMC run.

Usage

getMCMCscore(x)

Arguments

x object of class ’orderMCMC’,’partitionMCMC’ or ’iterativeMCMC’
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Value

a score of a maximum-scoring DAG found/sampled in one MCMC run

Examples

myscore<-scoreparameters("bge", Boston)
## Not run:
itfit<-learnBN(myscore,algorithm="orderIter")
getMCMCscore(itfit)

## End(Not run)

getRuntime Extracting runtime

Description

This function extracts runtime of a particular step of order and partition MCMC.

Usage

getRuntime(x, which = 0)

Arguments

x object of class ’orderMCMC’or ’partitionMCMC’

which integer, defines if the runtime is extracted for: computing score tables (which =
1), running MCMC chain (which = 2)

Value

runtime of a particular step of MCMC scheme or total runtime

Examples

myscore<-scoreparameters("bge",Boston)
## Not run:
orderfit<-sampleBN(myscore,algorithm="order")
(getRuntime(orderfit,1))
(getRuntime(orderfit,2))

## End(Not run)
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getSpace Extracting scorespace from MCMC object

Description

This function extracts an object of class ’scorespace’ from the result of the MCMC run when the
parameter ’scoreout’ was set to TRUE; otherwise extracts only adjacency matrix of the final search
space without the score tables.

Usage

getSpace(x)

Arguments

x object of class ’orderMCMC’,’partitionMCMC’ or ’iterativeMCMC’

Value

an object of class ’scorespace’ or an adjacency binary matrix corresponding to a search space last
used in MCMC

Examples

myscore<-scoreparameters("bge", Boston)
## Not run:
itfit<-learnBN(myscore,algorithm="orderIter",scoreout=TRUE)
itspace<-getSpace(itfit)

## End(Not run)

getSubGraph Deriving subgraph

Description

This function derives an adjacency matrix of a subgraph based on the adjacency matrix of a full
graph and a list of nodes

Usage

getSubGraph(adj, nodes)

Arguments

adj square adjacency matrix with elements in {0,1}, representing a graph
nodes vector of node names of the subgraph; should be a subset of column names of

’adj’
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Value

adjacency matrix of a subgraph which includes all ’nodes’

Examples

getSubGraph(Asiamat,c("E","B","D","X"))

getTrace Extracting trace from MCMC object

Description

This function extracts a trace of

• DAG scores

• DAG adjacency matrices

• orders

• order scores

from the result of the MCMC run. Note that the last three options work only when the parameter
’scoreout’ was set to TRUE.

Usage

getTrace(x, which = 0)

Arguments

x object of class ’orderMCMC’,’partitionMCMC’ or ’iterativeMCMC’

which integer, indication which trace is returned: DAG scores (which = 0), DAGs
(which = 1), orders (which = 2), order scores (which = 3)

Value

a list or a vector of objects representing MCMC trace, depends on parameter ’which’; by default,
the trace of DAG scores is returned

Examples

myscore<-scoreparameters("bge",Boston)
## Not run:
orderfit<-sampleBN(myscore,algorithm="order")
DAGscores<-getTrace(orderfit,which=0)
DAGtrace<-getTrace(orderfit,which=1)
orderscores<-getTrace(orderfit,which=3)

## End(Not run)
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graph2m Deriving an adjacency matrix of a graph

Description

This function derives the adjacency matrix corresponding to a graph object

Usage

graph2m(g)

Arguments

g graph, object of class graphNEL (package ‘graph’)

Value

a square matrix whose dimensions are the number of nodes in the graph g, where element [i,j]
equals 1 if there is a directed edge from node i to node j in the graph g, and 0 otherwise

Examples

Asiagraph<-m2graph(Asiamat)
Asia.adj<-graph2m(Asiagraph)

gsim A simulated data set from a Gaussian continuous Bayesian network

Description

A synthetic dataset containing 1000 observations generated from a random DAG with 100 continu-
ous nodes. Functions ’randomDAG’ and ’rmvDAG’ from R-packages ’pcalg’ were used to generate
the data.

Usage

gsim

Format

A data frame with 1000 rows representing observations of 100 continuous variables: V1, ..., V100
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gsim100 A simulated data set from a Gaussian continuous Bayesian network

Description

A synthetic dataset containing 100 observations generated from a random DAG with 100 continuous
nodes. Functions ’randomDAG’ and ’rmvDAG’ from R-packages ’pcalg’ were used to generate the
data.

Usage

gsim100

Format

A data frame with 100 rows representing observations of 100 continuous variables: V1, ..., V100

gsimmat An adjacency matrix of a simulated dataset

Description

An adjacency matrix representing the ground truth DAG used to generate a synthetic dataset with
observations of 100 continuous variables.

Usage

gsimmat

Format

A binary matrix with 100 rows and 100 columns representing an adjacency matrix of a DAG with
100 nodes: V1, ..., V100
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interactions interactions dataset

Description

A data frame containing possible interactions between genes from kirp and kirc data sets

Usage

interactions

Format

A data frame with 179 rows and 3 columns;

• node1 character, name of a gene

• node2 character, name of a gene

• combined_score interaction score, reflecting confidence in the fact that interaction between
gene1 and gene2 is possible

each row represents a possible interaction between two genes

Source

https://string-db.org/

iterativeMCMC Structure learning with an iterative order MCMC algorithm on an ex-
panded search space

Description

This function implements an iterative search for the maximum a posteriori (MAP) DAG, by means
of order MCMC (arXiv:1803.07859v3). At each iteration, the current search space is expanded by
allowing each node to have up to one additional parent not already included in the search space. By
default the initial search space is obtained through the PC-algorithm (using the functions skeleton
and pc from the ‘pcalg’ package [Kalisch et al, 2012]). At each iteration order MCMC is employed
to search for the MAP DAG. The edges in the MAP DAG are added to the initial search space
to provide the search space for the next iteration. The algorithm iterates until no further score
improvements can be achieved by expanding the search space. The final search space may be used
for the sampling versions of orderMCMC and partitionMCMC.

https://string-db.org/
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Usage

iterativeMCMC(
scorepar,
MAP = TRUE,
posterior = 0.5,
softlimit = 9,
hardlimit = 12,
alpha = 0.05,
gamma = 1,
verbose = TRUE,
chainout = FALSE,
scoreout = FALSE,
cpdag = FALSE,
mergetype = "skeleton",
iterations = NULL,
moveprobs = NULL,
stepsave = NULL,
startorder = NULL,
accum = FALSE,
compress = TRUE,
plus1it = NULL,
startspace = NULL,
blacklist = NULL,
addspace = NULL,
scoretable = NULL,
alphainit = NULL

)

## S3 method for class 'iterativeMCMC'
plot(
x,
...,
main = "iterative MCMC, DAG scores",
xlab = "MCMC step",
ylab = "DAG logscore",
type = "l",
col = "blue"

)

## S3 method for class 'iterativeMCMC'
print(x, ...)

## S3 method for class 'iterativeMCMC'
summary(object, ...)
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Arguments

scorepar an object of class scoreparameters, containing the data and scoring parame-
ters; see constructor function scoreparameters

MAP logical, if TRUE (default) the search targets the MAP DAG (a DAG with max-
imum score), if FALSE at each MCMC step a DAG is sampled from the order
proportionally to its score; when expanding a search space when MAP=TRUE
all edges from the maximum scoring DAG are added to the new space, when
MAP=FALSE only edges with posterior probability higher than defined by pa-
rameter posterior are added to the search space

posterior logical, when MAP set to FALSE defines posterior probability threshold for adding
the edges to the search space

softlimit integer, limit on the size of parent sets beyond which adding undirected edges is
restricted; below this limit edges are added to expand the parent sets based on
the undirected skeleton of the MAP DAG (or from its CPDAG, depending on
the parameter mergecp), above the limit only the directed edges are added from
the MAP DAG; the limit is 9 by default

hardlimit integer, limit on the size of parent sets beyond which the search space is not
further expanded to prevent long runtimes; the limit is 12 by default

alpha numerical significance value in {0,1} for the conditional independence tests in
the PC-stage

gamma tuning parameter which transforms the score by raising it to this power, 1 by
default

verbose logical, if TRUE (default) prints messages on the progress of execution

chainout logical, if TRUE the saved MCMC steps are returned, FALSE by default

scoreout logical, if TRUE the search space from the last plus1 iterations and the corre-
sponding score tables are returned, FALSE by default

cpdag logical, if set to TRUE the equivalence class (CPDAG) found by the PC algo-
rithm is used as a search space, when FALSE (default) the undirected skeleton
used as a search space

mergetype defines which edges are added to the search space at each expansion iteration;
three options are available ’dag’, ’cpdag’, ’skeleton’; ’skeleton’ by default

iterations integer, the number of MCMC steps, the default value is 3.5n2 log n

moveprobs a numerical vector of 4 values in {0,1} corresponding to the probabilities of the
following MCMC moves in the order space:

• exchanging 2 random nodes in the order
• exchanging 2 adjacent nodes in the order
• placing a single node elsewhere in the order
• staying still

stepsave integer, thinning interval for the MCMC chain, indicating the number of steps
between two output iterations, the default is iterations/1000

startorder integer vector of length n, which will be used as the starting order in the MCMC
algorithm, the default order is random
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accum logical, when TRUE at each search step expansion new edges are added to the
current search space; when FALSE (default) the new edges are added to the
starting space

compress logical, if TRUE adjacency matrices representing sampled graphs will be stored
as a sparse Matrix (recommended); TRUE by default

plus1it (optional) integer, a number of iterations of search space expansion; by default
the algorithm iterates until no score improvement can be achieved by further
expanding the search space

startspace (optional) a square matrix, of dimensions equal to the number of nodes, which
defines the search space for the order MCMC in the form of an adjacency ma-
trix; if NULL, the skeleton obtained from the PC-algorithm will be used; if
startspace[i,j] equals to 1 (0) it means that the edge from node i to node j
is included (excluded) from the search space; to include an edge in both direc-
tions, both startspace[i,j] and startspace[j,i] should be 1

blacklist (optional) a square matrix, of dimensions equal to the number of nodes, which
defines edges to exclude from the search space; if blacklist[i,j] equals to 1
it means that the edge from node i to node j is excluded from the search space

• "dag", then edges from maximum scoring DAG are added;
• "cpdag", then the maximum scoring DAG is first converted to the CPDAG,

from which all edges are added to the search space;
• "skeleton", then the maximum scoring DAG is first converted to the skele-

ton, from which all edges are added to the search space

addspace (optional) a square matrix, of dimensions equal to the number of nodes, which
defines the edges, which are added at to the search space only at the first iteration
of iterative seach and do not necessarily stay afterwards; defined in the form of
an adjacency matrix; if addspace[i,j] equals to 1 (0) it means that the edge
from node i to node j is included (excluded) from the search space; to include
an edge in both directions, both addspace[i,j] and addspace[j,i] should be
1

scoretable (optional) object of class scorespace. When not NULL, parameters startspace
and addspace are ignored.

alphainit (optional) numerical, defines alpha that is used by the PC algorithm to learn
initial structure of a DBN, ignored in static case

x object of class ’iterativeMCMC’

... ignored

main name of the graph; "iterative MCMC, DAG scores" by default

xlab name of x-axis; "MCMC step"

ylab name of y-axis; "DAG logscore"

type type of line in the plot; "l" by default

col colour of line in the plot; "blue" by default

object object of class ’iterativeMCMC’
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Value

Object of class iterativeMCMC, which contains log-score trace as well as adjacency matrix of the
maximum scoring DAG, its score and the order score. The output can optionally include DAGs
sampled in MCMC iterations and the score tables. Optional output is regulated by the parameters
chainout and scoreout. See iterativeMCMC class for a detailed class structure.

Note

see also extractor functions getDAG, getTrace, getSpace, getMCMCscore.

Author(s)

Polina Suter, Jack Kuipers

References

P. Suter, J. Kuipers, G. Moffa, N.Beerenwinkel (2023) <doi:10.18637/jss.v105.i09>

Kuipers J, Super P and Moffa G (2020). Efficient Sampling and Structure Learning of Bayesian
Networks. (arXiv:1803.07859v3)

Friedman N and Koller D (2003). A Bayesian approach to structure discovery in bayesian networks.
Machine Learning 50, 95-125.

Kalisch M, Maechler M, Colombo D, Maathuis M and Buehlmann P (2012). Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software 47, 1-26.

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics 42, 1689-1691.

Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition. The
MIT Press.

Examples

## Not run:
Bostonpar<-scoreparameters("bge",Boston)
itfit<-iterativeMCMC(Bostonpar, chainout=TRUE, scoreout=TRUE)
plot(itfit)

## End(Not run)
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iterativeMCMC class iterativeMCMC class structure

Description

The structure of an object of S3 class iterativeMCMC.

Details

An object of class iterativeMCMC is a list containing at least the following components:

• DAG: adjacency matrix of a maximum scoring DAG found/sampled in MCMC.

• CPDAG: adjacency matrix representing equivalence class of a maximum scoring DAG found/sampled
in MCMC.

• score: score of a maximum scoring DAG found/sampled in MCMC.

• maxorder: order of a maximum scoring DAG found/sampled in MCMC.

• maxtrace: a list of maximum score graphs uncovered at each expansion of the search space;
their scores and orders

• info: a list containing information about parameters and results of MCMC

• trace: a list of vectors containing log-scores of sampled DAGs, each element of the list corre-
sponds to a single expansion of a search space

• startspace: adjacency matrix representing the initial core space where MCMC was ran

• endspace: adjacency matrix representing the final core space where MCMC was ran

Optional components:

– traceadd: list which consists of three elements:

* incidence: list containg adjacency matrices of sampled DAGs

* order: list of orders from which the DAGs were sampled

* orderscores: a list of vectors with order log-scores

– scoretable: object of class scorespace class

Author(s)

Polina Suter
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itercomp Performance assessment of iterative MCMC scheme against a known
Bayesian network

Description

This function compute 8 different metrics of structure fit of an object of class iterativeMCMC to the
ground truth DAG (or CPDAG). Object of class iterativeMCMC stores MAP graph at from each
search space expansion step. This function computes structure fit of each of the stored graphs to the
ground truth one. Computed metrics include: TP, FP, TPR, FPR, FPRn, FDR, SHD. See metrics
description in see also compareDAGs.

Usage

itercomp(MCMCmult, truedag, cpdag = TRUE, p = 0.5, trans = TRUE)

## S3 method for class 'itercomp'
plot(x, ..., vars = c("FP", "TP"), type = "b", col = "blue", showit = c())

## S3 method for class 'itercomp'
print(x, ...)

## S3 method for class 'itercomp'
summary(object, ...)

Arguments

MCMCmult an object which of class iterativeMCMC, see also iterativeMCMC)

truedag ground truth DAG which generated the data used in the search procedure; rep-
resented by an object of class graphNEL or an adjacency matrix

cpdag logical, if TRUE (FALSE by default) all DAGs are first converted to their re-
spective equivalence classes (CPDAG)

p threshold such that only edges with a higher posterior probability will be re-
tained in the directed graph summarising the sample of DAGs at each iteration
from MCMCmult if parameter sample set to TRUE

trans logical, for DBNs indicates if model comparions are performed for transition
structure; when trans equals FALSE the comparison is performed for initial
structures of estimated models and the ground truth DBN; for usual BNs the
parameter is disregarded

x object of class ’itercomp’

... ignored

vars a tuple of variables which will be used for ’x’ and ’y’ axes; possible values:
"SHD", "TP", "FP", "TPR", "FPR", "FPRn", "FDR", "score"

type type of line in the plot;"b" by default
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col colour of line in the plot; "blue" by default

showit (optional) vector of integers specifying indices of search expansion iterations to
be labelled; by default no iterations are labelled

object object of class ’itercomp’

Value

an object if class itersim, a matrix with the number of rows equal to the number of expansion
iterations in iterativeMCMC, and 8 columns reporting for the maximally scoring DAG uncovered
at each iteration: the number of true positive edges (’TP’), the number of false positive edges (’FP’),
the true positive rate (’TPR’), the structural Hamming distance (’SHD’), false positive rate (’FPR’),
false discovery rate (’FDR’) and the score of the DAG (‘score’).

Author(s)

Polina Suter

Examples

gsim.score<-scoreparameters("bge", gsim)
## Not run:
MAPestimate<-learnBN(gsim.score,"orderIter")
itercomp(MAPestimate, gsimmat)

## End(Not run)

kirc kirc dataset

Description

Mutation data from TCGA kidney renal clear cell cohort (KIRC). Mutations are picked according
to q-value computed by MutSig2CV (q<0.1) or connected in networks discovered by Kuipers et al.
2018.

Usage

kirc

Format

An object of class matrix (inherits from array) with 476 rows and 70 columns.

Details

Each variable represents a gene. If in sample i gene j contains a mutation, than j-th element in row i
equals 1, and 0 otherwise. The rows are named according to sample names in TCGA. The columns
are named according to gene symbols.
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References

https://portal.gdc.cancer.gov/

http://firebrowse.org/iCoMut/?cohort=kirc

Lawrence, M. et al. Mutational heterogeneity in cancer and the search for new cancer-associated
genes. Nature 499, 214-218 (2013)

kirp kirp dataset

Description

Mutation data from TCGA kidney renal papillary cell cohort (KIRP). Mutations are picked accord-
ing to q-value computed by MutSigCV (q<0.1) or connected in networks discovered by Kuipers et
al. 2018.

Usage

kirp

Format

An object of class matrix (inherits from array) with 282 rows and 70 columns.

Details

Each variable represents a gene. If in sample i gene j contains a mutation, than j-th element in row i
equals 1, and 0 otherwise. The rows are named according to sample names in TCGA. The columns
are named according to gene symbols.

References

https://portal.gdc.cancer.gov/

http://firebrowse.org/iCoMut/?cohort=kirp

Lawrence, M. et al. Mutational heterogeneity in cancer and the search for new cancer-associated
genes. Nature 499, 214-218 (2013)

https://portal.gdc.cancer.gov/
http://firebrowse.org/iCoMut/?cohort=kirc
https://portal.gdc.cancer.gov/
http://firebrowse.org/iCoMut/?cohort=kirp


32 learnBN

learnBN Bayesian network structure learning

Description

This function can be used finding the maximum a posteriori (MAP) DAG using stochastic search
relying on MCMC schemes. Due to the superexponential size of the search space, it must be re-
duced. By default the search space is limited to the skeleton found through the PC algorithm by
means of conditional independence tests (using the functions skeleton and pc from the ‘pcalg’
package [Kalisch et al, 2012]). It is also possible to define an arbitrary search space by inputting an
adjacency matrix, for example estimated by partial correlations or other network algorithms. Or-
der MCMC scheme (algorithm="order") performs the search of a maximum scoring order and
selects a maximum scoring DAG from this order as MAP. To avoid discovering a suboptimal graph
due to the absence of some of the true positive edges in the search space, the function includes the
possibility to expand the default or input search space, by allowing each node in the network to
have one additional parent (plus1="TRUE"). This offers improvements in the learning of Bayesian
networks. The iterative MCMC (algorithm="orderIter") scheme allows for iterative expansions
of the search space. This is useful in cases when the initial search space is poor in a sense that
it contains only a limited number of true positive edges. Iterative expansions of the search space
efficiently solve this issue. However this scheme requires longer runtimes due to the need of run-
ning multiple consecutive MCMC chains. This function is a wrapper for the individual structure
learning functions that implement each of the described algorithms; for details see orderMCMC, and
iterativeMCMC.

Usage

learnBN(
scorepar,
algorithm = c("order", "orderIter"),
chainout = FALSE,
scoreout = ifelse(algorithm == "orderIter", TRUE, FALSE),
alpha = 0.05,
moveprobs = NULL,
iterations = NULL,
stepsave = NULL,
gamma = 1,
verbose = FALSE,
compress = TRUE,
startspace = NULL,
blacklist = NULL,
scoretable = NULL,
startpoint = NULL,
plus1 = TRUE,
iterpar = list(softlimit = 9, mergetype = "skeleton", accum = FALSE, plus1it = NULL,

addspace = NULL, alphainit = NULL),
cpdag = FALSE,
hardlimit = 12
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)

Arguments

scorepar an object of class scoreparameters, containing the data and score parameters,
see constructor function scoreparameters

algorithm MCMC scheme to be used for MAP structure learning; possible options are
"order" (orderMCMC) or "orderIter" (iterativeMCMC)

chainout logical, if TRUE the saved MCMC steps are returned, TRUE by default

scoreout logical, if TRUE the search space and score tables are returned; FALSE by de-
fault for "order", TRUE for "orderIter"

alpha numerical significance value in {0,1} for the conditional independence tests at
the PC algorithm stage

moveprobs a numerical vector of 4 (for "order" and "orderIter" algorithms) or 5 values (for
"partition" algorithm) representing probabilities of the different moves in the
space of order and partitions accordingly. The moves are described in the corre-
sponding algorithm specific functions orderMCMC and partitionMCMC

iterations integer, the number of MCMC steps, the default value is 6n2 log n orderMCMC,
20n2 log n for partitionMCMC and 3.5n2 log n for iterativeMCMC; where n is
the number of nodes in the Bayesian network

stepsave integer, thinning interval for the MCMC chain, indicating the number of steps
between two output iterations, the default is iterations/1000

gamma tuning parameter which transforms the score by raising it to this power, 1 by
default

verbose logical, if TRUE messages about the algorithm’s progress will be printed, FALSE
by default

compress logical, if TRUE adjacency matrices representing sampled graphs will be stored
as a sparse Matrix (recommended); TRUE by default

startspace (optional) a square sparse or ordinary matrix, of dimensions equal to the number
of nodes, which defines the search space for the order MCMC in the form of an
adjacency matrix. If NULL, the skeleton obtained from the PC-algorithm will
be used. If startspace[i,j] equals to 1 (0) it means that the edge from node
i to node j is included (excluded) from the search space. To include an edge in
both directions, both startspace[i,j] and startspace[j,i] should be 1.

blacklist (optional) a square sparse or ordinary matrix, of dimensions equal to the number
of nodes, which defines edges to exclude from the search space. If blacklist[i,j]
equals to 1 it means that the edge from node i to node j is excluded from the
search space.

scoretable (optional) object of class scorespace containing list of score tables calculated
for example by the last iteration of the function iterativeMCMC. When not
NULL, parameter startspace is ignored.

startpoint (optional) integer vector of length n (representing an order when algorithm="order"
or algorithm="orderIter") or an adjacency matrix or sparse adjacency ma-
trix (representing a DAG when algorithm="partition"), which will be used
as the starting point in the MCMC algorithm, the default starting point is random
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plus1 logical, if TRUE (default) the search is performed on the extended search space;
only changable for orderMCMC; for other algorithms is fixed to TRUE

iterpar addition list of parameters for the MCMC scheme implemeting iterative expan-
sions of the search space; for more details see iterativeMCMC; list(posterior =
0.5, softlimit = 9, mergetype = "skeleton", accum = FALSE, plus1it = NULL,
addspace = NULL, alphainit = NULL)

cpdag logical, if TRUE the CPDAG returned by the PC algorithm will be used as the
search space, if FALSE (default) the full undirected skeleton will be used as the
search space

hardlimit integer, limit on the size of parent sets in the search space; by default 14 when
MAP=TRUE and 20 when MAP=FALSE

Value

Depending on the value or the parameter algorithm returns an object of class orderMCMC or
iterativeMCMC which contains log-score trace of sampled DAGs as well as adjacency matrix of
the maximum scoring DAG(s), its score and the order or partition score. The output can optionally
include DAGs sampled in MCMC iterations and the score tables. Optional output is regulated by the
parameters chainout and scoreout. See orderMCMC class, iterativeMCMC class for a detailed
description of the classes’ structures.

Note

see also extractor functions getDAG, getTrace, getSpace, getMCMCscore.

Author(s)

Polina Suter, Jack Kuipers, the code partly derived from the order MCMC implementation from
Kuipers J, Moffa G (2017) <doi:10.1080/01621459.2015.1133426>

References

P. Suter, J. Kuipers, G. Moffa, N.Beerenwinkel (2023) <doi:10.18637/jss.v105.i09>

Friedman N and Koller D (2003). A Bayesian approach to structure discovery in bayesian networks.
Machine Learning 50, 95-125.

Kalisch M, Maechler M, Colombo D, Maathuis M and Buehlmann P (2012). Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software 47, 1-26.

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian acyclic
graphical models. The Annals of Statistics 42, 1689-1691.

Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition. The
MIT Press.
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Examples

## Not run:
myScore<-scoreparameters("bge",Boston)
mapfit<-learnBN(myScore,"orderIter")
summary(mapfit)
plot(mapfit)

## End(Not run)

m2graph Deriving a graph from an adjacancy matrix

Description

This function derives a graph object corresponding to an adjacency matrix

Usage

m2graph(adj, nodes = NULL)

Arguments

adj square adjacency matrix with elements in {0,1}, representing a graph

nodes (optional) labels of the nodes, c(1:n) are used by default

Value

object of class graphNEL (package ‘graph’); if element adj[i,j] equals 1, then there is a directed
edge from node i to node j in the graph, and no edge otherwise

Examples

m2graph(Asiamat)

mapping mapping dataset

Description

A data frame containing mapping between names of genes used in kirp/kirc data sets and names
used in STRING interactions list (see interactions).

Usage

mapping
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Format

A data frame with 46 rows and two columns:

• queryItem character, name used for structure learning

• preferredName character, name used in STRING interactions data set

Source

https://string-db.org/

modelp Estimating a graph corresponding to a posterior probability threshold

Description

This function constructs a directed graph (not necessarily acyclic) including all edges with a poste-
rior probability above a certain threshold. The posterior probability is evaluated as the Monte Carlo
estimate from a sample of DAGs obtained via an MCMC scheme.

Usage

modelp(MCMCchain, p, pdag = FALSE, burnin = 0.2)

Arguments

MCMCchain object of class partitionMCMC, orderMCMC or iterativeMCMC, representing the
output of structure sampling function partitionMCMC or orderMCMC (the latter
when parameter chainout=TRUE;

p threshold such that only edges with a higher posterior probability will be re-
tained in the directed graph summarising the sample of DAGs

pdag logical, if TRUE (FALSE by default) all DAGs in the MCMCchain are first
converted to equivalence class (CPDAG) before the averaging

burnin number between 0 and 1, indicates the percentage of the samples which will be
the discarded as ‘burn-in’ of the MCMC chain; the rest of the samples will be
used to calculate the posterior probabilities; 0.2 by default

Value

a square matrix with dimensions equal to the number of variables representing the adjacency matrix
of the directed graph summarising the sample of DAGs

Author(s)

Polina Suter

https://string-db.org/
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Examples

Bostonscore<-scoreparameters("bge", Boston)
## Not run:
partfit<-sampleBN(Bostonscore, "partition")
hdag<-modelp(partfit, p=0.9)

## End(Not run)

orderMCMC Structure learning with the order MCMC algorithm

Description

This function implements the order MCMC algorithm for the structure learning of Bayesian net-
works. This function can be used for MAP discovery and for sampling from the posterior distribu-
tion of DAGs given the data. Due to the superexponential size of the search space as the number of
nodes increases, the MCMC search is performed on a reduced search space. By default the search
space is limited to the skeleton found through the PC algorithm by means of conditional indepen-
dence tests (using the functions skeleton and pc from the ‘pcalg’ package [Kalisch et al, 2012]).
It is also possible to define an arbitrary search space by inputting an adjacency matrix, for example
estimated by partial correlations or other network algorithms. Also implemented is the possibil-
ity to expand the default or input search space, by allowing each node in the network to have one
additional parent. This offers improvements in the learning and sampling of Bayesian networks.

Usage

orderMCMC(
scorepar,
MAP = TRUE,
plus1 = TRUE,
chainout = FALSE,
scoreout = FALSE,
moveprobs = NULL,
iterations = NULL,
stepsave = NULL,
alpha = 0.05,
cpdag = FALSE,
gamma = 1,
hardlimit = ifelse(plus1, 14, 20),
verbose = FALSE,
compress = TRUE,
startspace = NULL,
blacklist = NULL,
startorder = NULL,
scoretable = NULL

)
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## S3 method for class 'orderMCMC'
plot(
x,
...,
burnin = 0.2,
main = "DAG logscores",
xlab = "iteration",
ylab = "logscore",
type = "l",
col = "#0c2c84"

)

## S3 method for class 'orderMCMC'
print(x, ...)

## S3 method for class 'orderMCMC'
summary(object, ...)

Arguments

scorepar an object of class scoreparameters, containing the data and score parameters,
see constructor function scoreparameters

MAP logical, if TRUE (default) the search targets the MAP DAG (a DAG with max-
imum score), if FALSE at each MCMC step a DAG is sampled from the order
proportionally to its score

plus1 logical, if TRUE (default) the search is performed on the extended search space

chainout logical, if TRUE the saved MCMC steps are returned, TRUE by default

scoreout logical, if TRUE the search space and score tables are returned, FALSE by de-
fault

moveprobs a numerical vector of 4 values in {0,1} corresponding to the probabilities of the
following MCMC moves in the order space

• exchanging 2 random nodes in the order
• exchanging 2 adjacent nodes in the order
• placing a single node elsewhere in the order
• staying still

iterations integer, the number of MCMC steps, the default value is 6n2 log n

stepsave integer, thinning interval for the MCMC chain, indicating the number of steps
between two output iterations, the default is iterations/1000

alpha numerical significance value in {0,1} for the conditional independence tests at
the PC algorithm stage

cpdag logical, if TRUE the CPDAG returned by the PC algorithm will be used as the
search space, if FALSE (default) the full undirected skeleton will be used as the
search space

gamma tuning parameter which transforms the score by raising it to this power, 1 by
default
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hardlimit integer, limit on the size of parent sets in the search space; by default 14 when
MAP=TRUE and 20 when MAP=FALSE

verbose logical, if TRUE messages about the algorithm’s progress will be printed, FALSE
by default

compress logical, if TRUE adjacency matrices representing sampled graphs will be stored
as a sparse Matrix (recommended); TRUE by default

startspace (optional) a square matrix, of dimensions equal to the number of nodes, which
defines the search space for the order MCMC in the form of an adjacency ma-
trix. If NULL, the skeleton obtained from the PC-algorithm will be used. If
startspace[i,j] equals to 1 (0) it means that the edge from node i to node j
is included (excluded) from the search space. To include an edge in both direc-
tions, both startspace[i,j] and startspace[j,i] should be 1.

blacklist (optional) a square matrix, of dimensions equal to the number of nodes, which
defines edges to exclude from the search space. If blacklist[i,j] equals to 1
it means that the edge from node i to node j is excluded from the search space.

startorder (optional) integer vector of length n, which will be used as the starting order in
the MCMC algorithm, the default order is random

scoretable (optional) object of class scorespace containing list of score tables calculated
for example by the last iteration of the function iterativeMCMC. When not
NULL, parameter startspace is ignored.

x object of class ’orderMCMC’

... ignored

burnin number between 0 and 1, indicates the percentage of the samples which will be
discarded as ‘burn-in’ of the MCMC chain; the rest of the samples will be used
to calculate the posterior probabilities; 0.2 by default

main name of the graph; "DAG logscores" by default

xlab name of x-axis; "iteration"

ylab name of y-axis; "logscore"

type type of line in the plot; "l" by default

col colour of line in the plot; "#0c2c84" by default

object object of class ’orderMCMC’

Value

Object of class orderMCMC, which contains log-score trace of sampled DAGs as well as adjacency
matrix of the maximum scoring DAG, its score and the order score. The output can optionally
include DAGs sampled in MCMC iterations and the score tables. Optional output is regulated by
the parameters chainout and scoreout. See orderMCMC class for a detailed class structure.

Note

see also extractor functions getDAG, getTrace, getSpace, getMCMCscore.
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Author(s)

Polina Suter, Jack Kuipers, the code partly derived from the order MCMC implementation from
Kuipers J, Moffa G (2017) <doi:10.1080/01621459.2015.1133426>

References

P. Suter, J. Kuipers, G. Moffa, N.Beerenwinkel (2023) <doi:10.18637/jss.v105.i09>

Friedman N and Koller D (2003). A Bayesian approach to structure discovery in bayesian networks.
Machine Learning 50, 95-125.

Kalisch M, Maechler M, Colombo D, Maathuis M and Buehlmann P (2012). Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software 47, 1-26.

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian acyclic
graphical models. The Annals of Statistics 42, 1689-1691.

Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition. The
MIT Press.

Examples

## Not run:
#find a MAP DAG with search space defined by PC and plus1 neighbourhood
Bostonscore<-scoreparameters("bge",Boston)
#estimate MAP DAG
orderMAPfit<-orderMCMC(Bostonscore)
summary(orderMAPfit)
#sample DAGs from the posterior distribution
ordersamplefit<-orderMCMC(Bostonscore,MAP=FALSE,chainout=TRUE)
plot(ordersamplefit)

## End(Not run)

orderMCMC class orderMCMC class structure

Description

The structure of an object of S3 class orderMCMC.

Details

An object of class orderMCMC is a list containing at least the following components:

• DAG: adjacency matrix of a maximum scoring DAG found/sampled in the MCMC scheme.

• CPDAG: adjacency matrix representing equivalence class of a maximum scoring DAG found/sampled
in MCMC.
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• score: score of a maximum scoring DAG found/sampled in MCMC.

• maxorder: order of a maximum scoring DAG found/sampled in MCMC.

• info: a list containing information about parameters and results of MCMC.

• trace: a vector containing log-scores of sampled DAGs.
Optional components:

– traceadd: list which consists of three or four elements (depending on MCMC scheme
used for sampling):

* incidence: list containg adjacency matrices of sampled DAGs

* order: list of orders from which the DAGs were sampled

* orderscores: order log-scores
– scoretable: object of class scorespace class

Author(s)

Polina Suter

partitionMCMC DAG structure sampling with partition MCMC

Description

This function implements the partition MCMC algorithm for the structure learning of Bayesian net-
works. This procedure provides an unbiased sample from the posterior distribution of DAGs given
the data. The search space can be defined either by a preliminary run of the function iterativeMCMC
or by a given adjacency matrix (which can be the full matrix with zero on the diagonal, to consider
the entire space of DAGs, feasible only for a limited number of nodes).

Usage

partitionMCMC(
scorepar,
moveprobs = NULL,
iterations = NULL,
stepsave = NULL,
alpha = 0.05,
gamma = 1,
verbose = FALSE,
scoreout = FALSE,
compress = TRUE,
startspace = NULL,
blacklist = NULL,
scoretable = NULL,
startDAG = NULL

)



42 partitionMCMC

## S3 method for class 'partitionMCMC'
plot(
x,
...,
burnin = 0.2,
main = "DAG logscores",
xlab = "iteration",
ylab = "logscore",
type = "l",
col = "#0c2c84"

)

## S3 method for class 'partitionMCMC'
print(x, ...)

## S3 method for class 'partitionMCMC'
summary(object, ...)

Arguments

scorepar an object of class scoreparameters, containing the data and scoring parame-
ters; see constructor function scoreparameters.

moveprobs (optional) a numerical vector of 5 values in {0,1} corresponding to the follow-
ing MCMC move probabilities in the space of partitions:

• swap any two elements from different partition elements
• swap any two elements in adjacent partition elements
• split a partition element or join one
• move a single node into another partition element or into a new one
• stay still

iterations integer, the number of MCMC steps, the default value is 20n2 log n

stepsave integer, thinning interval for the MCMC chain, indicating the number of steps
between two output iterations, the default is iterations/1000

alpha numerical significance value in {0,1} for the conditional independence tests at
the PC algorithm stage

gamma tuning parameter which transforms the score by raising it to this power, 1 by
default

verbose logical, if set to TRUE (default) messages about progress will be printed

scoreout logical, if TRUE the search space and score tables are returned, FALSE by de-
fault

compress logical, if TRUE adjacency matrices representing sampled graphs will be stored
as a sparse Matrix (recommended); TRUE by default

startspace (optional) a square matrix, of dimensions equal to the number of nodes, which
defines the search space for the order MCMC in the form of an adjacency ma-
trix; if NULL, the skeleton obtained from the PC-algorithm will be used. If
startspace[i,j] equals to 1 (0) it means that the edge from node i to node j
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is included (excluded) from the search space. To include an edge in both direc-
tions, both startspace[i,j] and startspace[j,i] should be 1.

blacklist (optional) a square matrix, of dimensions equal to the number of nodes, which
defines edges to exclude from the search space; if blacklist[i,j]=1 it means
that the edge from node i to node j is excluded from the search space

scoretable (optional) object of class scorespace containing list of score tables calculated
for example by the last iteration of the function iterativeMCMC. When not
NULL, parameter startspace is ignored

startDAG (optional) an adjacency matrix of dimensions equal to the number of nodes,
representing a DAG in the search space defined by startspace. If startspace is
defined but startDAG is not, an empty DAG will be used by default

x object of class ’partitionMCMC’

... ignored

burnin number between 0 and 1, indicates the percentage of the samples which will be
discarded as ‘burn-in’ of the MCMC chain; the rest of the samples will be used
to calculate the posterior probabilities; 0.2 by default

main name of the graph; "DAG logscores" by default

xlab name of x-axis; "iteration"

ylab name of y-axis; "logscore"

type type of line in the plot; "l" by default

col colour of line in the plot; "#0c2c84" by default

object object of class ’partitionMCMC’

Value

Object of class partitionMCMC, which contains log-score trace as well as adjacency matrix of the
maximum scoring DAG, its score and the order score. Additionally, returns all sampled DAGs
(represented by their adjacency matrices), their scores, orders and partitions See partitionMCMC
class.

Note

see also extractor functions getDAG, getTrace, getSpace, getMCMCscore.

Author(s)

Jack Kuipers, Polina Suter, the code partly derived from the partition MCMC implementation from
Kuipers J, Moffa G (2017) <doi:10.1080/01621459.2015.1133426>

References

P. Suter, J. Kuipers, G. Moffa, N.Beerenwinkel (2023) <doi:10.18637/jss.v105.i09>

Kuipers J and Moffa G (2017). Partition MCMC for inference on acyclic digraphs. Journal of the
American Statistical Association 112, 282-299.
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Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Heckerman D and Geiger D (1995). Learning Bayesian networks: A unification for discrete and
Gaussian domains. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 274-284.

Kalisch M, Maechler M, Colombo D, Maathuis M and Buehlmann P (2012). Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software 47, 1-26.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics 42, 1689-1691.

Examples

## Not run:
myScore<-scoreparameters("bge", Boston)
partfit<-partitionMCMC(myScore)
plot(partfit)

## End(Not run)

partitionMCMC class partitionMCMC class structure

Description

The structure of an object of S3 class partitionMCMC.

Details

An object of class partitionMCMC is a list containing at least the following components:

• DAG: adjacency matrix of a maximum scoring DAG found/sampled in the MCMC scheme.

• CPDAG: adjacency matrix representing equivalence class of a maximum scoring DAG found/sampled
in MCMC.

• score: score of a maximum scoring DAG found/sampled in MCMC.

• maxorder: order of a maximum scoring DAG found/sampled in MCMC.

• info: a list containing information about parameters and results of MCMC.

• trace: a vector containing log-scores of sampled DAGs.
Optional components:

– traceadd: list which consists of three or four elements (depending on MCMC scheme
used for sampling):

* incidence: list containg adjacency matrices of sampled DAGs

* order: list of orders from which the DAGs were sampled

* partition: list of partition from which the DAGs were sampled

* partitionscores: partition log-scores
– scoretable: object of class scorespace class
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Author(s)

Polina Suter

plot2in1 Highlighting similarities between two graphs

Description

This function plots nodes and edges from two graphs in one and indicates similarities between these
graphs.

Usage

plot2in1(graph1, graph2, name1 = NULL, name2 = NULL, bidir = FALSE, ...)

Arguments

graph1 binary adjacency matrix of a graph

graph2 binary adjacency matrix of a graph, column names should coincide with column
names of ’graph1’

name1 character, custom name for ’graph1’; when NULL no legend will be plotted

name2 character, custom name for ’graph2’

bidir logical, defines if arrows of bidirected edges are drawn; FALSE by defauls.

... optional parameters passed to Rgraphviz plotting functions e.g. main, fontsize

Value

plots the graph which includes nodes and edges two graphs; nodes which are connected to at least
one other node in both graphs are plotted only once and coloured orange, edges which are shared
by two graphs are coloured orange; all other nodes and edges a plotted once for each ’graph1’ and
’graph2’ and coloured blue and green accordingly.

Author(s)

Polina Suter
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plotDBN Plotting a DBN

Description

This function can be used for plotting initial and transition structures of a dynamic Bayesian net-
work.

Usage

plotDBN(DBN, struct = c("init", "trans"), b = 0, shape = "circle", ...)

Arguments

DBN binary matrix (or a graph object) representing a 2-step DBN (compact or un-
rolled)

struct option used to determine if the initial or the transition structure should be plot-
ted; acceptable values are init or trans

b number of static variables in the DBN, 0 by default; note that for function to
work correctly all static variables have to be in the first b columns of the matrix

shape string, defining the shape of the box around each node; possible values are circle,
ellipse, box

... optional parameters passed to Rgraphviz plotting functions e.g. main, fontsize

Value

plots the DBN defined by the adjacency matrix ’DBN’ and number of static and dynamic variables.
When ’struct’ equals "trans" the transition structure is plotted, otherwise initial structure is plotted

Author(s)

Polina Suter

Examples

plotDBN(DBNmat, "init", b=3)
plotDBN(DBNmat, "trans", b=3)
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plotdiffs Plotting difference between two graphs

Description

This function plots edges from two graphs in one and indicates similarities and differences between
these graphs. It is also possible to use this function for plotting mistakes in estimated graph when
the ground truth graph is known.

Usage

plotdiffs(
graph1,
graph2,
estimated = TRUE,
name1 = "graph1",
name2 = "graph2",
clusters = NULL,
...

)

Arguments

graph1 object of class graphNEL or its adjacency matrix

graph2 object of class graphNEL or its adjacency matrix

estimated logical, indicates if graph1 is estimated graph and graph2 is ground truth DAG,
TRUE by default; this affects the legend and colouring of the edges

name1 character, custom name for ’graph1’

name2 character, custom name for ’graph2’

clusters (optional) a list of nodes to be represented on the graph as clusters

... optional parameters passed to Rgraphviz plotting functions e.g. main, fontsize

Value

plots the graph which includes edges from graph1 and graph2; edges which are different in graph1
compared to graph2 are coloured according to the type of a difference

Author(s)

Polina Suter
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Examples

Asiascore<-scoreparameters("bde",Asia)
Asiamap<-orderMCMC(Asiascore)
plotdiffs(Asiamap$DAG,Asiamat)
Asiacp<-pcalg::dag2cpdag(m2graph(Asiamat))
mapcp<-pcalg::dag2cpdag(m2graph(Asiamap$DAG))
plotdiffs(mapcp,Asiacp)

plotdiffsDBN Plotting difference between two DBNs

Description

This function plots an estimated DBN such that the edges which are different to the ground truth
DBN are highlighted.

Usage

plotdiffsDBN(
eDBN,
trueDBN,
struct = c("init", "trans"),
b = 0,
showcl = TRUE,
orientation = "TB",
...

)

Arguments

eDBN object of class graphNEL (or its adjacency matrix), representing estimated struc-
ture (not necessarily acyclic) to be compared to the ground truth graph

trueDBN object of class graphNEL (or its adjacency matrix), representing the ground truth
structure (not necessarily acyclic)

struct option used to determine if the initial or the transition structure should be plot-
ted; accaptable values are init or trans

b number of static variables in one time slice of a DBN; note that for function to
work correctly all static variables have to be in the first b columns of the matrix

showcl logical, when TRUE (default) nodes are shown in clusters according to the time
slice the belong to

orientation orientation of the graph layout, possible options are ’TB’ (top-bottom) and ’LR’
(left-right)

... optional parameters passed to Rgraphviz plotting functions e.g. main, fontsize
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Value

plots the graph highlights differences between ’eDBN’ (estimated DBN) and ’trueDBN’ (ground
truth); edges which are different in ’eDBN’ compared to ’trueDBN’ are coloured according to the
type of a difference: false-positive, false-negative and error in direction.

Author(s)

Polina Suter

Examples

dbnscore<-scoreparameters("bge",DBNdata,
dbnpar = list(samestruct=TRUE, slices=5, b=3),
DBN=TRUE)
## Not run:
orderDBNfit<-learnBN(dbnscore,algorithm="order")
iterDBNfit<-learnBN(dbnscore,algorithm="orderIter")
plotdiffsDBN(getDAG(orderDBNfit),DBNmat,struct="trans",b=3)
plotdiffsDBN(getDAG(iterDBNfit),DBNmat,struct="trans",b=3)

## End(Not run)

plotpcor Comparing posterior probabilitites of single edges

Description

This function can be used to compare posterior probabilities of edges in a graph

Usage

plotpcor(pmat, highlight = 0.3, printedges = FALSE, cut = 0.05, ...)

Arguments

pmat a list of square matrices, representing posterior probabilities of single edges in a
Bayesian network; see edgep for obtaining such a matrix from a single MCMC
run

highlight numeric, defines maximum acceptable difference between posterior probabili-
ties of an edge in two samples; points corresponding to higher differences are
highlighted in red

printedges when TRUE the function also returns squared correlation and RMSE of posterior
probabilities higher than the value defined by the argument ’cut’ as well as the
list of all edges whose posterior probabilities in the first two matrices differ more
than ’highlight’; FALSE by default

cut numeric value corresponding to a minimum posterior probabilitity which is
included into calculation of squared correlation and MSE when ’printedges’
equals TRUE
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... prameters passed further to the plot function (e.g. xlab, ylab, main) in case
when the length of pmat equals 2

Value

plots concordance of posterior probabilitites of single edges based on several matrices (minimum
2 matrices); highlights the edges whose posterior probabilities in a pair of matrices differ by more
than ’highlight’; when ’printedges’ set to TRUE, the function returns also squared correlation and
RMSE of posterior probabilities higher than the value defined by the argument ’cut’ as well as the
list of all edges whose posterior probabilities in the first two matrices differ by more than ’highlight’.

Author(s)

Polina Suter

Examples

Asiascore<-scoreparameters("bde", Asia)
## Not run:
orderfit<-list()
orderfit[[1]]<-sampleBN(Asiascore,algorithm="order")
orderfit[[2]]<-sampleBN(Asiascore,algorithm="order")
orderfit[[3]]<-sampleBN(Asiascore,algorithm="order")
pedges<-lapply(orderfit,edgep,pdag=TRUE)
plotpcor(pedges, xlab="run1", ylab="run2",printedges=TRUE)

## End(Not run)

plotpedges Plotting posterior probabilities of single edges

Description

This function plots posterior probabilities of all possible edges in the graph as a function of MCMC
iterations. It can be used for convergence diagnostics of MCMC sampling algorithms order MCMC
and partition MCMC.

Usage

plotpedges(
MCMCtrace,
cutoff = 0.2,
pdag = FALSE,
onlyedges = NULL,
highlight = NULL,
...

)
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Arguments

MCMCtrace an object of class MCMCres

cutoff number representing a threshold of posterior probability below which lines will
not be plotted

pdag logical, when true DAGs in a sample will be first coverted to CPDAGs

onlyedges (optional) binary matrix, only edges corresponding to entries which equal 1 will
be plotted

highlight (optional) binary matrix, edges corresponding to entries which equal 1 are high-
lighted with "red"

... (optional) parameters passed to the plot function

Value

plots posterior probabilities of edges in the graph as a function of MCMC iterations

Author(s)

Polina Suter

Examples

score100<-scoreparameters("bde", Asia[1:100,])
orderfit100<-orderMCMC(score100,plus1=TRUE,chainout=TRUE)
## Not run:
score5000<-scoreparameters("bde", Asia)
orderfit5000<-orderMCMC(score5000,plus1=TRUE,chainout=TRUE)
plotpedges(orderfit100, pdag=TRUE)
plotpedges(orderfit5000, pdag=TRUE)

## End(Not run)

sampleBN Bayesian network structure sampling from the posterior distribution

Description

This function can be used for structure sampling using three different MCMC schemes. Order
MCMC scheme (algorithm="order") is the most computationally efficient however it imposes
a non-uniform prior in the space of DAGs. Partition MCMC (algorithm="partition") is less
computationally efficient and requires more iterations to reach convergence, however it implements
sampling using a uniform prior in the space of DAGs. Due to the superexponential size of the
search space as the number of nodes increases, the MCMC search is performed on a reduced search
space. By default the search space is limited to the skeleton found through the PC algorithm by
means of conditional independence tests (using the functions skeleton and pc from the ‘pcalg’
package [Kalisch et al, 2012]). It is also possible to define an arbitrary search space by inputting
an adjacency matrix, for example estimated by partial correlations or other network algorithms.
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Also implemented is the possibility to expand the default or input search space, by allowing each
node in the network to have one additional parent. This offers improvements in the learning and
sampling of Bayesian networks. The iterative MCMC scheme (algorithm="orderIter") allows
for iterative expansions of the search space. This is useful in cases when the initial search space is
poor in a sense that it contains only a limited number of true positive edges. Iterative expansions
of the search space efficiently solve this issue. However this scheme requires longer runtimes due
to the need of running multiple consecutive MCMC chains. This function is a wrapper for the
three individual structure learning and sampling functions that implement each of the described
algorithms; for details see orderMCMC, partitionMCMC,iterativeMCMC.

Usage

sampleBN(
scorepar,
algorithm = c("order", "orderIter", "partition"),
chainout = TRUE,
scoreout = FALSE,
alpha = 0.05,
moveprobs = NULL,
iterations = NULL,
stepsave = NULL,
gamma = 1,
verbose = FALSE,
compress = TRUE,
startspace = NULL,
blacklist = NULL,
scoretable = NULL,
startpoint = NULL,
plus1 = TRUE,
cpdag = FALSE,
hardlimit = 12,
iterpar = list(posterior = 0.5, softlimit = 9, mergetype = "skeleton", accum = FALSE,

plus1it = NULL, addspace = NULL, alphainit = NULL)
)

Arguments

scorepar an object of class scoreparameters, containing the data and score parameters,
see constructor function scoreparameters

algorithm MCMC scheme to be used for sampling from posterior distribution; possible
options are "order" (orderMCMC), "orderIter" (iterativeMCMC) or "partition"
(partitionMCMC)

chainout logical, if TRUE the saved MCMC steps are returned, TRUE by default

scoreout logical, if TRUE the search space and score tables are returned, FALSE by de-
fault

alpha numerical significance value in {0,1} for the conditional independence tests at
the PC algorithm stage
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moveprobs a numerical vector of 4 (for "order" and "orderIter" algorithms) or 5 values (for
"partition" algorithm) representing probabilities of the different moves in the
space of order and partitions accordingly. The moves are described in the corre-
sponding algorithm specific functions orderMCMC and partitionMCMC

iterations integer, the number of MCMC steps, the default value is 6n2 log n orderMCMC,
20n2 log n for partitionMCMC and 3.5n2 log n for iterativeMCMC; where n is
the number of nodes in the Bayesian network

stepsave integer, thinning interval for the MCMC chain, indicating the number of steps
between two output iterations, the default is iterations/1000

gamma tuning parameter which transforms the score by raising it to this power, 1 by
default

verbose logical, if TRUE messages about the algorithm’s progress will be printed, FALSE
by default

compress logical, if TRUE adjacency matrices representing sampled graphs will be stored
as a sparse Matrix (recommended); TRUE by default

startspace (optional) a square sparse or ordinary matrix, of dimensions equal to the number
of nodes, which defines the search space for the order MCMC in the form of an
adjacency matrix. If NULL, the skeleton obtained from the PC-algorithm will
be used. If startspace[i,j] equals to 1 (0) it means that the edge from node
i to node j is included (excluded) from the search space. To include an edge in
both directions, both startspace[i,j] and startspace[j,i] should be 1.

blacklist (optional) a square sparse or ordinary matrix, of dimensions equal to the number
of nodes, which defines edges to exclude from the search space. If blacklist[i,j]
equals to 1 it means that the edge from node i to node j is excluded from the
search space.

scoretable (optional) object of class scorespace containing list of score tables calculated
for example by the last iteration of the function iterativeMCMC. When not
NULL, parameter startspace is ignored.

startpoint (optional) integer vector of length n (representing an order when algorithm="order"
or algorithm="orderIter") or an adjacency matrix or sparse adjacency ma-
trix (representing a DAG when algorithm="partition"), which will be used
as the starting point in the MCMC algorithm, the default starting point is random

plus1 logical, if TRUE (default) the search is performed on the extended search space;
only changable for orderMCMC; for other algorithms is fixed to TRUE

cpdag logical, if TRUE the CPDAG returned by the PC algorithm will be used as the
search space, if FALSE (default) the full undirected skeleton will be used as the
search space

hardlimit integer, limit on the size of parent sets in the search space;

iterpar addition list of parameters for the MCMC scheme implemeting iterative expan-
sions of the search space; for more details see iterativeMCMC; list(posterior =
0.5, softlimit = 9, mergetype = "skeleton", accum = FALSE, plus1it = NULL,
addspace = NULL, alphainit = NULL)
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Value

Depending on the value or the parameter algorithm returns an object of class orderMCMC, partitionMCMC
or iterativeMCMC which contains log-score trace of sampled DAGs as well as adjacency matrix
of the maximum scoring DAG(s), its score and the order or partition score. The output can op-
tionally include DAGs sampled in MCMC iterations and the score tables. Optional output is regu-
lated by the parameters chainout and scoreout. See orderMCMC class, partitionMCMC class,
iterativeMCMC class for a detailed description of the classes’ structures.

Note

see also extractor functions getDAG, getTrace, getSpace, getMCMCscore.

Author(s)

Polina Suter, Jack Kuipers, the code partly derived from the order MCMC implementation from
Kuipers J, Moffa G (2017) <doi:10.1080/01621459.2015.1133426>

References

P. Suter, J. Kuipers, G. Moffa, N.Beerenwinkel (2023) <doi:10.18637/jss.v105.i09>

Friedman N and Koller D (2003). A Bayesian approach to structure discovery in bayesian networks.
Machine Learning 50, 95-125.

Kalisch M, Maechler M, Colombo D, Maathuis M and Buehlmann P (2012). Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software 47, 1-26.

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian acyclic
graphical models. The Annals of Statistics 42, 1689-1691.

Spirtes P, Glymour C and Scheines R (2000). Causation, Prediction, and Search, 2nd edition. The
MIT Press.

Examples

## Not run:
Asiascore <- scoreparameters("bde", Asia)
iterativefit <- learnBN(Asiascore, algorithm = "orderIter")
orderfit <- sampleBN(Asiascore, scoretable = iterativefit)

myScore<-scoreparameters("bge",Boston)
MCMCchains<-list()
MCMCchains[[1]]<-sampleBN(myScore,"partition")
MCMCchains[[2]]<-sampleBN(myScore,"partition")
edge_posterior<-lapply(MCMCchains,edgep,pdag=TRUE)
plotpcor(edge_posterior)

## End(Not run)
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samplecomp Performance assessment of sampling algorithms against a known
Bayesian network

Description

This function compute 8 different metrics of structure fit of an object of classes orderMCMC and
partitionMCMC to the ground truth DAG (or CPDAG). First posterior probabilities of single edges
are calculated based on a sample stores in the object of class orderMCMC or partitionMCMC. This
function computes structure fit of each of the consensus graphs to the ground truth one based on a
defined range of posterior thresholds. Computed metrics include: TP, FP, TPR, FPR, FPRn, FDR,
SHD. See metrics description in see also compareDAGs.

Usage

samplecomp(
MCMCchain,
truedag,
p = c(0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2),
pdag = TRUE,
burnin = 0.2,
trans = TRUE

)

## S3 method for class 'samplecomp'
plot(x, ..., vars = c("FP", "TP"), type = "b", col = "blue", showp = NULL)

## S3 method for class 'samplecomp'
print(x, ...)

## S3 method for class 'samplecomp'
summary(object, ...)

Arguments

MCMCchain an object of class partitionMCMC or orderMCMC, representing the output of
structure sampling function partitionMCMC or orderMCMC (the latter when pa-
rameter chainout=TRUE;

truedag ground truth DAG which generated the data used in the search procedure; rep-
resented by an object of class graphNEL

p a vector of numeric values between 0 and 1, defining posterior probabilities ac-
cording to which the edges of assessed structures are drawn, please note very low
barriers can lead to very dense structures; by default p = c(0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2)

pdag logical, if TRUE (default) all DAGs in the MCMCchain are first converted to
equivalence class (CPDAG) before the averaging
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burnin number between 0 and 1, indicates the percentage of the samples which will be
the discarded as ‘burn-in’ of the MCMC chain; the rest of the samples will be
used to calculate the posterior probabilities; 0.2 by default

trans logical, for DBNs indicates if model comparions are performed for transition
structure; when trans equals FALSE the comparison is performed for initial
structures of estimated models and the ground truth DBN; for usual BNs the
parameter is disregarded

x object of class ’samplecomp’

... ignored

vars a tuple of variables which will be used for ’x’ and ’y’ axes; possible values:
"SHD", "TP", "FP", "TPR", "FPR", "FPRn", "FDR"

type type of line in the plot; "b" by default

col colour of line in the plotl; "blue" by default

showp logical, defines if points are labelled with the posterior threshold corresponding
to the assessed model

object object of class ’samplecomp’

Value

an object if class samplesim, a matrix with the number of rows equal to the number of elements in
’p’, and 8 columns reporting for the consensus graphss (corresponfing to each of the values in ’p’)
the number of true positive edges (’TP’), the number of false positive edges (’FP’), the number of
false negative edges (’FN’), the true positive rate (’TPR’), the structural Hamming distance (’SHD’),
false positive rate (’FPR’), false discovery rate (’FDR’) and false positive rate normalized by TP+FN
(’FPRn’).

Author(s)

Polina Suter

Examples

gsim.score<-scoreparameters("bge", gsim)
## Not run:
MAPestimate<-learnBN(gsim.score,"orderIter",scoreout=TRUE)
ordersample<-sampleBN(gsim.score, "order", scoretable=getSpace(MAPestimate))
samplecomp(ordersample, gsimmat)

## End(Not run)
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scoreagainstDAG Calculating the score of a sample against a DAG

Description

This function calculates the score of a given sample against a DAG represented by its incidence
matrix.

Usage

scoreagainstDAG(
scorepar,
incidence,
datatoscore = NULL,
marginalise = FALSE,
onlymain = FALSE,
bdecatCvec = NULL

)

Arguments

scorepar an object of class scoreparameters; see constructor function scoreparameters

incidence a square matrix of dimensions equal to the number of variables with entries in
{0,1}, representing the adjacency matrix of the DAG against which the score is
calculated

datatoscore (optional) a matrix (vector) containing binary (for BDe score) or continuous (for
the BGe score) observations (or just one observation) to be scored; the number
of columns should be equal to the number of variables in the Bayesian network,
the number of rows should be equal to the number of observations; by default
all data from scorepar parameter is used

marginalise (optional for continuous data) defines, whether to use the posterior mean for
scoring (default) or to marginalise over the posterior distribution (more compu-
tationally costly)

onlymain (optional), defines the the score is computed for nodes excluding ’bgnodes’;
FALSE by default

bdecatCvec (optional for categorical data)

Value

the log of the BDe/BGe score of given observations against a DAG

Author(s)

Jack Kuipers, Polina Suter
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References

Heckerman D and Geiger D, (1995). Learning Bayesian networks: A unification for discrete and
Gaussian domains. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 274-284,
1995.

Examples

Asiascore<-scoreparameters("bde", Asia[1:100,]) #we wish to score only first 100 observations
scoreagainstDAG(Asiascore, Asiamat)

scoreagainstDBN Score against DBN

Description

Scoring observations against a DBN structure

Usage

scoreagainstDBN(
scorepar,
incidence,
datatoscore = NULL,
marginalise = FALSE,
onlymain = FALSE,
datainit = NULL

)

Arguments

scorepar object of class ’scoreparameters’

incidence adjacency matrix of a DAG

datatoscore matrix or vector containing observations to be scored

marginalise (logical) should marginal score be used?

onlymain (logical) should static nodes be included in the score?

datainit optional, in case of unbalanced design, the mean score of available samples for
T0 are computed

Value

vector of log-scores

Author(s)

Polina Suter
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scoreparameters Initializing score object

Description

This function returns an object of class scoreparameters containing the data and parameters needed
for calculation of the BDe/BGe score, or a user defined score.

Usage

scoreparameters(
scoretype = c("bge", "bde", "bdecat", "usr"),
data,
bgepar = list(am = 1, aw = NULL, edgepf = 1),
bdepar = list(chi = 0.5, edgepf = 2),
bdecatpar = list(chi = 0.5, edgepf = 2),
dbnpar = list(samestruct = TRUE, slices = 2, b = 0, stationary = TRUE, rowids = NULL,

datalist = NULL, learninit = TRUE),
usrpar = list(pctesttype = c("bge", "bde", "bdecat")),
mixedpar = list(nbin = 0),
MDAG = FALSE,
DBN = FALSE,
weightvector = NULL,
bgnodes = NULL,
edgepmat = NULL,
nodeslabels = NULL

)

## S3 method for class 'scoreparameters'
print(x, ...)

## S3 method for class 'scoreparameters'
summary(object, ...)

Arguments

scoretype the score to be used to assess the DAG structure: "bge" for Gaussian data,
"bde" for binary data, "bdecat" for categorical data, "usr" for a user defined
score; when "usr" score is chosen, one must define a function (which evaluates
the log score of a node given its parents) in the following format: usrDAG-
corescore(j,parentnodes,n,param), where ’j’ is node to be scores, ’parentnodes’
are the parents of this node, ’n’ number of nodes in the netwrok and ’param’ is
an object of class ’scoreparameters’

data the data matrix with n columns (the number of variables) and a number of rows
equal to the number of observations

bgepar a list which contains parameters for BGe score:
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• am (optional) a positive numerical value, 1 by default
• aw (optional) a positive numerical value should be more than n+1, n+am+1

by default
• edgepf (optional) a positive numerical value providing the edge penaliza-

tion factor to be combined with the BGe score, 1 by default (no penaliza-
tion)

bdepar a list which contains parameters for BDe score for binary data:

• chi (optional) a positive number of prior pseudo counts used by the BDe
score, 0.5 by default

• edgepf (optional) a positive numerical value providing the edge penaliza-
tion factor to be combined with the BDe score, 2 by default

bdecatpar a list which contains parameters for BDe score for categorical data:

• chi (optional) a positive number of prior pseudo counts used by the BDe
score, 0.5 by default

• edgepf (optional) a positive numerical value providing the edge penaliza-
tion factor to be combined with the BDe score, 2 by default

dbnpar which type of score to use for the slices

• samestruct logical, when TRUE the structure of the first time slice is as-
sumed to be the same as internal structure of all other time slices

• slices integer representing the number of time slices in a DBN
• b the number of static variables; all static variables have to be in the first

b columns of the data; for DBNs static variables have the same meaning
as bgnodes for usual Bayesian networks; for DBNs parameters parameter
bgnodes is ignored

• rowids optional vector of time IDs; usefull for identifying data for initial
time slice

• datalist indicates is data is passed as a list for a two step DBN; useful for
unbalanced number of samples in timi slices

usrpar a list which contains parameters for the user defined score

• pctesttype (optional) conditional independence test ("bde","bge","bdecat")

mixedpar a list which contains parameters for the BGe and BDe score for mixed data

• nbin a positive integer number of binary nodes in the network (the binary
nodes are always assumed in first nbin columns of the data)

MDAG logical, when TRUE the score is initialized for a model with multiple sets of
parameters but the same structure

DBN logical, when TRUE the score is initialized for a dynamic Baysian network;
FALSE by default

weightvector (optional) a numerical vector of positive values representing the weight of each
observation; should be NULL(default) for non-weighted data

bgnodes (optional) a vector that contains column indices in the data defining the nodes
that are forced to be root nodes in the sampled graphs; root nodes are nodes
which have no parents but can be parents of other nodes in the network; in case
of DBNs bgnodes represent static variables and defined via element b of the
parameters dbnpar; parameter bgnodes is ignored for DBNs
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edgepmat (optional) a matrix of positive numerical values providing the per edge penal-
ization factor to be added to the score, NULL by default

nodeslabels (optional) a vector of characters which denote the names of nodes in the Bayesian
network; by default column names of the data will be taken

x object of class ’scoreparameters’

... ignored

object object of class ’scoreparameters’

Value

an object of class scoreparameters, which includes all necessary information for calculating the
BDe/BGe score

Author(s)

Polina Suter, Jack kuipers

References

Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. The Annals of Statistics 30, 1412-1440.

Kuipers J, Moffa G and Heckerman D (2014). Addendum on the scoring of Gaussian acyclic
graphical models. The Annals of Statistics 42, 1689-1691.

Heckerman D and Geiger D (1995). Learning Bayesian networks: A unification for discrete and
Gaussian domains. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 274-284.

Scutari M (2016). An Empirical-Bayes Score for Discrete Bayesian Networks. Journal of Machine
Learning Research 52, 438-448

Examples

myDAG<-pcalg::randomDAG(20, prob=0.15, lB = 0.4, uB = 2)
myData<-pcalg::rmvDAG(200, myDAG)
myScore<-scoreparameters("bge", myData)

scorespace Prints ’scorespace’ object

Description

Prints ’scorespace’ object

Summary of object of class ’scorespace’
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Usage

scorespace(
scorepar,
alpha = 0.05,
hardlimit = 14,
plus1 = TRUE,
cpdag = TRUE,
startspace = NULL,
blacklist = NULL,
verbose = FALSE

)

## S3 method for class 'scorespace'
print(x, ...)

## S3 method for class 'scorespace'
summary(object, ...)

Arguments

scorepar an object of class scoreparameters, containing the data and score scorepareters,
see constructor function scoreparameters

alpha numerical significance value in {0,1} for the conditional independence tests at
the PC algorithm stage (by default 0.4 for n < 50, 20/n for n > 50)

hardlimit integer, limit on the size of parent sets in the search space; by default 14 when
MAP=TRUE and 20 when MAP=FALSE

plus1 logical, if TRUE (default) the search is performed on the extended search space

cpdag logical, if TRUE the CPDAG returned by the PC algorithm will be used as the
search space, if FALSE (default) the full undirected skeleton will be used as the
search space

startspace (optional) a square matrix, of dimensions equal to the number of nodes, which
defines the search space for the order MCMC in the form of an adjacency ma-
trix. If NULL, the skeleton obtained from the PC-algorithm will be used. If
startspace[i,j] equals to 1 (0) it means that the edge from node i to node j
is included (excluded) from the search space. To include an edge in both direc-
tions, both startspace[i,j] and startspace[j,i] should be 1.

blacklist (optional) a square matrix, of dimensions equal to the number of nodes, which
defines edges to exclude from the search space. If blacklist[i,j] equals to 1
it means that the edge from node i to node j is excluded from the search space.

verbose logical, if TRUE messages about the algorithm’s progress will be printed, FALSE
by default

x object of class ’scorespace’

... ignored

object object of class ’scorespace’
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Value

Object of class scorespace, a list of three objects: ’adjacency’ matrix representiong the search
space, ’blacklist’ used to exclude edges from the search space and ’tables’ containing score quanti-
ties for each node needed to run MCMC schemes

Author(s)

Polina Suter, Jack Kuipers

References

Friedman N and Koller D (2003). A Bayesian approach to structure discovery in bayesian networks.
Machine Learning 50, 95-125.

Examples

#' #find a MAP DAG with search space defined by PC and plus1 neighbourhood
Bostonscore<-scoreparameters("bge",Boston)
Bostonspace<-scorespace(Bostonscore, 0.05, 14)
## Not run:
orderfit<-orderMCMC(Bostonscore, scoretable=Bostonspace)
partitionfit<-orderMCMC(Bostonscore, scoretable=Bostonspace)

## End(Not run)

scorespace class scorespace class structure

Description

The structure of an object of S3 class scorespace.

Details

An object of class scorespace is a list containing at least the following components:

• adjacency: adjacency martrix representing the core search space

• blacklist: adjacency martrix representing the blacklist used for computing score tables tables

• tables: a list of matrices (for core search space) or a list of lists of matrices (for extended
search space) containing quantities needed for scoring orders and sampling DAGs in MCMC
schemes; this list corresponds to adjacency and blacklist

Author(s)

Polina Suter
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string2mat Deriving interactions matrix

Description

This transforms a list of possible interactions between proteins downloaded from STRING database
into a matrix which can be used for blacklisting/penalization in BiDAG.

Usage

string2mat(curnames, int, mapping = NULL, type = c("int"), pf = 2)

Arguments

curnames character vector with gene names which will be used in BiDAG learning function

int data frame, representing a interactions between genes/proteins downloaded from
STRING (https://string-db.org/); two columns are necessary ’node1’ and
’node2’

mapping (optional) data frame, representing a mapping between ’curnames’ (gene names,
usually the column names of ’data’) and gene names used in interactions down-
loaded from STRING (https://string-db.org/); two columns are necessary
’queryItem’ and ’preferredName’

type character, defines how interactions will be reflected in the output matrix; int
will result in a matrix whose entries equal 1 if interaction is present in the list of
interactions int and 0 otherwise; blacklist results in a matrix whose entries
equal 0 when interaction is present in the list of interactions and 1 otherwise;
pf results in a matrix results in a matrix whose entries equal 1 is interaction is
present in the list of interactions int and pf otherwise$ "int" by default

pf penalization factor for interactions, needed if type=pf

Value

square matrix whose entries correspond to the list of interactions and parameter type

Examples

curnames<-colnames(kirp)
intmat<-string2mat(curnames, mapping, interactions, type="pf")

https://string-db.org/
https://string-db.org/
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