Package ‘BayesLL.CA’

January 20, 2025

Type Package

Title Bayesian Latent Class Analysis
Version 1.9

Date 2020-05-05

Depends e1071, coda

Description Bayesian Latent Class Analysis using several different
methods.

License GPL (>=2)
Imports fields, nlme, MCMCpack

Author Arthur White [aut, cre] (Previous email address:
arthur.white @ucdconnect.ie),
Thomas Brendan Murphy [aut, ths]

Maintainer Arthur White <arwhite@tcd.ie>
NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-06 17:20:02 UTC

Contents
BayesLCA-package e 2
Alzheimer 3
as.mcme.blca.gibbs 3
blca 5
blcaboot. 6
blca.em e 9
blca.em.sd L. 12
blca.gibbs 14
blca.vb 16
datablca e 19
MAP . . 20
plotblca L e 21
print.blca 23

2 BayesLCA-package

rlca . . 24
summary.blca L e e e 25
ZSCOTC . . v v v i e e e e e e e e e e e e e e e e e 25
Index 27
BayesLCA-package Bayesian Latent Class Analysis
Description

Bayesian latent class analysis using several different methods.

Details
Package: BayesLCA
Type: Package
Version: 1.4
Date: 2015-04-09
License: GPL (>=2)
LazyLoad: yes
Author(s)

Arthur White and Brendan Murphy Maintainer: Arthur White <arthur.white @ucdconnect.ie>

References

Arthur White, Thomas Brendan Murphy (2014). BayesLCA: An R Package for Bayesian Latent
Class Analysis." Journal of Statistical Software, 61(13), 1-28. URL: http://www.jstatsoft.org/v61/i13/.

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)

type2 <- c(0.2, 0.2, 0.8, 0.8)

X <- rlca(1000, rbind(typel, type2), c(0.4,0.6))
fit.em <- blca.em(x, 2)

plot(fit.em, which=1)

print(fit.em)

summary (fit.em)

data(Alzheimer)

fit.vb <- blca(Alzheimer, 2, method="vb")
par(mfrow=c(3,3))

plot(fit.vb, which=3:4)

summary (fit.vb)

par(mfrow=c(1,1))

Alzheimer 3

Alzheimer Symptoms of Patients Suffering from Alzheimer’s Syndrome

Description

Presence or absence of 6 symptoms of Alzheimer’s disease (AD) in 240 patients diagnosed with
early onset AD conducted in the Mercer Institute in St. James’s Hospital, Dublin.

Usage

data(Alzheimer)

Format

A binary matrix, consisting of 240 rows and 6 columns, with each row denoting an individual and
each column denoting the presence/absence of one of the 6 symptoms: Hallucination, Activity,
Aggression, Agitation, Diurnal and Affective. A 1 denotes the presence of a symptom, a O the
absence.

Source

Moran M, Walsh C, Lynch A, Coen RF, Coakley D, Lawlor BA (2004) “Syndromes of behavioural
and psychological symptoms in mild Alzheimer’s disease.” International Journal of Geriatric Psy-
chiatry, 19(4), 359-364. ISSN 1099-1166. doi:10.1002/gps.1091. URL http://dx.doi.org/10.1002/gps.1091.

Walsh C (2006) “Latent Class Analysis Identification of Syndromes in Alzheimer’s Disease: A
Bayesian Approach.” metodoloyski zvezki - Advances in Methodology and Statistics, 3(1), pp.147 —
162. URL mrvar.fdv.uni-lj.si/pub/mz/mz3.1/walsh.pdf

Examples

data(Alzheimer)
fit2 <- blca.em(Alzheimer, 2)
summary (fit2)

fit3<- blca.em(Alzheimer, 3, restarts=20)
summary (fit3)

as.mcmc.blca.gibbs Converts blca.gibbs Objects to type mcmc

Description

Converts blca objects to mcmc objects. This is only to be used with the Gibbs sampling method.

4 as.mcmc.blca.gibbs

Usage
S3 method for class 'blca.gibbs'
as.mcmc(x, ...)
blca2mcmc(x)
Arguments
X An object of class blca.gibbs. An error is returned if this is not the case.

Additional arguments to be passed to the meme function.

Details

Whenever a Gibbs sampler is employed, it is always a good idea to ensure that parameter samples
are being obtained correctly - that burn-in has been achieved, and that appropriate mixing is taking
place, for example. as.mcmc.blca.gibbs converts an object of class blca to that of memc to avail
of the diagnostic checks available in other R packages, particularly those in the coda package.

Value

An N x G % (M + 1) matrix of class mcmc, where N is the number of data points, M the number of
columns and G the number of classes. The first G columns (labelled ClassProb 1, ..., ClassProb G)
are class membership probability samples, the next G*M columns (labelled ItemProb 1 1, ItemProb
12,...,ItemProb G 1, ..., ItemProb G M) are item response probability samples.

Note
This function replaces the function memc2blca, which appeared in the original version of the pack-
age, and which is retained as an internal function for backwards compatibility reasons.

Author(s)
Arthur White

See Also

blca.gibbs, geweke.diag, raftery.diag

Examples

data(Alzheimer)

Not run: fit.gibbs <- blca.gibbs(Alzheimer, 2)
Not run: raftery.diag(as.memc(fit.gibbs))

Not run: fit.gibbs <- blca.gibbs(Alzheimer, 2, iter=50000, accept=0.1, burn.in=100)
Not run: plot(as.mcmc(fit.gibbs))

bica 5

blca Bayesian Latent Class Analysis with one of several methods

Description

Latent class analysis (LCA) attempts to find G hidden classes in binary data X. blca utilises one of:
an EM algorithm, a variational Bayes approximation, Gibbs sampling or boot-strapping techniques
to find maximum a posteriori (MAP), standard error and density estimates of the parameters.

Usage
blca(X, G, method = c("em"”, "gibbs”, "boot"”, "vb"), ...)
Arguments
X The data matrix. This may take one of several forms, see data.blca.
G The number of classes to run Ica for.
method The method with which to perform lca on the data. Four methods are currently
available, "em", "gibbs", "boot" or "vb". Defaults to "em", with a warning.
Additional arguments to be passed on, depending on the method. See additional
help files for details.
Details

The function calls to one of blca.em, blca.boot, blca.gibbs, blca.vb, depending on the method
specified.

Value

A list of class "blca" is returned. All methods return the following items:

classprob The class probabilities.

itemprob The item probabilities, conditional on class membership.
Z Estimate of class membership for each unique datapoint.
prior A list containing the prior values specified for the model.

See additional help files for details.

Note

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to some of the variable names of the returned function, which are now
returned with the corrected suffix blca.em. sd (for standard deviation). For backwards compatabil-
ity reasons, the earlier suffix . se has been retained as a returned argument.

6 bica.boot

Author(s)

Arthur White

References

Arthur White, Thomas Brendan Murphy (2014). BayesLCA: An R Package for Bayesian Latent
Class Analysis." Journal of Statistical Software, 61(13), 1-28. URL: http://www.jstatsoft.org/v61/i13/.

See Also

blca.em, blca.boot, blca.gibbs, blca.vb

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))

set.seed(1)
fit <- blca(x, 2) ## EM algorithm used, warning returned
print(fit) ## No posterior standard deviations returned
summary (fit)

set.seed(1)
fit2 <- blca(x, 2, method="em", sd=TRUE) ##No warning - same fit
print(fit2) ##Posterior standard deviations returned

set.seed(1)

##Variational Bayes approximation, with priors specified.

fit3 <- blca(x, 2, method="vb", delta=c(5,5), alpha=2, beta=1)
print(fit3) ##Posterior standard deviations returned also.
par(mfrow=c(3,2))

plot(fit3, which=3:4)

par(mfrow=c(1,1))

blca.boot Bayesian Latent Class Analysis via an EM Algorithm and Using Em-
pirical Bootstrapping

Description

Latent class analysis (LCA) attempts to find G hidden classes in binary data X. blca.boot repeatedly
samples from X with replacement then utilises an EM algorithm to find maximum posterior (MAP)
and standard error estimates of the parameters.

bica.boot

Usage

blca.boot(X, G,

alpha = 1, beta = 1, delta = rep(1, G),

start.vals = c("single”, "across"), counts.n = NULL,
fit = NULL, iter = 50, B = 100, relabel = FALSE,
verbose = TRUE, verbose.update = 10, small = 1e-100)

Arguments

X
G
alpha, beta

delta

start.vals

counts.n

fit

iter

B
relabel

verbose

verbose.update

small

The data matrix. This may take one of several forms, see data.blca.
The number of classes to run Ica for.

The prior values for the data conditional on group membership. These may take
several forms: a single value, recycled across all groups and columns, a vector
of length G or M (the number of columns in the data), or finally, a G x M
matrix specifying each prior value separately. Defaults to 1, i.e, a uniform prior,
for each value.

Prior values for the mixture components in model. Defaults to 1, i.e., a uniform
prior. May be single or vector valued (of length G).

Denotes how class membership is to be assigned during the initial step of the al-
gorithm. Two character values may be chosen, "single", which randomly assigns
data points exclusively to one class, or "across", which assigns class member-
ship via runif. Alternatively, class membership may be pre-specified, either
as a vector of class membership, or as a matrix of probabilities. Defaults to
"single".

If data patterns have already been counted, a data matrix consisting of each
unique data pattern can be supplied to the function, in addition to a vector
counts.n, which supplies the corresponding number of times each pattern oc-
curs in the data.

Previously fitted models may be supplied in order to approximate standard error
and unbiased point estimates. fit should be an object of class "blca.em". Defaults
to NULL if no object is supplied.

The maximum number of iterations that the algorithm runs over, for each boot-
strapped sample. Will stop earlier if the algorithm converges.

The number of bootstrap samples to run. Defaults to 100.

Logical valued. As the data is recursively sampled, it is possible that label-
switching may occur with respect to parameter estimates. If TRUE, parameter
estimates are checked at each iteration, and relabeled if necessary. Defaults to
FALSE.

Logical valued. If TRUE, the current number of completed bootstrap samples is
printed at regular intervals.

If verbose=TRUE, verbose.update determines the periodicity with which up-
dates are printed.

To ensure numerical stability a small constant is added to certain parameter es-
timates. Defaults to 1e-100.

8 bica.boot

Details

Bootstrapping methods can be used to estimate properties of a distribution’s parameters, such as
the standard error estimates, by constructing multiple resamples of an observed dataset, obtained
by sampling with replacement from said dataset. The multiple parameter estimates obtained from
these resamples may then be analysed. This method is implemented in blca.boot by first running
blca.em over the full data set and then using the returned values of the item and class probabilities
as the initial values when running the algorithm for each bootstrapped sample. Alternatively, initial
parameter estimates may be specified using the fit argument.

Note that if a previously fitted model is supplied, then the prior values with which the model was
fitted will be used for the sampling run, regardless of the values supplied to the prior arguments.

Value

A list of class "blca.boot" is returned, containing:

call The initial call passed to the function.

itemprob The item probabilities, conditional on class membership.
classprob The class probabilities.

Z Estimate of class membership for each unique datapoint.
itemprob.sd Posterior standard deviation estimates of the item probabilities.

classprob.sd Posterior standard deviation estimates of the class probabilities.
classprob.initial, itemprob.initial
Initial parameter values for classprob and itemprob, used to run over each boot-
strapped sample.

samples A list containing the parameter estimates for each bootstrapped sample.
logpost The log-posterior of the estimated model.
BIC The Bayesian Information Criterion for the estimated model.
AIC Akaike’s Information Criterion for the estimated model.
label Logical value, indicating whether label switching has been checked for.
counts The number of times each unique datapoint point occured.
prior A list containing the prior values specified for the model.
Note

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to arguments supplied to and returned by the function, some of which
are now returned with the corrected corrected suffix blca.em.sd (for standard deviation). For
backwards compatability reasons, the earlier suffix . se has been retained as a returned argument.

Author(s)
Arthur White

References

Wasserman, L, 22nd May 2007, All of Nonparametric Statistics, Springer-Verlag.

blca.em

See Also

blca.em, blca

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x <- rlca(1000, rbind(typel,type2), c(0.6,0.4))

fit.boot <- blca.boot(x, 2)

summary (fit.boot)

Not run: fit <- blca.em(x, 2, se=FALSE)

Not run: fit.boot <- blca.boot(x, 2, fit=fit)

Not run: fit.boot

Not run: plot(fit.boot, which=1:4)

blca.em Bayesian Latent Class Analysis via an EM Algorithm

Description

Latent class analysis (LCA) attempts to find G hidden classes in binary data X. blca.em utilises an
expectation-maximisation algorithm to find maximum a posteriori (map) estimates of the parame-

ters.

Usage
blca.em(X,
start.vals
iter = 500
sd = FALSE

Arguments
X
G
alpha, beta
delta

G, alpha = 1, beta = 1, delta =1,
= c("single"”, "across"), counts.n = NULL,

, restarts = 5, verbose = TRUE,
, se=sd, conv = 1e-06, small = 1e-100)

The data matrix. This may take one of several forms, see data.blca.
The number of classes to run Ica for.

The prior values for the data conditional on group membership. These may take
several forms: a single value, recycled across all groups and columns, a vector
of length G or M (the number of columns in the data), or finally, a G x M
matrix specifying each prior value separately. Defaults to 1, i.e, a uniform prior,
for each value.

Prior values for the mixture components in model. Defaults to 1, i.e., a uniform
prior. May be single or vector valued (of length G).

10

start.vals

counts.n

iter

restarts

verbose

sd

se

conv

small

Details

blca.em

Denotes how class membership is to be assigned during the initial step of the al-
gorithm. Two character values may be chosen, "single", which randomly assigns
data points exclusively to one class, or "across", which assigns class member-
ship via runif. Alternatively, class membership may be pre-specified, either
as a vector of class membership, or as a matrix of probabilities. Defaults to
"single".

If data patterns have already been counted, a data matrix consisting of each
unique data pattern can be supplied to the function, in addition to a vector
counts.n, which supplies the corresponding number of times each pattern oc-
curs in the data.

The maximum number of iterations that the algorithm runs over. Will stop early
if the algorithm is deemed to converge.

restarts determines how many times the algorithm is run with different start-
ing values. Parameter estimates from the run which achieved the highest log-
posterior are returned. If starting values are supplied, these are used for the first
run, after which random starting points are used. Defaults to 5.

Logical valued. If TRUE, the log-posterior from each run is printed.

Specifies whether posterior standard deviation estimates should also be returned.
If TRUE, calls to blca.em.sd.

Similarly to sd, specifies whether posterior standard deviation estimates should
also be returned, however, its use is discouraged. Should always agree with sd.
Retained for backwards compatability reasons. See ‘Note’.

Convergence criteria, i.e., how small should the log-posterior increase become
before the algorithm is deemed to have converged? Set relative to the size of the
data matrix.

To ensure numerical stability a small constant is added to certain parameter es-
timates. Defaults to 1e-100.

Regardless of the form of the data supplied to blca.em, it is internally converted to be of the form
data.blca. In particular, this should be noted when supplying starting values: the object must be
of either the same length or have the same number of rows as the number of unique observations
in the dataset, as opposed to the total number.

Posterior standard deviations and convergence checks are calculated using blca.em. sd.

Value

A list of class "blca.em" is returned, containing:

call
itemprob
classprob
z

itemprob.sd

The initial call passed to the function.

The item probabilities, conditional on class membership.
The class probabilities.

Estimate of class membership for each unique datapoint.

If returned, standard error estimates of the item probabilities.

blca.em

classprob.sd
logpost

BIC

AIC

iter
poststore
eps

counts
lpstarts

convergence

prior

sd

Note

11

If returned, standard error estimates of the class probabilities.

The log-posterior of the estimated model.

The Bayesian Information Criterion for the estimated model.

Akaike’s Information Criterion for the estimated model.

The number of iterations required before convergence.

The value of the log-posterior for each iteration.

The value for which the algorithm was deemed to have converged at.

The number of times each unique datapoint point occured.

The log-posterior achieved after each of the multiple starts of the algorithm.

If posterior standard deviations are calculated, then the Hessian of the model
is also checked to determine whether the algorithm has converged to at least a
local maximum. The convergence status is calculated by an integer value: 1
denotes acceptable convergence, 2 denotes that it converged at a saddle point,
3 that the algorithm ended before it had satisfactorily converged and 4 denotes
that at least one parameter value converged at a boundary value (i.e., a 1 or 0). 0
denotes that the algorithm converged satisfactorily but that the Hessian has not
been checked.

A list containing the prior values specified for the model.

A logical value indicating whether standard error estimates were returned.

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to arguments supplied to and returned by the function, some of which
are now returned with the corrected corrected suffix blca.em.sd (for standard deviation). For
backwards compatability reasons, the earlier suffix . se has been retained as a returned argument.

Author(s)

Arthur White

References

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data via the
EM Algorithm.” Journal of the Royal Statistical Society. Series B (Methodological), 39(1), pp.
1-38. ISSN 00359246. doi:10.2307/2984875. URL http://dx.doi.org/10.2307/2984875.

See Also

blca,blca.em.sd, blca.boot, blca.vb

12 blca.em.sd

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
X <- rlca(1000, rbind(typel,type2), c(0.6,0.4))

fit <- blca.em(x, 2)

print(fit)

fit <- blca.em(x, 2, sd=TRUE) ##Returns posterior standard deviations
summary (fit)

plot(fit)

Different starting values

fit <- blca.em(x, 2, start.vals="across")

xx <- data.blca(x)

fit <- blca.em(xx, 2, start.vals=sample(1:2, length(xx$counts) , replace=TRUE))

blca.em.sd Posterior Standard Deviation Estimates for Bayesian Latent Class
Analysis via an EM Algorithm

Description

Returns posterior standard deviation estimates for point estimates returned by blca.em. These are
obtained via asymptotic estmation of the Observed Information matrix. The Hessian of the log-
posterior is also checked to determine whether point estimates occur at at least a local maximum.

Usage

blca.em.sd(fit, x, counts.n = 1)

Arguments
fit An object of class "blca.em".
X A binary matrix. An object of class data.blca may also be supplied. In this
case the argument counts.n is ignored.
counts.n A vector which supplies the corresponding number of times each pattern in X
occurs in the data.
Details

This function is primarily intended for use in conjunction with blca.em, and may be called directly
by that function by setting se=TRUE. However it can in fact be used with any blca object.

blca.em.sd 13

Value

A list containing:

itemprob Posterior standard deviation estimates of the item probabilities.
classprob Posterior standard deviation estimates of the class probabilities.
convergence An integer value denoting whether point estimates occur at at least a local maxi-

mum. 1 denotes acceptable convergence, 2 denotes that it converged at a saddle
point, 3 that the algorithm ended before it converged and 4 denotes that at least
one parameter value converged at a boundary value.

Note

The posterior standard deviation estimates are derived asymptotically, i.e., by inverting the informa-
tion matrix of the parameters. These values are known to be unreliable in cases where parameters
estimates are close to 1 or 0, so caution is advised when checking their values. Bootstrapping
methods may provide better estimates.

Computationally, the method becomes becomes unstable for values close to 1 or 0. If the distance
of any of the supplied parameter values from O or 1 is <le-5, then posterior standard deviation
estimates for these values are returned as 0.

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to the function name, which has now been corrected to blca.em.sd
(for standard deviation). For backwards compatability reasons, the earlier function blca.em. se has
been retained as an in internal function.

Author(s)
Arthur White

See Also

blca.em, blca.boot

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)

type2 <- c(0.2, 0.2, 0.8, 0.8)

x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))
dat<- data.blca(x)

set.seed(1)

fit1 <- blca.em(dat, 2, se=TRUE)
fit1$itemprob.sd
fiti$classprob.sd

set.seed(1)

fit2<- blca.em(dat, 2, se=FALSE)
fit2.sd<- blca.em.sd(fit2, dat)
fit2.sd$itemprob
fit2.sd$classprob

14 blca.gibbs
blca.gibbs Bayesian Latent Class Analysis via Gibbs Sampling
Description
Latent class analysis (LCA) attempts to find G hidden classes in binary data X. blca.gibbs performs
Gibbs sampling to sample from the parameters’ true distribution.
Usage
blca.gibbs(X, G, alpha = 1, beta = 1, delta = 1,
start.vals = c("prior”, "single", "across"),
counts.n = NULL, iter = 5000, thin = 1,
accept=thin, burn.in = 100, relabel = TRUE,
verbose = TRUE, verbose.update = 1000)
Arguments
X The data matrix. This may take one of several forms, see data.blca.
G The number of classes to run Ica for.
alpha, beta The prior values for the data conditional on group membership. These may take
several forms: a single value, recycled across all groups and columns, a vector
of length G or M (the number of columns in the data), or finally, a G x M matrix
specifying each prior value separately. Defaults to 1, i.e, a uniform prior, for
each value.
delta Prior values for the mixture components in model. Defaults to 1, i.e., a uniform

start.vals

counts.n

iter
thin

accept

burn.in

prior. May be single or vector valued (of length G).

Denotes how class membership is to be assigned during the initial step of the
algorithm. One of three character values may be chosen: "prior", which samples
parameter values from prior distributions, "single", which randomly assigns data
points exclusively to one class, or "across", which assigns class membership via
runif. Alternatively, class membership may be pre-specified, either as a vector
of class membership, or as a matrix of probabilities. Defaults to "single".

If data patterns have already been counted, a data matrix consisting of each
unique data pattern can be supplied to the function, in addition to a vector
counts.n, which supplies the corresponding number of times each pattern oc-
curs in the data.

The number of iterations to run the gibbs sampler for after burn-in.

The thinning rate for samples from the distribution, in order to achieve good
mixing. Should take a value greater >0 and <=1. Defaults to 1.

Similarly to accept, specifies the thinning rate for samples from the distribution,
in order to achieve good mixing, however, its use is discouraged. Should always
agree with sd. Retained for backwards compatability reasons. See ‘Note’.

Number of iterations to run the Gibbs sampler for before beginning to store
values.

blca.gibbs
relabel
verbose

verbose.update

Details

15

Logical, indicating whether a mechanism to prevent label-switching be used or
not. Defaults to TRUE.

Logical valued. If TRUE, the current number of completed samples is printed at
regular intervals.

If verbose=TRUE, verbose.update determines the periodicity with which up-
dates are printed.

The library coda provide extensive tools to diagnose and visualise MCMC chains. The generic
function as.mcmc.blca.gibbs, makes blca.gibbs objects compatible with functions such as
summary.mcmc and raftery.diag.

Value

A list of class "blca.gibbs" is returned, containing:

call
classprob
itemprob
classprob.sd
itemprob.sd
logpost

YA

samples

DIC
BICM
AICM
counts
prior
thin

burn.in

relabel
labelstore

Note

The initial call passed to the function.

The class probabilities.

The item probabilities, conditional on class membership.
Posterior standard deviation estimates of the class probabilities.
Posterior standard deviation estimates of the item probabilities.
The log-posterior of the estimated model.

Estimate of class membership for each unique datapoint.

A list containing Gibbs samples of the item and class probabilities and log-
posterior.

The Deviance Information Criterion for the estimated model.

The Bayesian Information Criterion (Monte Carlo) for the estimated model.
Akaike’s Information Criterion (Monte Carlo) for the estimated model.

The number of times each unique datapoint point occured.

A list containing the prior values specified for the model.

The acceptance rate for samples from the distribution.

The number of iterations the gibbs sampler was run before beginning to store
values.

Logical, indicating whether a mechanism to prevent label-switching was used.

The stored labels during the sampling run. If relabel=TRUE, these show how
labels were permuted in an attempt to avoid label-switching in the model.

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to arguments supplied to and returned by the function, some of which
are now returned with the corrected corrected suffix blca.em.sd (for standard deviation). For
backwards compatability reasons, the earlier suffix . se has been retained as a returned argument.
The argument thin replaces accept, which appeared in the earliest version of the package. This is
to maintain consistency with other packages, such as rjags.

16

Author(s)

Arthur White

References

bica.vb

Spiegelhalter DJ, Best NG, Carlin BP, Linde Avd (2002). “Bayesian Measures of Model Complexity
and Fit” Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(4), pp.
583-639. ISSN 13697412. URL http://www.jstor.org/stable/3088806.

Raftery AE, Newton MA, Satagopan JM, Krivitsky PN (2007). “Estimating the integrated likeli-
hood via posterior simulation using the harmonic mean identity.” In Bayesian Statistics, pp. 1-45.

See Also

blca, as.mcmc.blca.gibbs, raftery.diag

Examples

Generate a 4-dim. sample with 2 latent classes of 500 data points each.
The probabilities for the 2 classes are given by typel and type2.

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))

Not run: fit.gibbs<-blca.gibbs(x,2, iter=1000, burn.in=10)

Not run: summary(fit.gibbs)

Not run: plot(fit.gibbs)

Not run: raftery.diag(as.mcmc(fit.gibbs))

Not run: fit.gibbs<-blca.gibbs(x,2, iter=10000, burn.in=100, thin=0.5)

Not run: plot(fit.gibbs, which=4)

Not run: raftery.diag(as.mcmc(fit.gibbs))

blca.vb Bayesian Latent Class Analysis via a variational Bayes algorithm

Description

Latent class analysis (LCA) attempts to find G hidden classes in binary data X. blca.vb uses a
variational EM algorithm to find the distribution which best approximates the parameters’ true

distribution.

Usage

blca.vb(X, G, alpha = 1, beta = 1, delta =1,

start.vals = c("single”, "across"), counts.n = NULL,

iter = 500, restarts = 1, verbose = TRUE, conv = 1e-06,
small = 1e-100)

bica.vb

Arguments

X
G
alpha, beta

delta

start.vals

counts.n

iter

restarts

verbose

conv

small

Details

17

The data matrix. This may take one of several forms, see data.blca.
The number of classes to run Ica for.

The prior values for the data conditional on group membership. These may take
several forms: a single value, recycled across all groups and columns, a vector
of length G or M (the number of columns in the data), or finally, a G x M matrix
specifying each prior value separately. Defaults to 1, i.e, a uniform prior, for
each value.

Prior values for the mixture components in model. Defaults to 1, i.e., a uniform
prior. May be single or vector valued (of length G).

Denotes how class membership is to be assigned during the initial step of the al-
gorithm. Two character values may be chosen, "single", which randomly assigns
data points exclusively to one class, or "across", which assigns class member-
ship via runif. Alternatively, class membership may be pre-specified, either
as a vector of class membership, or as a matrix of probabilities. Defaults to
"single".

If data patterns have already been counted, a data matrix consisting of each
unique data pattern can be supplied to the function, in addition to a vector
counts.n, which supplies the corresponding number of times each pattern oc-
curs in the data.

The maximum number of iterations that the algorithm runs over. Will stop ear-
lier if the algorithm converges.

restarts determines how many times the algorithm is run with different start-
ing values. Parameter estimates from the run which achieved the highest log-
posterior are returned. If starting values are supplied, these are used for the first
run, after which random starting points are used. Defaults to 1.

Logical valued. If TRUE, the log-posterior from each run is printed.

Convergence criteria, i.e., how small should the log-posterior increase become
before the algorithm is deemed to have converged? Set relative to the size of the
data matrix.

To ensure numerical stability a small constant is added to certain parameter es-
timates. Defaults to 1e-100.

The variational Bayes method approximates the posterior using as a product of independent dis-
tributions. Parameters are then estimated for this approximate distribution using a variational EM
algorithm. This method has a tendency to underestimate parameter’s variance; as such the standard
error and density estimates should be interpreted with caution.

While it is worth starting the algorithm from multiple starting points, variational algorithms have
less of a tendency to cpnverge at saddle point or sub-optimal local maxima.

Value

A list of class "blca.vb" is returned, containing:

18

call
itemprob
classprob
itemprob.sd
classprob.sd

parameters

z

LB
lbstore
iter

eps

counts

prior

Note

bica.vb

The initial call passed to the function.

The item probabilities, conditional on class membership.

The class probabilities.

Posterior standard deviation estimates of the item probabilities.
Posterior standard deviation estimates of the class probabilities.

A list containing posterior parameter values for item and class probabilities,
which are assumed to follow beta and Dirichlet distributions respectively.

Estimate of class membership for each unique datapoint.

The lower bound estimate of the log-posterior of the estimated model.
The value of the lower bound estimate for each iteration.

The number of iterations required before convergence.

The amount that the lower bound increased at the final iteration of the algo-
rithm’s run.

The number of times each unique datapoint point occured.

A list containing the prior values specified for the model.

Variational Bayes approximations, are known to often underestimate the standard errors of the pa-
rameters under investigation, so caution is advised when checking their values.

Earlier versions of this function erroneously referred to posterior standard deviations as standard
errors. This also extended to arguments supplied to and returned by the function, some of which
are now returned with the corrected corrected suffix blca.em.sd (for standard deviation). For
backwards compatability reasons, the earlier suffix . se has been retained as a returned argument.

Author(s)

Arthur White

References

Ormerod J, Wand M (2010). “Explaining Variational Approximations.” The American Statistician,

64(2), 140-153.

See Also

blca.em, blca.gibbs

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))

fit <- blca.vb(x, 2)

print(fit)

data.blca 19

summary (fit)
par(mfrow=c(3,2))
plot(fit)
par(mfrow=c(1,1))

data(Alzheimer)
sj <- blca.vb(Alzheimer, 10, delta=1/10)
sj$classprob #H#Empty Groups

data.blca Conveniently Format Data for Bayesian Latent Class

Description

Conveniently format data for use with blca.

Usage
data.blca(X)

Arguments

X A data matrix intended for latent class analysis. See details.

Details

The data may take of one of two forms, either as a binary matrix, or as a matrix consisting of unique
binary rows, with a column of counts. In either case data.blca will convert X into a list, with
binary matrix and count vector explicitly identified.

Value

A list of class data.blca, containing

counts.n A vector of counts of each unique data entry.
data A matrix consisting of each unique data entry.
Note

This function is used internally by blca, so its use is not necessary, though it will speed up compu-
tation time to supply the model with data of this form if repeated use of a function is required.

Author(s)
Arthur White

See Also
blca

20 MAP

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4)) ##0nly 16 unique observations possible

data.blca(x)

MAP Maximum a posteriori (MAP) Classification

Description

MAP obtains maximum a posteriori (MAP) classifications. unMAP converts a classification vector
into an indicator matrix.

Usage
MAP(mat, tie = c("random”, "standard"”))
unMAP (vec)
Arguments
mat An N x G matrix, typically /N denotes observations from a dataset and G de-
notes the number of underlying groups in the data. Each row is expected to
contain positive entries which sum to 1, but this isn’t strictly necessary.
tie May take one of two values, "random” or "standard". Takes the value "random”
by default. See ’Details’.
vec An vector consisting of integer entries. unMAP is intended to be used with a
vector whose entries are classifications of dataset observations.
Details

For each row in mat, MAP assigns an indexing value identifying the entry in the row taking the highest
value. In the case where multiple values in a row share a common largest value, tie determines
how such a value is chosen. If tie = "random”, one of the suitable values is chosen at random;
when tie = "standard”, the first such suitable value is selected, in common with other packages.
Defaults to "random”.

Value
MAP returns a classification vector. unMAP returns a classification matrix, with each row indicating
group membership by the column entry which is non-zero (and equal to one).

Author(s)
Arthur White

plot.blca 21

See Also

Zscore

Examples

##Simple example

s1<- sample(1:2, 10, replace=TRUE)
UnMAP(s1)

MAP (unMAP (s1))

##More to the point

data(Alzheimer)

fit<- blca.em(Alzheimer, 2)

MAP(fit$Z) ## Best estimates of group membership.

mat1<- matrix(1/3, nrow=10, ncol=3) #idemonstrating the use of "tie"” argument
MAP(mat1, tie="random")
MAP(mat1, tie="standard")

plot.blca Plot Parameter Summaries, Density Estimates and Model Diagnostics
for Bayesian Latent Class Analysis

Description

Five plots are selectable: a plot summarising item and class probability, a mosaic plot representing
classification uncertainty, item probability density estimates, conditional class probability density
estimates, and a diagnostics plot. The default setting is for the first four plots to be displayed, with
the exception of plot.blca.em, which cannot produce density plots and so only produces the first two
plots by default.

Usage
S3 method for class 'blca'
plot(x, which = 1L, main = "", coll = heat.colors(12), ...)
Arguments
X An object of class blca.
which Which plots to select. May be any subset of 1:5, with some exceptions. See
‘Details’.
main An overall title for the plot: see title.
coll Specifies a list of colours to be used by the heat map plot used when which =

1.image. Uses heat.colors by default, but several other choices are available.
See the help files of image.plot, image and palette for details.

Further arguments to be passed onto the plotting devices. When which =1, the
plotting device is image.plot, mosaicplot in the case of which=2, and when
which=3:5, plot.

22 plot.blca

Details

Not all plots are available for some object classes. If the object is of class blca.em, density plots
(which = 3:4) are unavailable, and a warning is returned. Similarly, diagnostic plots (which = 5)
for blca.boot objects are unavailable.

The available diagnostic plots differ depending on the class of the object in question. For blca.em
and blca.vb objects, the plot is intended as visual aid to check whether the respective algorithms
have converged, i.e., that the log-posterior or lower bound have ceased increasing after successive
iterations. The main aim of the diagnostic plot for blca.gibbs objects is to visually check diagnos-
tic measures such as mixing and burn-in, and also to assess whether label-switching has occurred,
or been corrected for satisfactorily.

Currently, the colors used in a plot can only be specified directly for which = 1. For classification
uncertainty (which = 2) and density plots (which = 3:4), each group is colored by the palette
function so that Group g takes color palette()[g+1]. For the default settings, Group 1 will then
be colored red, Group 2 green, and so on.

Author(s)
Arthur White

References

Arthur White, Thomas Brendan Murphy (2014). BayesLCA: An R Package for Bayesian Latent
Class Analysis." Journal of Statistical Software, 61(13), 1-28. URL.: http://www.jstatsoft.org/v61/i13/.

See Also

image.plot, mosaicplot.

Examples

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))

fit <- blca.em(x, 2)
plot(fit, which = 1:2) ## Parameter summary and classification uncertainty plots.

palette(rainbow(6)) ## Change color scheme
plot(fit, which = 2)
palette("default”) ## Restore default color scheme

fit2<- blca.vb(x,2)
par(mfrow = c(3,4))
plot(fit2, which = 3) ## Approximate density plots for item probability parameters.
par(mfrow = c(1,1))

print.blca 23

print.blca Bayesian Latent Class Analysis

Description

Print a blca object.

Usage
S3 method for class 'blca’
print(x, ...)
Arguments
X An object of class blca.
Additional arguments to be passed onto lower-level functions at a later stage of
development.
Details

Prints parameter maximum a posteriori (map) and standard deviation estimates. The latter are
sometimes unavailable for blca.em objects.

Value

The blca object itself.

Author(s)

Arthur White

Examples

data(Alzheimer)

fit1<- blca(Alzheimer, 2, method="em")
class(fit1)

print(fit1)

fit2<- blca(Alzheimer, 2, method="em", sd=TRUE)
print(fit2) ## Standard Errors also printed

fit3<- blca(Alzheimer, 2, method="vb")
print(fit3) ## Standard Errors as standard

24

rica

rlca

Randomly Generate Binary Data with Underlying Latent Classes

Description

A function which randomly generates data with respect to some underlying latent class. Data may
be generated either by specifying item and class probabilities or by utilising an object previously

fitted to data.

Usage

rlca(n, itemprob = 0.5, classprob = 1, fit = NULL)

Arguments

n
itemprob
classprob

fit

Author(s)

Arthur White

See Also

data.blca

Examples

Number of data points to be generated.
The item probabilities, conditional on class membership. Defaults to 0.5.
The class probabilities. Defaults to 1, i.e., a one class model.

An object of class blca. If fit is supplied, data is generated using the class and
item probabilities obtained. Defaults to NULL.

typel <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x<- rlca(1000, rbind(typel,type2), c(0.6,0.4))

fit <- blca.em(x, 2)

x2<- rlca(1000, fit=fit)
fit2<- blca.em(x2,2)

summary.blca 25

summary.blca Bayesian Latent Class Analysis

Description

Summary method for class "blca".

Usage
S3 method for class 'blca'
summary (object, ...)

Arguments
object Object of class blca.

Additional arguments to be passed onto lower-level functions at a later stage of
development.

Value

A brief summary consisting of two parts: the prior values specified to the model, and model diag-
nostics specific to the inference method used, such as information about the log-posterior (or lower
bound in the case of blca. vb), as well the number of iterations the algorithm ran for, etc..

Author(s)
Arthur White

Examples

data(Alzheimer)
summary (blca.em(Alzheimer, 2))
summary(blca.vb(Alzheimer, 2, alpha=2, beta=2, delta=0.5))

Not run: (fit.gibbs)<- blca.gibbs(Alzheimer, 2, delta=2)
Not run: summary(fit.gibbs)

Zscore Evaluating Class Membership of Binary Data

Description

For a fitted model of class blca, and binary data X, the probability of class membership for each
data point is provided.

26 Zscore

Usage

Zscore(X, fit = NULL, itemprob = NULL, classprob = NULL)

Arguments
X A binary data matrix. X must have the same number of columns as the data that
fit was applied to.
fit An object of class blca.
itemprob A matrix of item probabilities, conditional on class membership.
classprob A vector denoting class membership probability.
Details

Calculation of the probability of class membership for a data point relies on two parameters, class
membership and item probability. These may be supplied directly to Zscore, or alternatively, ablca
object containing both parameters can be used instead.

Value

A matrix of equal rows to X and with G, the number of classes, columns, where each row is a score
denoting the probability of class membership. Each row should therefore sum to 1.

Note

Zscore.internal has the same functionality as Zscore, but is only intended for internal use.

Author(s)
Arthur White

Examples

set.seed(1)

typel <- c(0.8, 0.8, 0.05, 0.2)

type2 <- c(0.2, 0.2, 0.05, 0.8)

x<- rlca(250, rbind(typel,type2), c(0.5,0.5))

fit <- blca.em(x, 2)

fit$Z ## Unique data types

Zscore(x, fit=fit) ## Whole data set

Zscore(c(@, 1, 1, @), fit=fit) ## Not in data set

Zscore(x, itemprob=rbind(typel,type2), classprob=c(0.5,0.5))

Index

* Alzheimers blca, 5
Alzheimer, 3 * map

* Alzheimer MAP, 20
Alzheimer, 3 * package

* James BayesLCA-package, 2
Alzheimer, 3 * plot

* Saint plot.blca, 21
Alzheimer, 3 * posterior

* Syndrome blca.em.sd, 12
Alzheimer, 3 * print

* as.mcme print.blca, 23
as.mecmc.blca.gibbs, 3 * random

* blca rlca, 24
as.mcmc.blca.gibbs, 3 * standard
blca. 5 blca.em.sd, 12
blca.boot, 6 * summary
blca.em. 9 summary.blca, 25
blca.em.sd, 12 * unmap 0
blca.gibbs, 14 MAP,
blca.vb. 16 + variational

data.blca, 19 blca.vb, 16

plot.blca, 21 Alzheimer, 3

print.blca, 23 as.mcmc.blca.gibbs, 3, 15, 16
rlca, 24
summary.blca, 25 BayesLCA (BayesLCA-package), 2
Zscore, 25 BayesLCA-package, 2

+ bootstrap blca, 4,5,9,11,16,19,21,23,25, 26
blca.boot, 6 blca.boot, 5, 6,6, 11, 13,22

x data.blca blca.em, 5, 6,9,9, 10, 12, 13, 18, 22, 23
data.blca, 19 blca.em.sd, 10, 11,12

x datasets blca.em.se (blca.em.sd), 12
Alzheimer, 3 blca.gibbs, 4-6, 14, 18, 22

* deviation blca.vb, 5, 6, 11,16, 22
blca.em.sd, 12 blca2memc (as.mcmc.blca.gibbs), 3

*em data.blca, 5,7, 9, 10, 12, 14, 17, 19, 19, 24
blca.em, 9

+ gibbs geweke.diag, 4
blca.gibbs, 14

* Ica heat.colors, 2/

27

28 INDEX

image, 21
image.plot, 21, 22

MAP, 20
mcme, 4
mosaicplot, 21, 22

palette, 21, 22

plot, 21/

plot.blca, 21

print.blca, 23

print.summary.blca (summary.blca), 25

raftery.diag, 4, 15, 16
rlca, 24
runif, 7, 10, 14, 17

summary.blca, 25
summary.mcmc, 15

title, 21
UNMAP (MAP), 20

Zscore, 21,25

	BayesLCA-package
	Alzheimer
	as.mcmc.blca.gibbs
	blca
	blca.boot
	blca.em
	blca.em.sd
	blca.gibbs
	blca.vb
	data.blca
	MAP
	plot.blca
	print.blca
	rlca
	summary.blca
	Zscore
	Index

