Package 'BayesfMRI'

March 8, 2025

Type Package

Title Spatial Bayesian Methods for Task Functional MRI Studies

Version 0.10.1

Maintainer Amanda Mejia <mandy.mejia@gmail.com>

Description Performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the 'CIFTI' neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) <doi:10.1080/01621459.2019.1611582> and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) <doi:10.1016/j.neuroimage.2022.118908>.

License GPL-3

URL https://github.com/mandymejia/BayesfMRI

BugReports https://github.com/mandymejia/BayesfMRI/issues

Additional_repositories https://inla.r-inla-download.org/R/testing

Depends R (>= 3.6.0)

- **Imports** car, ciftiTools (>= 0.17.2), excursions, foreach, fMRItools (>= 0.5.3), MASS, Matrix, matrixStats, methods, Rcpp, stats, sp, utils, viridisLite
- Suggests covr, abind, grDevices, hrf, INLA (>= 0.0-1468840039), knitr, MatrixModels, parallel, purrr, rmarkdown, SQUAREM, testthat (>= 3.0.0), spelling

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo RcppEigen, Rcpp

Language en-US

NeedsCompilation yes

Contents

```
Author Amanda Mejia [aut, cre],
Damon Pham [ctb] (<https://orcid.org/0000-0001-7563-4727>),
David Bolin [ctb],
Yu (Ryan) Yue [ctb],
Daniel Spencer [aut] (<https://orcid.org/0000-0002-9705-3605>),
Sarah Ryan [ctb]
```

Repository CRAN

Date/Publication 2025-03-07 23:50:02 UTC

Contents

BayesfMRI-package	3
	4
.getSqrtInvCpp	5
initialKP	5
.logDetQt	6
activations	6
aic_Param	7
ar_order_Param	8
ar_smooth_Param	8
BayesGLM	8
BayesGLM2	2
Bayes_Param	4
	5
	5
	5
$ = \cdots = $	6
contrasts_Param	6
	6
	7
emTol_Param	7
	8
	8
	8
	9
r	21
$=$ \cdot	22
	22
	22
	23
	23
	23
	24
	24
	24
nuisance_Param_BayesGLM	
n_threads_Param	25

plot.act_BGLM	26
plot.BGLM	26
plot.BGLM2	27
plot.prev_BGLM	28
prevalence	29
resamp_res_Param_BayesGLM	29
return_INLA_Param	30
scale_BOLD	30
scale_BOLD_Param	31
scrub_Param_BayesGLM	31
seed_Param	31
session_names_Param	32
summary.act_BGLM	32
summary.act_fit_bglm	33
summary.BGLM	33
summary.BGLM2	34
summary.fit_bglm	35
summary.fit_bglm2	35
summary.prev_BGLM	36
summary.prev_fit_bglm	
surfaces_Param_BayesGLM	
trim_INLA_Param	
TR_Param_BayesGLM	
verbose_Param	39
vertex_areas	39
vertices_Param	
vol2spde	40
	41

Index

BayesfMRI-package

BayesfMRI: Spatial Bayesian Methods for Task Functional MRI Studies

Description

Performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the 'CIFTI' neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) doi:10.1080/01621459.2019.1611582 and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) doi:10.1016/j.neuroimage.2022.118908.

.findTheta

Author(s)

Maintainer: Amanda Mejia <mandy.mejia@gmail.com> Authors:

• Daniel Spencer <danieladamspencer@gmail.com> (ORCID)

Other contributors:

- Damon Pham <damondpham@gmail.com> (ORCID) [contributor]
- David Bolin <david.bolin@kaust.edu.sa> [contributor]
- Yu (Ryan) Yue <yybaruch@gmail.com> [contributor]
- Sarah Ryan <sarahryan320@gmail.com> [contributor]

See Also

Useful links:

- https://github.com/mandymejia/BayesfMRI
- Report bugs at https://github.com/mandymejia/BayesfMRI/issues

.findTheta

Perform the EM algorithm of the Bayesian GLM fitting

Description

Perform the EM algorithm of the Bayesian GLM fitting

Usage

```
.findTheta(theta, spde, y, X, QK, Psi, A, Ns, tol, verbose = FALSE)
```

Arguments

theta	the vector of initial values for theta
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
У	the vector of response values
Х	the sparse matrix of the data values
QK	a sparse matrix of the prior precision found using the initial values of the hyper- parameters
Psi	a sparse matrix representation of the basis function mapping the data locations to the mesh vertices
A	a precomputed matrix crossprod(X%*%Psi)
Ns	the number of columns for the random matrix used in the Hutchinson estimator
tol	a value for the tolerance used for a stopping rule (compared to the squared norm of the differences between theta(s) and theta(s-1))
verbose	(logical) Should intermediate output be displayed?

.getSqrtInvCpp

Description

Get the prewhitening matrix for a single data location

Usage

.getSqrtInvCpp(AR_coefs, nTime, avg_var)

Arguments

AR_coefs	a length-p vector where p is the AR order
nTime	(integer) the length of the time series that is being prewhitened
avg_var	a scalar value of the residual variances of the AR model

.initialKP	Find the initial values of kappa2 and phi
------------	---

Description

Find the initial values of kappa2 and phi

Usage

.initialKP(theta, spde, w, n_sess, tol, verbose)

Arguments

theta	a vector of length two containing the range and scale parameters kappa2 and phi, in that order
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
w	the beta_hat estimates for a single task
n_sess	the number of sessions
tol	the stopping rule tolerance
verbose	(logical) Should intermediate output be displayed?

.logDetQt

Description

Find the log of the determinant of Q_tilde

Usage

```
.logDetQt(kappa2, in_list, n_sess)
```

Arguments

kappa2	a scalar
in_list	a list with elements Cmat, Gmat, and GtCinvG
n_sess	the integer number of sessions

```
activations
```

Identify field activations

Description

Identify areas of activation for each field from the result of BayesGLM or fit_bayesglm.

Usage

```
activations(
  х,
 Bayes = TRUE,
  gamma = NULL,
  alpha = 0.05,
  correction = c("FWER", "FDR", "none"),
  fields = NULL,
  sessions = NULL,
  verbose = 1
)
id_activations(
  х,
 Bayes = TRUE,
  gamma = NULL,
  alpha = 0.05,
  correction = c("FWER", "FDR", "none"),
  fields = NULL,
  sessions = NULL,
  verbose = 1
)
```

aic_Param

Arguments

х	Result of BayesGLM or fit_bayesglm model call, of class "BGLM" or "fit_bglm".
Bayes	Use spatial Bayesian modeling to identify activations based on the joint posterior distribution? Default: TRUE. If FALSE, activations will be based on classical (massive univariate) GLM model, with multiple comparisons correction (see correction). Note that TRUE is only applicable if x includes Bayesian results (i.e. x <- BayesGLM(, Bayes = TRUE) was run.)
gamma	Activation threshold, for example 1 for 1 percent signal change if scale_BOLD=="mean" during model estimation. Setting a gamma is required for the Bayesian method; NULL (default) will use a gamma of zero for the classical method.
alpha	Significance level for inference. Default: 0.05.
correction	For the classical method only: Type of multiple comparisons correction: "FWER" (Bonferroni correction, the default), "FDR" (Benjamini Hochberg), or "none".
fields	The field(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze all fields.
sessions	The session(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze the first session.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

Value

An "act_BGLM" or "act_fit_bglm" object, a list which indicates the activated locations along with related information.

aic_Param

aic

Description

aic

Arguments

aic

(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.

ar_order_Param ar_order

Description

ar_order

Arguments

ar_order(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If 0, do not prewhiten. Default: 6.For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.

ar_smooth_Param ar_smooth

Description

ar_smooth

Arguments

```
ar_smooth (For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that \sigma = \frac{FWHM}{2*sqrt(2*log(2))}. Set to 0 to not smooth the estimates. Default: 5.
```

BayesGLM

BayesGLM for CIFTI

Description

Performs spatial Bayesian GLM for task fMRI activation with CIFTI-format data. The cortex is modeled as a surface mesh, and subcortical structures are modeled as distinct volumetric regions. Includes the pre-processing steps of nuisance regression, prewhitening, scaling, and variance normalization. Supports both single- and multi-session analysis. Can also compute just the classical (spatially-independent)

BayesGLM

Usage

```
BayesGLM(
 BOLD,
 brainstructures = c("left", "right"),
 subROI = c("Amygdala-L", "Amygdala-R", "Caudate-L", "Caudate-R", "Hippocampus-L",
    "Hippocampus-R", "Thalamus-L", "Thalamus-R"),
  design,
  nuisance = NULL,
  scrub = NULL,
  hpf = NULL,
  TR = NULL,
  surfL = NULL,
  surfR = NULL,
  resamp_res = 10000,
  nbhd_order = 1,
  buffer = c(1, 1, 3, 4, 4),
  session_names = NULL,
  scale_BOLD = c("mean", "sd", "none"),
  Bayes = TRUE,
  hyperpriors = c("informative", "default"),
  ar_order = 6,
  ar_smooth = 5,
  aic = FALSE,
  n_{threads} = 4,
  return_INLA = c("trimmed", "full", "minimal"),
  verbose = 1,
 meanTol = 1e-06,
 varTol = 1e-06
)
```

Arguments

BOLD	fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session anal- ysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.	
	If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spa- tial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.	
brainstructures		
	Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).	
subROI	Which subcortical ROIs should be analyzed? Can be "all" to analyze all sub- cortex ROIs. See the ciftiTools_Name column of ciftiTools:::substructure_table() for a list of possible subcortical ROIs.	
design	A numeric matrix or data.frame, or a "BayesfMRI_design" object from make_design.	

	Can also be an array where the third dimension is the same length as the number of data locations, to model each location with its own design.
nuisance	(Optional) A $T \times N_{nuis}$ matrix of nuisance signals, where T is the number of timepoints and N is the number of nuisance signals, or a list of these for multi-session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regressors, HRF derivatives not being modeled as tasks, and other sources of noise.
	Detrending/high-pass filtering is accomplished by adding DCT bases to the nui- sance matrix; see the parameters hpf and DCT.
	Do not add spike regressors for scrubbing to the nuisance matrix. Rather, pro- vide these in scrub so that their corresponding timepoints are also removed from the BOLD data after nuisance regression.
scrub	(Optional) A $T \times N_{scrub}$ matrix of spike regressors (one 1 value at the timepoint to scrub, and 0 for all other values), or a logical vector indicating the timepoints to scrub (TRUE to scrub, and FALSE to keep). For multi-session data, a session-length list of such matrices or logical vectors.
	The spike regressors will be included in the nuisance regression, and afterwards the timepoints indicated in scrub will be removed from the BOLD data and design matrix.
hpf	Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.
	Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.
TR	Temporal resolution of the data, in seconds.
surfL, surfR	For cortex spatial model. Left and right cortex surface geometry in GIFTI format ("*.surf.gii"). These can be a file path to a GIFTI file or a "surf" object from ciftiTools.
	Surfaces can alternatively be provided through the \$surf metadata in BOLD if it is "xifti" data. If neither are provided, by default the HCP group-average fs_LR inflated surfaces included in ciftiTools will be used for the cortex spatial model.
resamp_res	For cortex spatial model. The number of vertices to which each cortical surface should be resampled, or NULL to not resample.
	For computational feasibility, a value of 10000 (default) or lower is recom- mended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.
nbhd_order	For volumetric model. What order neighborhood around data locations to keep? Ø for no neighbors, 1 for 1st-order neighbors, 2 for 1st- and 2nd-order neighbors, etc. Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.

buffer	For volumetric model. The number of extra voxel layers around the bounding box. Set to NULL for no buffer. (We recommend not changing buffer unless you know what you're doing. Instead, to reduce the number of boundary voxels, adjust nbhd_order).
session_names	The names of the task-fMRI BOLD sessions, for multi-session analysis. If not provided here, will be inferred from names(BOLD), inferred from names(design), or generated automatically, in that order.
scale_BOLD	Controls scaling the BOLD response at each location.
	"mean": Scale the data to percent local signal change. "sd": Scale the data by local standard deviation.
	"none": Center the data but do not scale it.
Bayes	Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.)
hyperpriors	Should informative or default non-informative hyperpriors be assumed on SPDE hyperparameters?
ar_order	(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If 0 , do not prewhiten. Default: 6.
	For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.
ar_smooth	(For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 to not smooth the estimates. Default: 5.
aic	(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.
n_threads	The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
return_INLA	Return the INLA model object? (It can be large.) Use "trimmed" (default) returns the results sufficient for activations and BayesGLM2; "minimal" returns enough for BayesGLM2 but not activations; "full" returns the full inla output.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
meanTol,varTol	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Details

To use BayesGLM, the design matrix must first be constructed with make_design.

Value

An object of class "BayesGLM": a list with elements

betas_Bayesian The field coefficients for the Bayesian model.

betas_classical The field coefficients for the classical model.

GLMs_Bayesian The entire list of GLM results, except for parameters estimated for the classical model.

GLMs_classical Parameters estimated for the classical model from the GLM.

brainstructures data.frame summarizing the spatial features of each brain structure modeled.

sessions data.frame with the name and nTime of each BOLD session.

fields data.frame with the name, related task, and HRF_order of each field.

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

INLA Latent Fields Limit

INLA computation times increase greatly when the number of columns in the design matrix exceeds five: when there are more than five tasks, or more than three tasks each with a temporal derivative modeled as a field. In cases like the latter, we recommend modeling the temporal derivatives as nuisance signals using the option dHRF_as="nuisance", rather than modeling the temporal derivatives as fields.

BayesGLM2

Group-level Bayesian GLM

Description

Performs group-level Bayesian GLM estimation and inference using the joint approach described in Mejia et al. (2020).

BayesGLM2

Usage

```
BayesGLM2(
  results,
  contrasts = NULL,
  quantiles = NULL,
  excursion_type = NULL,
  contrast_names = NULL,
  gamma = 0,
  alpha = 0.05,
  nsamp_theta = 50,
  nsamp_beta = 100,
  num_cores = NULL,
  verbose = 1
)
```

Arguments

results	Either (1) a length N list of "BGLM" objects, or (2) a length N character vector of files storing "BGLM" objects saved with saveRDS. "fit_bglm" objects also are accepted.
contrasts	(Optional) A list of contrast vectors that specify the group-level summaries of interest. If NULL (DEFAULT), use contrasts that compute the average of each field (field HRF) across all subjects/sessions.
	Each contrast vector is length KSN specifying a group-level summary of inter- est, where K is the number of fields in the first-level design matrices, S is the number of sessions, and N is the number of subjects. The vector is grouped by fields, then sessions, then subjects.
	For a single session/subject, the contrast vector for the first field would be:
	<pre>c0 <- c(1, rep(0, K-1)) #indexes the first field for a single session</pre>
	so the full contrast vector for the group <i>average over all sessions/subjects for the first field</i> would be:
	<pre>contrasts = rep(c0, S*N) /(S*N).</pre>
	To obtain the group average for the first field, for <i>just the first session</i> , input zeros for the remaining sessions:
	c2 <- c(c0, rep(0, K*(S-1)))
	To obtain the group mean <i>difference between two sessions</i> $(S = 2)$ for the first field:
	c3 <- c(c0, -c0) contrasts = rep(c3, N) / N.
	To obtain the mean over sessions of the first field, just for the first subject:
	c4 <- rep(c0, S) c(c4, rep(0, K*S*(N-1))) / S.
quantiles	(Optional) Vector of posterior quantiles to return in addition to the posterior mean.
excursion_type	(For inference only) The type of excursion function for the contrast (">", "<", "!="), or a vector thereof (each element corresponding to one contrast). If NULL, no inference performed.

contrast_names	(Optional) Names of contrasts.
gamma	(For inference only) Activation threshold for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: 0.
alpha	(For inference only) Significance level for activation for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: .05.
nsamp_theta	Number of theta values to sample from posterior. Default: 50.
nsamp_beta	Number of beta vectors to sample conditional on each theta value sampled. De-fault: 100.
num_cores	The number of cores to use for sampling betas in parallel. If NULL (default), do not run in parallel.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

Value

A list containing the estimates, PPMs and areas of activation for each contrast.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

Bayes_Param	Bayes
Description	
Bayes	
Arguments	

Bayes Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.)

BOLD_Param_BayesGLM BOLD

Description

BOLD

Arguments BOLD

fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects. If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spatial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.

brainstructures_Param_BayesGLM brainstructures

Description

brainstructures

Arguments

brainstructures

Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).

buffer_Param buffer

Description

buffer

Arguments

buffer For volumetric model. The number of extra voxel layers around the bounding box. Set to NULL for no buffer. (We recommend not changing buffer unless you know what you're doing. Instead, to reduce the number of boundary voxels, adjust nbhd_order). Connectome_Workbench_Description

Connectome Workbench

Description

Connectome Workbench

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench .

contrasts_Param contrasts

Description

contrasts

Arguments

contrasts List of contrast vectors to be passed to inla::inla.

design_Param_BayesGLM design

Description

design

Arguments

design A numeric matrix or data.frame, or a "BayesfMRI_design" object from make_design. Can also be an array where the third dimension is the same length as the number of data locations, to model each location with its own design. do_QC

Description

Mask out data locations that are invalid (missing data, low mean, or low variance) for any session.

Usage

do_QC(BOLD, meanTol = 1e-06, varTol = 1e-06, verbose = TRUE)

Arguments

BOLD	A session-length list of $T \times V$ numeric BOLD data.
meanTol, varTol	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Defaults: 1e-6.
verbose	Print messages counting how many locations are removed? Default: TRUE.

Value

A logical vector indicating locations that are valid across all sessions.

Examples

```
nT <- 30
nV <- 400
BOLD1 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD1[,seq(30,50)] <- NA
BOLD2 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD2[,65] <- BOLD2[,65] / 1e10
BOLD <- list(sess1=BOLD1, sess2=BOLD2)
do_QC(BOLD)
```

emTol_Param	emTol	
Description		
emTol		
Arguments		

emTol The stopping tolerance for the EM algorithm. Default: 1e-3.

EM_Param	EM
Description	
EM	
Arguments	
ЕМ	(logical) Should the EM implementation of the Bayesian GLM be used? De fault: FALSE. This method is still in development.
faces_Param	faces
Description	
faces	
Arguments	
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given trian gular face in the mesh. F is the number of faces in the mesh.
field_names_Pa	iram field_names
Description	
field_names	

Arguments

field_names (Optional) Names of fields represented in design matrix.

fit_bayesglm

Description

Performs spatial Bayesian GLM for task fMRI activation

fit_bayesglm

Usage

```
fit_bayesglm(
 BOLD,
  design,
 nuisance = NULL,
  scrub = NULL,
  spatial,
  scale_BOLD = c("mean", "sd", "none"),
 Bayes = TRUE,
 hyperpriors = c("informative", "default"),
  ar_order = 6,
 ar_smooth = 5,
 aic = FALSE,
 n_{threads} = 4,
 return_INLA = c("trimmed", "full", "minimal"),
 verbose = 1,
 meanTol = 1e-06,
 varTol = 1e-06
)
```

Arguments

BOLD, design, nuisance

	Session-length list of numeric matrices/arrays, each with volumes along the first dimension.
scrub	Session-length list of spike regressors: numeric matrices, with volumes along the first dimension, valued at 1 for scrubbed volumes and 0 otherwise.
	Scrubbing is performed by incorporating spike regressors in the nuisance matrix during nuisance regression (in a simultaneous framework), and then removing the scrubbed timepoints from the resulting BOLD and design.
spatial	Gives the spatial information:
	surf A list of two: vertices $V \times 3$ numeric matrix of vertex locations in XYZ coordinate space, and faces, $F \times 3$ matrix of positive integers defining the triangular faces.
	mask Mask of locations with valid data.
	For voxel data, a list of six:
	label 3D array of labeled locations to include in the model.

	trans_mat Projection matrix to convert voxel indices to XYZ position. Can be NULL.
	trans_units XYZ units. Can be NULL.
	nbhd_order See documentation for BayesGLM.
	buffer See documentation for BayesGLM.
scale_BOLD	Controls scaling the BOLD response at each location.
	"mean": Scale the data to percent local signal change.
	"sd": Scale the data by local standard deviation.
	"none": Center the data but do not scale it.
Bayes	Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.)
hyperpriors	Should informative or default non-informative hyperpriors be assumed on SPDE hyperparameters?
ar_order	(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If 0, do not prewhiten. Default: 6.
	For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.
ar_smooth	(For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 to not smooth the estimates. Default: 5.
aic	(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.
n_threads	The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
return_INLA	Return the INLA model object? (It can be large.) Use "trimmed" (default) returns the results sufficient for activations and BayesGLM2; "minimal" returns enough for BayesGLM2 but not activations; "full" returns the full inla output.
verbose	1 (default) to print occasional updates during model computation; 2 for occa- sional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
meanTol,varTol	Tolerance for mean, variance and SNR of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for mean and variance, 50 for SNR.

Value

A "BayesGLM" object: a list with elements

INLA_model_obj The full result of the call to INLA::inla.

field_estimates The estimated coefficients for the Bayesian model.

result_classical Results from the classical model: field estimates, field standard error estimates, residuals, degrees of freedom, and the mask.

mesh The model mesh.

- mask A mask of mesh indicating the locations inside mesh.
- **design** The design matrix, after centering and scaling, but before any nuisance regression or prewhitening.

field_names The names of the fields.

session_names The names of the sessions.

hyperpar_posteriors Hyperparameter posterior densities.

theta_estimates Theta estimates from the Bayesian model.

posterior_Sig_inv For joint group modeling.

mu_theta For joint group modeling.

Q_theta For joint group modeling.

- **y** For joint group modeling: The BOLD data after any centering, scaling, nuisance regression, or prewhitening.
- X For joint group modeling: The design matrix after any centering, scaling, nuisance regression, or prewhitening.
- prewhiten_info Vectors of values across locations: phi (AR coefficients averaged across sessions), sigma_sq (residual variance averaged across sessions), and AIC (the maximum across sessions).
- call match.call() for this function call.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

hpf_Param_BayesGLM hpf

Description

hpf

Arguments

hpf

Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.

Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.

INLA_Description INLA

Description

INLA

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

INLA_Latent_Fields_Limit_Description INLA Latent Fields

Description

INLA Latent Fields

INLA Latent Fields Limit

INLA computation times increase greatly when the number of columns in the design matrix exceeds five: when there are more than five tasks, or more than three tasks each with a temporal derivative modeled as a field. In cases like the latter, we recommend modeling the temporal derivatives as nuisance signals using the option dHRF_as="nuisance", rather than modeling the temporal derivatives as fields.

make_mesh

Make Mesh

Description

Make INLA triangular mesh from faces and vertices

Usage

make_mesh(vertices, faces)

Arguments

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a
	given vertex in the mesh is located. V is the number of vertices in the mesh
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given trian-
	gular face in the mesh. F is the number of faces in the mesh.

mask_Param_vertices

Value

INLA triangular mesh

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

mask_Param_vertices mask: vertices

Description

mask: vertices

Arguments

mask

A length V logical vector indicating if each vertex is within the input mask.

max_threads_Param max_threads

Description

max_threads

Arguments

max_threads The maximum number of threads to use in the inla-program for model estimation. 0 (default) will use the maximum number of threads allowed by the system.

mean_var_Tol_Param mean and variance tolerance

Description

mean and variance tolerance

Arguments

meanTol, varTol Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

mesh_Param_either mesh: either

Description

mesh: either

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data)

mesh_Param_inla mesh: INLA only

Description

mesh: INLA only

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data).

nbhd_order_Param nbhd_order

Description

nbhd_order

Arguments

nbhd_order
 For volumetric model. What order neighborhood around data locations to keep?
 Ø for no neighbors, 1 for 1st-order neighbors, 2 for 1st- and 2nd-order neighbors, etc. Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.

Description

nuisance

Arguments

nuisance (Optional) A $T \times N_{nuis}$ matrix of nuisance signals, where T is the number of timepoints and N is the number of nuisance signals, or a list of these for multi-session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regressors, HRF derivatives not being modeled as tasks, and other sources of noise.

> Detrending/high-pass filtering is accomplished by adding DCT bases to the nuisance matrix; see the parameters hpf and DCT.

> Do not add spike regressors for scrubbing to the nuisance matrix. Rather, provide these in scrub so that their corresponding timepoints are also removed from the BOLD data after nuisance regression.

n_threads_Param n_threads

Description

n_threads

Arguments

n_threads The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.

plot.act_BGLM

Description

S3 method: use view_xifti to plot a "act_BGLM" object

Usage

```
## S3 method for class 'act_BGLM'
plot(x, idx = NULL, title = NULL, session = NULL, ...)
```

Arguments

х	An object of class "act_BGLM"
idx	Which field should be plotted? Give the numeric indices or the names. NULL (default) will show all fields. This argument overrides the idx argument to view_xifti.
title	If NULL, the field names associated with idx will be used.
session	Which session should be plotted? NULL (default) will use the first.
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti_surface.

plot.BGLM S3 method: use view_xifti to plot a "BGLM" object

Description

S3 method: use view_xifti to plot a "BGLM" object

Usage

```
## S3 method for class 'BGLM'
plot(
    x,
    Bayes = NULL,
    idx = NULL,
    title = NULL,
    session = NULL,
    zlim = c(-1, 1),
    ...
)
```

plot.BGLM2

Arguments

x	An object of class "BGLM"
Bayes	TRUE for plotting Bayesian results, FALSE for plotting classical GLM results. Default: NULL, which will use the Bayesian results if available and the classical results if not.
idx	Which field should be plotted? Give the numeric indices or the names. NULL (default) will show all fields. This argument overrides the idx argument to view_xifti.
title	If NULL, the field names associated with idx will be used.
session	Which session should be plotted? NULL (default) will use the first.
zlim	Overrides the zlim argument for view_xifti. Default: c(-1, 1).
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti.

```
plot.BGLM2
```

S3 method: use view_xifti to plot a "BGLM2" object

Description

S3 method: use view_xifti to plot a "BGLM2" object

Usage

```
## S3 method for class 'BGLM2'
plot(x, idx = NULL, stat = c("contrasts", "activations"), zlim = c(-1, 1), ...)
```

Arguments

х	An object of class "BGLM2"
idx	Which contrast should be plotted? Give the numeric indices or the names. NULL (default) will show all contrasts. This argument overrides the idx argument to view_xifti.
stat	Estimates of the "contrasts" (default), or their thresholded "activations".
zlim	Overrides the zlim argument for view_xifti. Default: c(-1, 1).
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti.

plot.prev_BGLM

Description

S3 method: use view_xifti to plot a "prev_BGLM" object

Usage

```
## S3 method for class 'prev_BGLM'
plot(
    x,
    idx = NULL,
    session = NULL,
    drop_zeros = NULL,
    colors = "plasma",
    zlim = c(0, 1),
    ...
)
```

Arguments

х	An object of class "prev_BGLM"
idx	Which task should be plotted? Give the numeric indices or the names. NULL (default) will show all tasks. This argument overrides the idx argument to view_xifti.
session	Which session should be plotted? NULL (default) will use the first.
drop_zeros	Color locations without any activation across all results (zero prevalence) the same color as the medial wall? Default: NULL to drop the zeros if only one idx is being plotted.
colors,zlim	See view_xifti.
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti_surface.

prevalence

Description

Activations prevalence.

Usage

```
prevalence(
  act_list,
  gamma_idx = 1,
  p_test = NULL,
  alpha = 0.05,
  correction = c("FWER", "FDR", "none")
)
```

Arguments

act_list	List of activations from activations. All should have the same sessions, fields, and brainstructures.
gamma_idx	If activations at multiple thresholds were computed, which threshold should be used for prevalence? Default: the first (lowest).
p_test	For inference: the expected baseline rate of activation for all data locations, under the null hypothesis. Default: NULL (do not perform hypothesis testing).
alpha	Significance level for inference. Default: .05.
correction	For the classical method only: Type of multiple comparisons correction: "FWER" (Bonferroni correction, the default), "FDR" (Benjamini Hochberg), or "none".

Value

A list containing the prevalences of activation, as a proportion of the results from act_list.

resamp_res_Param_BayesGLM

resamp_res

Description

resamp_res

Arguments

resamp_res	For cortex spatial model. The number of vertices to which each cortical surface
	should be resampled, or NULL to not resample.
	For computational feasibility, a value of 10000 (default) or lower is recom-
	mended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be
	set to NULL for full-resolution classical modeling.

return_INLA_Param return_INLA

Description

return_INLA

Arguments

return_INLA	Return the INLA model object? (It can be large.) Use "trimmed" (default)
	returns the results sufficient for activations and BayesGLM2; "minimal" re-
	turns enough for BayesGLM2 but not activations; "full" returns the full inla
	output.

scale_BOLD

Scale the BOLD timeseries

Description

Scale the BOLD timeseries

Usage

```
scale_BOLD(BOLD, scale = c("mean", "sd", "none"), v_means = NULL)
```

Arguments

BOLD	fMRI data as a locations by time $(V \times T)$ numeric matrix.
scale	Option for scaling the BOLD response.
v_means	Original means of the BOLD data. ONLY provide if data has already been centered.
	<pre>\code{"mean"} scaling will scale the data to percent local signal change.</pre>
	<pre>\code{"sd"} scaling will scale the data by local standard deviation.</pre>
	<pre>\code{"none"} will only center the data, not scale it.</pre>

Value

Scale to units of percent local signal change and centers

scale_BOLD_Param scale_BOLD

Description

scale_BOLD

Arguments

scale_BOLD	Controls scaling the BOLD response at each location.
	"mean": Scale the data to percent local signal change.
	"sd": Scale the data by local standard deviation.
	"none": Center the data but do not scale it.

scrub_Param_BayesGLM scrub

Description

scrub

Arguments

The spike regressors will be included in the nuisance regression, and afterwards the timepoints indicated in scrub will be removed from the BOLD data and design matrix.

seed_Param	seed	
Description		
seed		
Arguments		
seed	Random seed (optional). Default: NULL.	

session_names_Param session_names

Description

session_names

Arguments

session_names The names of the task-fMRI BOLD sessions, for multi-session analysis. If not provided here, will be inferred from names(BOLD), inferred from names(design), or generated automatically, in that order.

summary.act_BGLM Summarize a "act_BGLM" object

Description

Summary method for class "act_BGLM"

Usage

S3 method for class 'act_BGLM'
summary(object, ...)

S3 method for class 'summary.act_BGLM'
print(x, ...)

S3 method for class 'act_BGLM'
print(x, ...)

Arguments

object	Object of class "act_BGLM".
	further arguments passed to or from other methods.
x	Object of class "summary.act_BGLM".

Value

A "summary.act_BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.act_fit_bglm Summarize a "act_fit_bglm" object

Description

Summary method for class "act_fit_bglm"

Usage

```
## S3 method for class 'act_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.act_fit_bglm'
print(x, ...)
## S3 method for class 'act_fit_bglm'
print(x, ...)
```

Arguments

object	Object of class "act_fit_bglm".
	further arguments passed to or from other methods.
х	Object of class "summary.act_fit_bglm".

Value

A "summary.act_fit_bglm" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.

summary.BGLM Summarize a "BGLM" object

Description

Summary method for class "BGLM"

Usage

```
## S3 method for class 'BGLM'
summary(object, ...)
## S3 method for class 'summary.BGLM'
print(x, ...)
## S3 method for class 'BGLM'
print(x, ...)
```

Arguments

object	Object of class "BGLM".
	further arguments passed to or from other methods.
х	Object of class "summary.BGLM".

Value

A "summary.BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.BGLM2 Summarize a "BGLM2" object

Description

Summary method for class "BGLM2"

Usage

S3 method for class 'BGLM2'
summary(object, ...)

S3 method for class 'summary.BGLM2'
print(x, ...)

S3 method for class 'BGLM2'
print(x, ...)

Arguments

object	Object of class "BGLM2".
	further arguments passed to or from other methods.
x	Object of class "summary.BGLM2".

Value

A "summary.BGLM2" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.fit_bglm Summarize a "fit_bglm" object

Description

Summary method for class "fit_bglm"

Usage

```
## S3 method for class 'fit_bglm'
summary(object, ...)
## S3 method for class 'summary.fit_bglm'
print(x, ...)
## S3 method for class 'fit_bglm'
print(x, ...)
```

Arguments

object	Object of class "fit_bglm".
	further arguments passed to or from other methods.
х	Object of class "summary.fit_bglm".

Value

A "summary.fit_bglm" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.

summary.fit_bglm2 Summarize a "fit_bglm2" object

Description

Summary method for class "fit_bglm2"

Usage

```
## S3 method for class 'fit_bglm2'
summary(object, ...)
## S3 method for class 'summary.fit_bglm2'
print(x, ...)
## S3 method for class 'fit_bglm2'
print(x, ...)
```

Arguments

object	Object of class "fit_bglm2".
	further arguments passed to or from other methods.
x	Object of class "summary.fit_bglm2".

Value

A "summary.fit_bglm2" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.

summary.prev_BGLM Summarize a "prev_BGLM" object

Description

Summary method for class "prev_BGLM" Summary method for class "prev_BGLM"

Usage

S3 method for class 'prev_BGLM'
summary(object, ...)

S3 method for class 'summary.prev_BGLM'
print(x, ...)

S3 method for class 'prev_BGLM'
print(x, ...)

S3 method for class 'prev_BGLM'
summary(object, ...)

S3 method for class 'summary.prev_BGLM'
print(x, ...)

S3 method for class 'prev_BGLM'
print(x, ...)

Arguments

object	Object of class "prev_BGLM".
	further arguments passed to or from other methods.
х	Object of class "summary.prev_BGLM".

Value

A "summary.prev_BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

A "summary.prev_BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.prev_fit_bglm Summarize a "prev_fit_bglm" object

Description

Summary method for class "prev_fit_bglm" Summary method for class "prev_fit_bglm"

Usage

```
## S3 method for class 'prev_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.prev_fit_bglm'
print(x, ...)
## S3 method for class 'prev_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.prev_fit_bglm'
print(x, ...)
## S3 method for class 'prev_fit_bglm'
```

print(x, ...)

Arguments

object	Object of class "prev_fit_bglm".
	further arguments passed to or from other methods.
x	Object of class "summary.prev_fit_bglm".

38

Value

A "summary.prev_fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

A "summary.prev_fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

surfaces_Param_BayesGLM

surfaces

Description

surfaces

Arguments

surfL, surfR For cortex spatial model. Left and right cortex surface geometry in GIFTI format
 ("*.surf.gii"). These can be a file path to a GIFTI file or a "surf" object from
 ciftiTools.
 Surfaces can alternatively be provided through the \$surf metadata in BOLD if
 it is "xifti" data. If neither are provided, by default the HCP group-average
 fs_LR inflated surfaces included in ciftiTools will be used for the cortex spa tial model.

trim_INLA_Param trim_INLA

Description

trim_INLA

Arguments

trim_INLA (logical) should the INLA_model_obj within the result be trimmed to only what is necessary to use activations? Default: TRUE.

TR_Param_BayesGLM TR

Description	
_	
TR	
Arguments	
TR	Temporal resolution of the data, in seconds.
verbose_Param	verbose
Description	
verbose	
Arguments	
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
vertex_areas	Surface area of each vertex

Description

Compute surface areas of each vertex in a triangular mesh.

Usage

```
vertex_areas(mesh)
```

Arguments

mesh An "inla.mesh" object (see make_mesh for surface data).

Value

Vector of areas

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

vertices_Param vertices

Description

vertices

Arguments

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh
vol2spde	Construct a triangular mesh from a 3D volumetric mask

Description

Construct a triangular mesh from a 3D volumetric mask

Usage

```
vol2spde(mask, res, nbhd_order = 1, buffer = c(1, 1, 3, 4, 4))
```

Arguments

mask	An array of 0s and 1s representing a volumetric mask
res	The spatial resolution in each direction, in mm. For example, $c(2,2,2)$ indicates 2mm isotropic voxels.
nbhd_order	For volumetric data, what order neighborhood around data locations to keep? $(0 = no neighbors, 1 = 1st$ -order neighbors, $2 = 1st$ - and 2nd-order neighbors, etc.). Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.
buffer	For volumetric data, size of extra voxels layers around the bounding box, in terms of voxels. Set to NULL for no buffer.

Value

An inla.spde2 object.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

Index

.findTheta, 4
.getSqrtInvCpp, 5
.initialKP, 5
.logDetQt, 6

activations, 6, *11*, *20*, *29*, *30* aic_Param, 7 ar_order_Param, 8 ar_smooth_Param, 8

Bayes_Param, 14 BayesfMRI (BayesfMRI-package), 3 BayesfMRI-package, 3 BayesGLM, 8, 20 BayesGLM2, 11, 12, 20, 30 BOLD_Param_BayesGLM, 15 brainstructures_Param_BayesGLM, 15 buffer_Param, 15

Connectome_Workbench_Description, 16 contrasts_Param, 16

design_Param_BayesGLM, 16
do_QC, 17

EM_Param, 18 emTol_Param, 17

faces_Param, 18
field_names_Param, 18
fit_bayesglm, 19

hpf_Param_BayesGLM, 21

make_mesh, 22, 24, 39
mask_Param_vertices, 23

max_threads_Param, 23 mean_var_Tol_Param, 23 mesh_Param_either, 24 mesh_Param_inla, 24 n_threads_Param, 25 nbhd_order_Param, 24 nuisance_Param_BayesGLM, 25 plot.act_BGLM, 26 plot.BGLM, 26 plot.BGLM2, 27 plot.prev_BGLM, 28 prevalence, 29 print.act_BGLM (summary.act_BGLM), 32 print.act_fit_bglm (summary.act_fit_bglm), 33 print.BGLM (summary.BGLM), 33 print.BGLM2 (summary.BGLM2), 34 print.fit_bglm (summary.fit_bglm), 35 print.fit_bglm2 (summary.fit_bglm2), 35 print.prev_BGLM (summary.prev_BGLM), 36 print.prev_fit_bglm (summary.prev_fit_bglm), 37 print.summary.act_BGLM (summary.act_BGLM), 32 print.summary.act_fit_bglm (summary.act_fit_bglm), 33 print.summary.BGLM (summary.BGLM), 33 print.summary.BGLM2 (summary.BGLM2), 34 print.summary.fit_bglm (summary.fit_bglm), 35 print.summary.fit_bglm2 (summary.fit_bglm2), 35 print.summary.prev_BGLM (summary.prev_BGLM), 36 print.summary.prev_fit_bglm (summary.prev_fit_bglm), 37

resamp_res_Param_BayesGLM, 29

INDEX

```
return_INLA_Param, 30
```

saveRDS, 13 scale_BOLD, 30 scale_BOLD_Param, 31 scrub_Param_BayesGLM, 31 seed_Param, 31 session_names_Param, 32 summary.act_BGLM, 32 summary.act_fit_bglm, 33 summary.BGLM2, 34 summary.fit_bglm2, 35 summary.fit_bglm2, 35 summary.prev_BGLM, 36 summary.prev_fit_bglm, 37 surfaces_Param_BayesGLM, 38

TR_Param_BayesGLM, 39
trim_INLA_Param, 38

verbose_Param, 39
vertex_areas, 39
vertices_Param, 40
view_xifti, 26-28
vol2spde, 40