
Package ‘BSL’
January 20, 2025

Type Package

Title Bayesian Synthetic Likelihood

Version 3.2.5

Date 2022-11-02

Description
Bayesian synthetic likelihood (BSL, Price et al. (2018) <doi:10.1080/10618600.2017.1302882>)
is an alternative to standard, non-parametric approximate Bayesian

computation (ABC). BSL assumes a multivariate normal distribution
for the summary statistic likelihood and it is suitable when the
distribution of the model summary statistics is sufficiently regular.
This package provides a Metropolis Hastings Markov chain Monte Carlo
implementation of four methods (BSL, uBSL, semiBSL and BSLmisspec) and two
shrinkage estimators (graphical lasso and Warton's estimator).
uBSL (Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) uses
an unbiased estimator to the normal density. A semi-parametric version
of BSL (semiBSL, An et al. (2018) <arXiv:1809.05800>) is more robust
to non-normal summary statistics. BSLmisspec (Frazier et al. 2019
<arXiv:1904.04551>) estimates the Gaussian synthetic likelihood whilst
acknowledging that there may be incompatibility between the model and the
observed summary statistic. Shrinkage estimation can help to decrease the
number of model simulations when the dimension of the summary statistic is
high (e.g., BSLasso, An et al. (2019) <doi:10.1080/10618600.2018.1537928>).
Extensions to this package are planned. For a journal article describing how
to use this package, see An et al. (2022) <doi:10.18637/jss.v101.i11>.

Depends R (>= 3.3.0)

License GPL (>= 2)

LazyLoad yes

Imports glasso, ggplot2, MASS, mvtnorm, copula, whitening, graphics,
gridExtra, foreach, coda, Rcpp, doRNG, methods, stringr, Rdpack
(>= 0.7)

Suggests elliplot, doParallel, rbenchmark, mixtools

LinkingTo RcppArmadillo, Rcpp

LazyData true

1

https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2017.1302882
https://arxiv.org/abs/1809.05800
https://arxiv.org/abs/1904.04551
https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.18637/jss.v101.i11

2 Contents

RoxygenNote 7.1.1

Encoding UTF-8

Collate 'BSL-package.R' 'RcppExports.R' 's4-MODEL.R' 's4-BSL.R'
'bsl.R' 'cell.R' 'combinePlotsBSL.R' 'covWarton.R'
'estimateLoglike.R' 'estimateWhiteningMatrix.R'
'gaussianRankCorr.R' 'gaussianSynLike.R'
'gaussianSynLikeGhuryeOlkin.R' 'imports.R' 'kernelCDF.R'
'logitTransform.R' 'ma2.R' 'mgnk.R' 'myMiniProgressBar.R'
's4-PENALTY.R' 'selectPenalty.R' 'semiparaKernelEstimate.R'
'sliceGammaMean.R' 'sliceGammaVariance.R' 'synLikeMisspec.R'
'toad.R'

RdMacros Rdpack

NeedsCompilation yes

Author Ziwen An [aut] (<https://orcid.org/0000-0002-9947-5182>),
Leah F. South [aut, cre] (<https://orcid.org/0000-0002-5646-2963>),
Christopher C. Drovandi [aut] (<https://orcid.org/0000-0001-9222-8763>)

Maintainer Leah F. South <l1.south@qut.edu.au>

Repository CRAN

Date/Publication 2022-11-03 09:00:07 UTC

Contents
BSL-package . 3
bsl . 5
BSL-class . 9
cell . 11
combinePlotsBSL . 15
cor2cov . 17
estimateLoglike . 18
estimateWhiteningMatrix . 20
gaussianRankCorr . 22
gaussianSynLike . 23
gaussianSynLikeGhuryeOlkin . 25
getGamma . 26
getLoglike . 27
getPenalty . 27
getTheta . 28
ma2 . 28
mgnk . 32
MODEL-class . 35
obsMat2deltax . 38
PENALTY-class . 39
selectPenalty . 40
semiparaKernelEstimate . 42
simulate_cell . 44

https://orcid.org/0000-0002-9947-5182
https://orcid.org/0000-0002-5646-2963
https://orcid.org/0000-0001-9222-8763

BSL-package 3

simulation . 45
sim_toad . 45
summStat . 46
synLikeMisspec . 46
toad . 48

Index 51

BSL-package Bayesian synthetic likelihood

Description

Bayesian synthetic likelihood (BSL, Price et al. (2018)) is an alternative to standard, non-parametric
approximate Bayesian computation (ABC). BSL assumes a multivariate normal distribution for the
summary statistic likelihood and it is suitable when the distribution of the model summary statistics
is sufficiently regular.

In this package, a Metropolis Hastings Markov chain Monte Carlo (MH-MCMC) implementation
of BSL is available. We also include implementations of four methods (BSL, uBSL, semiBSL and
BSLmisspec) and two shrinkage estimators (graphical lasso and Warton’s estimator).

Methods: (1) BSL (Price et al. 2018), which is the standard form of Bayesian synthetic likelihood,
assumes the summary statistic is roughly multivariate normal; (2) uBSL (Price et al. 2018), which
uses an unbiased estimator to the normal density; (3) semiBSL (An et al. 2019), which relaxes
the normality assumption to an extent and maintains the computational advantages of BSL without
any tuning; and (4) BSLmisspec (Frazier and Drovandi 2021), which estimates the Gaussian syn-
thetic likelihood whilst acknowledging that there may be incompatibility between the model and
the observed summary statistic.

Shrinkage estimators are designed particularly to reduce the number of simulations if method is
BSL or semiBSL: (1) graphical lasso (Friedman et al. 2008) finds a sparse precision matrix with
an L1-regularised log-likelihood. An et al. (2019) use graphical lasso within BSL to bring down
the number of simulations significantly when the dimension of the summary statistic is high; and
(2) Warton’s estimator (Warton 2008) penalises the correlation matrix and is straightforward to
compute. When using the Warton’s shrinkage estimator, it is also possible to utilise the Whitening
transformation (Kessy et al. 2018) to help decorrelate the summary statsitics, thus encouraging
sparsity of the synthetic likelihood covariance matrix.

Parallel computing is supported through the foreach package and users can specify their own par-
allel backend by using packages like doParallel or doMC. The n model simulations required to es-
timate the synthetic likelihood at each iteration of MCMC will be distributed across multiple cores.
Alternatively a vectorised simulation function that simultaneously generates n model simulations is
also supported.

The main functionality is available through:

• bsl: The general function to perform BSL, uBSL, or semiBSL (with or without parallel com-
puting).

• selectPenalty: A function to select the penalty when using shrinkage estimation within BSL
or semiBSL.

4 BSL-package

Several examples have also been included. These examples can be used to reproduce the results of
An et al. (2019), and can help practitioners learn how to use the package.

• ma2: The MA(2) example from An et al. (2019).

• mgnk: The multivariate G&K example from An et al. (2019).

• cell: The cell biology example from Price et al. (2018) and An et al. (2019).

• toad: The toad example from Marchand et al. (2017), and also considered in An et al. (2019).

Extensions to this package are planned. For a journal article describing how to use this package,
including full descriptions on the MA(2) and toad examples, see An et al. (2022).

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

An Z, Nott DJ, Drovandi C (2019). “Robust Bayesian Synthetic Likelihood via a Semi-Parametric
Approach.” Statistics and Computing (In Press).

An Z, South LF, Drovandi CC (2022). “BSL: An R Package for Efficient Parameter Estimation
for Simulation-Based Models via Bayesian Synthetic Likelihood.” Journal of Statistical Software,
101(11), 1–33. doi: 10.18637/jss.v101.i11.

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Frazier DT, Drovandi C (2021). “Robust Approximate Bayesian Inference with Synthetic Like-
lihood.” Journal of Computational and Graphical Statistics (In Press). https://arxiv.org/abs/
1904.04551.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Kessy A, Lewin A, Strimmer K (2018). “Optimal Whitening and Decorrelation.” The American
Statistician, 72(4), 309–314. doi: 10.1080/00031305.2016.1277159.

Marchand P, Boenke M, Green DM (2017). “A stochastic movement model reproduces patterns
of site fidelity and long-distance dispersal in a population of Fowlers toads (Anaxyrus fowleri).”
Ecological Modelling, 360, 63–69. ISSN 0304-3800, doi: 10.1016/j.ecolmodel.2017.06.025.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal of
Computational and Graphical Statistics, 27, 1–11. doi: 10.1080/10618600.2017.1302882.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

https://doi.org/10.18637/jss.v101.i11
https://doi.org/10.1080/10618600.2018.1537928
https://arxiv.org/abs/1904.04551
https://arxiv.org/abs/1904.04551
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1016/j.ecolmodel.2017.06.025
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021

bsl 5

bsl Performing BSL, uBSL, semiBSL and BSLmisspec

Description

This is the main function for performing MCMC BSL (with a standard or non-standard likelihood
estimator) to sample from the approximate posterior distribution. A couple of extentions to the stan-
dard approach are available by changing the following arguments, method, shrinkage, whitening,
misspecType. Parallel computing is supported with the R package foreach.

Usage

bsl(
y,
n,
M,
model,
covRandWalk,
theta0,
fnSim,
fnSum,
method = c("BSL", "uBSL", "semiBSL", "BSLmisspec"),
shrinkage = NULL,
penalty = NULL,
fnPrior = NULL,
simArgs = NULL,
sumArgs = NULL,
logitTransformBound = NULL,
standardise = FALSE,
GRC = FALSE,
whitening = NULL,
misspecType = NULL,
tau = 1,
parallel = FALSE,
parallelArgs = NULL,
thetaNames = NULL,
plotOnTheFly = FALSE,
verbose = 1L

)

Arguments

y The observed data. Note this should be the raw dataset NOT the set of summary
statistics.

n The number of simulations from the model per MCMC iteration for estimating
the synthetic likelihood.

6 bsl

M The number of MCMC iterations.

model A “MODEL” object generated with function newModel. See newModel.

covRandWalk The covariance matrix of a multivariate normal random walk proposal distribu-
tion used in the MCMC.

theta0 Deprecated, will be removed in the future, use model instead. Initial guess of
the parameter value, which is used as the starting value for MCMC.

fnSim Deprecated, will be removed in the future, use model instead. A function that
simulates data for a given parameter value. The first argument should be the pa-
rameters. Other necessary arguments (optional) can be specified with simArgs.

fnSum Deprecated, will be removed in the future, use model instead. A function for
computing summary statistics of data. The first argument should be the observed
or simulated dataset. Other necessary arguments (optional) can be specified with
sumArgs.

method A string argument indicating the method to be used. The default, “BSL”, runs
standard BSL. “uBSL” uses the unbiased estimator of a normal density of Ghurye
and Olkin (1969). “semiBSL” runs the semi-parametric BSL algorithm and is
more robust to non-normal summary statistics. “BSLmisspec” estimates the
Gaussian synthetic likelihood whilst acknowledging that there may be incom-
patibility between the model and the observed summary statistic (Frazier and
Drovandi 2021).

shrinkage A string argument indicating which shrinkage method to be used. The default
is NULL, which means no shrinkage is used. Shrinkage estimation is only avail-
able for methods “BSL” and “semiBSL”. Current options are “glasso” for the
graphical lasso method of Friedman et al. (2008) and “Warton” for the ridge
regularisation method of Warton (2008).

penalty The penalty value to be used for the specified shrinkage method. Must be be-
tween zero and one if the shrinkage method is “Warton”.

fnPrior Deprecated, will be removed in the future, use model instead. A function that
computes the log prior density for a parameter. The default is NULL, which uses
an improper flat prior over the real line for each parameter. The function must
have a single input: a vector of parameter values.

simArgs Deprecated, will be removed in the future, use model instead. A list of additional
arguments to pass into the simulation function. Only use when the input fnSim
requires additional arguments. The default is NULL.

sumArgs Deprecated, will be removed in the future, use model instead. A list of additional
arguments to pass into the summary statistics function. Only use when the input
fnSum requires additional arguments. The default is NULL.

logitTransformBound

A p by 2 numeric matrix indicating the upper and lower bounds of parameters if
a logit transformation is used on the parameter space, where p is the number of
parameters. The default is NULL, which means no logit transformation is used.
It is also possible to define other transformations within the simulation and prior
function from model. The first column contains the lower bound of each param-
eter and the second column contains the upper bound. Infinite lower or upper
bounds are also supported, eg. matrix(c(1,Inf,0,10,-Inf,0.5),3,2,byrow=TRUE).

bsl 7

standardise A logical argument that determines whether to standardise the summary statis-
tics before applying the graphical lasso. This is only valid if method is “BSL”,
shrinkage is “glasso” and penalty is not NULL. The diagonal elements will not be
penalised if the shrinkage method is “glasso”. The default is FALSE.

GRC A logical argument indicating whether the Gaussian rank correlation matrix
(Boudt et al. 2012) should be used to estimate the covariance matrix in “BSL”
method. The default is FALSE, which uses the sample covariance by default.

whitening This argument determines whether Whitening transformation should be used in
“BSL” method with Warton’s shrinkage. Whitening transformation helps decor-
relate the summary statistics, thus encouraging sparsity of the synthetic likeli-
hood covariance matrix. This might allow heavier shrinkage to be applied with-
out losing much accuracy, hence allowing the number of simulations to be re-
duced. By default, NULL represents no Whitening transformation. Otherwise this
is enabled if a Whitening matrix is provided. See estimateWhiteningMatrix
for the function to estimate the Whitening matrix.

misspecType A string argument indicating which type of model misspecification to be used.
The two options are "mean" and "variance". Only used when method is “BSLmis-
spec”. The default, NULL, means no model misspecification is considered.

tau A numeric argument, parameter of the prior distribution for "BSLmisspec" method.
For mean adjustment, tau is the scale of the Laplace distribution. For vari-
ance inflation, tau is the mean of the exponential distribution. Only used when
method is “BSLmisspec”.

parallel A logical value indicating whether parallel computing should be used for sim-
ulation and summary statistic evaluation. The default is FALSE. When model
simulation is fast, it may be preferable to perform serial or vectorised compu-
tations to avoid significant communication overhead between workers. Parallel
computation can only be used if not using a vectorised simulation function, see
MODEL for options of vectorised simulation function.

parallelArgs A list of additional arguments to pass into the foreach function. Only used
when parallel computing is enabled, default is NULL.

thetaNames Deprecated, will be removed in the future, use model instead. A string vector
of parameter names, which must have the same length as the parameter vector.
The default is NULL.

plotOnTheFly A logical or numeric argument defining whether or by how many iterations a
posterior figure will be plotted during running. If TRUE, a plot of approximate
univariate posteriors based on the current accepted samples will be shown every
one thousand iterations. The default is FALSE.

verbose An integer indicating the verbose style. 0L means no verbose messages will
be printed. 1L uses a custom progress bar to track the progress. 2L prints the
iteration numbers (1:M) to track the progress. The default is 1L.

Value

An object of class bsl is returned, see BSL for more information of the S4 class.

8 bsl

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Robustness
Properties.” Statistics and Computing, 22(2), 471–483. doi: 10.1007/s1122201192370.

Frazier DT, Drovandi C (2021). “Robust Approximate Bayesian Inference with Synthetic Like-
lihood.” Journal of Computational and Graphical Statistics (In Press). https://arxiv.org/abs/
1904.04551.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Ghurye SG, Olkin I (1969). “Unbiased Estimation of Some Multivariate Probability Densities and
Related Functions.” Ann. Math. Statist., 40(4), 1261–1271.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal of
Computational and Graphical Statistics, 27, 1–11. doi: 10.1080/10618600.2017.1302882.

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

An Z, Nott DJ, Drovandi C (2019). “Robust Bayesian Synthetic Likelihood via a Semi-Parametric
Approach.” Statistics and Computing (In Press).

See Also

ma2, cell, mgnk and toad for examples. selectPenalty for a function to tune the BSLasso tuning
parameter and plot for functions related to visualisation.

Examples

Not run:
This is just a minimal test run, please see package built-in examples for more
comprehensive usages of the function
toy_sim <- function(n, theta) matrix(rnorm(n, theta), nrow = n)
toy_sum <- function(x) x
model <- newModel(fnSimVec = toy_sim, fnSum = toy_sum, theta0 = 0)

result_toy <- bsl(y = 1, n = 100, M = 1e4, model = model, covRandWalk = matrix(1),
method = "BSL", plotOnTheFly = TRUE)

summary(result_toy)
plot(result_toy)

End(Not run)

https://doi.org/10.1007/s11222-011-9237-0
https://arxiv.org/abs/1904.04551
https://arxiv.org/abs/1904.04551
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2018.1537928

BSL-class 9

BSL-class S4 class “BSL”.

Description

The S4 class “BSL” is produced by running function bsl and contains the result of a BSL run.
Basic S4 methods show, summary and plot are provided. theta and loglike returns the MCMC
samples of parameter values and estimated log-likelihoods.

Usage

S4 method for signature 'BSL'
show(object)

S4 method for signature 'BSL'
summary(object, burnin = 0, thetaNames = NULL)

S4 method for signature 'BSL,ANY'
plot(
x,
which = 1L,
thin = 1,
burnin = 0,
thetaTrue = NULL,
options.plot = NULL,
top = "Approximate Univariate Posteriors",
options.density = list(),
options.theme = list()

)

S4 method for signature 'BSL'
getTheta(object, burnin = 0, thin = 1)

S4 method for signature 'BSL'
getLoglike(object, burnin = 0, thin = 1)

S4 method for signature 'BSL'
getGamma(object, burnin = 0, thin = 1)

Arguments

object A “BSL” class object.

burnin the number of MCMC burn-in steps to be taken.

thetaNames Parameter names to be shown in the summary table. If not given, parameter
names of the “BSL” object will be used by default.

10 BSL-class

x A “BSL” class object to plot.

which An integer argument indicating which plot function to be used. The default, 1L,
uses the plain plot to visualise the result. 2L uses ggplot2 to draw the plot.

thin A numeric argument indicating the gap between samples to be taken when thin-
ning the MCMC draws. The default is 1, which means no thinning is used.

thetaTrue A set of true parameter values to be included on the plots as a reference line.
The default is NULL.

options.plot A list of additional arguments to pass into the plot function. Only use when
which is 1L.

top A character argument of the combined plot title if which is 2L.
options.density

A list of additional arguments to pass into the geom_density function. Only use
when which is 2L.

options.theme A list of additional arguments to pass into the theme function. Only use when
which is 2L.

Slots

theta Object of class “matrix”. MCMC samples from the joint approximate posterior distribution
of the parameters.

loglike Object of class “numeric”. Accepted MCMC samples of the estimated log-likelihood
values.

call Object of class “call”. The original code that was used to call the method.

model Object of class “MODEL”.

acceptanceRate Object of class “numeric”. The acceptance rate of the MCMC algorithm.

earlyRejectionRate Object of class “numeric”. The early rejection rate of the algorithm (early
rejection may occur when using bounded prior distributions).

errorRate Object of class “numeric”. The error rate. If any infinite summary statistic or infinite
log-likelihood estimate occurs during the process, it is marked as an error and the proposed
parameter will be rejected.

y Object of class “ANY”. The observed data.

n Object of class “numeric”. The number of simulations from the model per MCMC iteration to
estimate the synthetic likelihood.

M Object of class “numeric”. The number of MCMC iterations.

covRandWalk Object of class “matrix”. The covariance matrix used in multivariate normal random
walk proposals.

method Object of class “character”. The character argument indicating the used method.

shrinkage Object of class “characterOrNULL”. The character argument indicating the shrinkage
method.

penalty Object of class “numericOrNULL”. The penalty value.

GRC Object of class “logical”. Whether the Gaussian rank correlation matrix is used.

cell 11

logitTransform Object of class “logical”. The logical argument indicating whether a logit trans-
formation is used in the algorithm.

logitTransformBound Object of class “matrixOrNULL”. The matrix of logitTransformBound.

standardise Object of class “logical”. The logical argument that determines whether to standard-
ise the summary statistics.

parallel Object of class “logical”. The logical value indicating whether parallel computing is
used in the process.

parallelArgs Object of class “listOrNULL”. The list of additional arguments to pass into the
foreach function.

time Object of class “difftime”. The running time.

gamma Object of class “numeric”. MCMC samples of gamma parameter values of the mean adjust-
ment or variance inflation for method “BSLmisspec”.

misspecType Object of class “characterOrNULL”. The character argument indicating whether
mean adjustment ("mean") or variance inflation ("variance") to be used in "BSLmisspec"
method.

tau Object of class “numeric”. Parameter of the prior distribution for "BSLmisspec" method. For
mean adjustment, tau is the scale of the Laplace distribution. For variance inflation, tau is
the mean of the exponential distribution.

whitening Object of class “logicalOrMatrixOrNULL”. A logical argument determines whether
Whitening transformation is used in “BSL” method with Warton’s shrinkage, or just the
Whitening matrix used.

Examples

Not run:
a toy example
toy_simVec <- function(n, theta) matrix(rnorm(n, theta), nrow = n) # the simulation function
toy_sum <- function(x) x # the summary statistic function
model <- newModel(fnSimVec = toy_simVec, fnSum = toy_sum, theta0 = 0) # create the model object
result_toy <- bsl(y = 1, n = 100, M = 1e4, model = model, covRandWalk = matrix(1))
summary(result_toy)
plot(result_toy)

End(Not run)

cell Cell biology example

Description

This example estimates the probabilities of cell motility and cell proliferation for a discrete-time
stochastic model of cell spreading. We provide the data and tuning parameters required to reproduce
the results in An et al. (2019).

12 cell

Usage

data(ma2)

cell_sim(theta, Yinit, rows, cols, sim_iters, num_obs)

cell_sum(Y, Yinit)

cell_prior(theta)

Arguments

theta A vector of proposed model parameters, Pm and Pp.

Yinit The initial matrix of cell presences of size rows × cols.

rows The number of rows in the lattice (rows in the cell location matrix).

cols The number of columns in the lattice (columns in the cell location matrix).

sim_iters The number of discretisation steps to get to when an observation is actually
taken. For example, if observations are taken every 5 minutes but the dis-
cretisation level is 2.5 minutes, then sim_iters would be 2. Larger values of
sim_iters lead to more “accurate” simulations from the model, but they also
increase the simulation time.

num_obs The total number of images taken after initialisation.

Y A rows × cols × num_obs array of the cell presences at times 1:num_obs (not
time 0).

Details

Cell motility (movement) and proliferation (reproduction) cause tumors to spread and wounds to
heal. If we can measure cell proliferation and cell motility under different situations, then we may
be able to use this information to determine the efficacy of different medical treatments.

A common method for measuring in vitro cell movement and proliferation is the scratch assay.
Cells form a layer on an assay and, once they are completely covering the assay, a scratch is made
to separate the cells. Images of the cells are taken until the scratch has closed up and the cells are in
contact again. Each image can be converted to a binary matrix by forming a lattice and recording
the binary matrix (of size rows × cols) of cell presences.

The model that we consider is a random walk model with parameters for the probability of cell
movement (Pm) and the probability of cell proliferation (Pp) and it has no tractable likelihood
function. We use the vague priors Pm ∼ U(0, 1) and Pp ∼ U(0, 1).

We have a total of 145 summary statistics, which are made up of the Hamming distances between
the binary matrices for each time point and the total number of cells at the final time.

Details about the types of cells that this model is suitable for and other information can be found in
Price et al. (2018) and An et al. (2019). Johnston et al. (2014) use a different ABC method and
different summary statistics for a similar example.

cell 13

Functions

• cell_sim: The function cell_sim(theta, Yinit, rows, cols,sim_iters, num_obs) sim-
ulates data from the model, using C++ in the backend.

• cell_sum: The function cell_sum(Y,sum_options) calculates the summary statistics for
this example.

• cell_prior: The function cell_prior(theta) evaluates the log prior density at the param-
eter value θ.

A simulated dataset

An example “observed” dataset and the tuning parameters relevant to that example can be obtained
using data(cell). This “observed” data is a simulated dataset with Pm = 0.35 and Pp = 0.001.
The lattice has 27 rows and 36 cols and there are num_obs = 144 observations after time 0 (to
mimic images being taken every 5 minutes for 12 hours). The simulation is based on there initially
being 110 cells in the assay.

Further information about the specific choices of tuning parameters used in BSL and BSLasso can
be found in An et al. (2019).

• data: The rows × cols × num_obs array of the cell presences at times 1:144.

• sim_args: Values of sim_args relevant to this example.

• sum_args: Values of sum_args relevant to this example, i.e. just the value of Yinit.

• start: A vector of suitable initial values of the parameters for MCMC.

• cov: The covariance matrix of a multivariate normal random walk proposal distribution used
in the MCMC, in the form of a 2 × 2 matrix.

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Johnston ST, Simpson MJ, McElwain DLS, Binder BJ, Ross JV (2014). “Interpreting scratch assays
using pair density dynamics and approximate Bayesian computation.” Open Biology, 4(9), 140097.
doi: 10.1098/rsob.140097.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal of
Computational and Graphical Statistics, 27, 1–11. doi: 10.1080/10618600.2017.1302882.

Examples

Not run:
require(doParallel) # You can use a different package to set up the parallel backend

https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1098/rsob.140097
https://doi.org/10.1080/10618600.2017.1302882

14 cell

Loading the data for this example
data(cell)
model <- newModel(fnSim = cell_sim, fnSum = cell_sum, simArgs = cell$sim_args,

sumArgs = cell$sum_args, theta0 = cell$start, fnLogPrior = cell_prior,
thetaNames = expression(P[m], P[p]))

thetaExact <- c(0.35, 0.001)

Performing BSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultCellBSL <- bsl(cell$data, n = 5000, M = 10000, model = model, covRandWalk = cell$cov,

parallel = TRUE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultCellBSL)
summary(resultCellBSL)
plot(resultCellBSL, thetaTrue = thetaExact, thin = 20)

Performing uBSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultCelluBSL <- bsl(cell$data, n = 5000, M = 10000, model = model, covRandWalk = cell$cov,

method = "uBSL", parallel = TRUE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultCelluBSL)
summary(resultCelluBSL)
plot(resultCelluBSL, thetaTrue = thetaExact, thin = 20)

Performing tuning for BSLasso
ssy <- cell_sum(cell$data, cell$sum_args$Yinit)
lambda_all <- list(exp(seq(0.5,2.5,length.out=20)), exp(seq(0,2,length.out=20)),

exp(seq(-1,1,length.out=20)), exp(seq(-1,1,length.out=20)))
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
set.seed(100)
sp_cell <- selectPenalty(ssy, n = c(500, 1000, 1500, 2000), lambda_all, theta = thetaExact,

M = 100, sigma = 1.5, model = model, method = "BSL", shrinkage = "glasso",
parallelSim = TRUE, parallelMain = FALSE)

stopCluster(cl)
registerDoSEQ()
sp_cell
plot(sp_cell)

Performing BSLasso with a fixed penalty (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultCellBSLasso <- bsl(cell$data, n = 1500, M = 10000, model = model, covRandWalk = cell$cov,

shrinkage = "glasso", penalty = 1.3, parallel = TRUE, verbose = 1L)

combinePlotsBSL 15

stopCluster(cl)
registerDoSEQ()
show(resultCellBSLasso)
summary(resultCellBSLasso)
plot(resultCellBSLasso, thetaTrue = thetaExact, thin = 20)

Performing semiBSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultCellSemiBSL <- bsl(cell$data, n = 5000, M = 10000, model = model, covRandWalk = cell$cov,

method = "semiBSL", parallel = TRUE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultCellSemiBSL)
summary(resultCellSemiBSL)
plot(resultCellSemiBSL, thetaTrue = thetaExact, thin = 20)

Plotting the results together for comparison
plot using the R default plot function
oldpar <- par()
par(mar = c(5, 4, 1, 2), oma = c(0, 1, 2, 0))
combinePlotsBSL(list(resultCellBSL, resultCelluBSL, resultCellBSLasso, resultCellSemiBSL),

which = 1, thetaTrue = thetaExact, thin = 20, label = c("bsl", "ubsl", "bslasso", "semiBSL"),
col = 1:4, lty = 1:4, lwd = 1)

mtext("Approximate Univariate Posteriors", outer = TRUE, cex = 1.5)
par(mar = oldpar$mar, oma = oldpar$oma)

End(Not run)

combinePlotsBSL Plot the densities of multiple “bsl” class objects.

Description

The function combinePlotsBSL can be used to plot multiple BSL densities together, optionally
with the true values for the parameters.

Usage

combinePlotsBSL(
objectList,
which = 1L,
thin = 1,
burnin = 0,
thetaTrue = NULL,
label = NULL,

16 combinePlotsBSL

legendPosition = c("auto", "right", "bottom")[1],
legendNcol = NULL,
col = NULL,
lty = NULL,
lwd = NULL,
cex.lab = 1,
cex.axis = 1,
cex.legend = 0.75,
top = "Approximate Marginal Posteriors",
options.color = list(),
options.linetype = list(),
options.size = list(),
options.theme = list()

)

Arguments

objectList A list of “bsl” class objects.

which An integer argument indicating which plot function to be used. The default, 1L,
uses the plain plot to visualise the result. 2L uses ggplot2 to draw the plot.

thin A numeric argument indicating the gap between samples to be taken when thin-
ning the MCMC draws. The default is 1, which means no thinning is used.

burnin the number of MCMC burn-in steps to be taken.

thetaTrue A set of true parameter values to be included on the plots as a reference line.
The default is NULL.

label A string vector indicating the labels to be shown in the plot legend. The default
is NULL, which uses the names from objectList.

legendPosition One of the three string arguments, “auto”, “right” or “bottom”, indicating the
legend position. The default is “auto”, which automatically choose from “right”
and “bottom”. Only used when which is 1L.

legendNcol An integer argument indicating the number of columns of the legend. The de-
fault, NULL, put all legends in the same row or column depending on legendPosition.
Only used when which is 1L.

col A vector argument containing the plotting color for each density curve. Each
element of the vector will be passed into lines. Only used when which is 1L.

lty A vector argument containing the line type for each density curve. Each element
of the vector will be passed into lines. Only used when which is 1L.

lwd A vector argument containing the line width for each density curve. Each ele-
ment of the vector will be passed into lines. Only used when which is 1L.

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex. To be passed into plot. Only used when which is 1L.

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex. To be passed into plot. Only used when which is 1L.

cex.legend The magnification to be used for legend annotation relative to the current setting
of cex. Only used when which is 1L.

cor2cov 17

top A string argument of the combined plot title. Only used when which is 2L.

options.color A list of additional arguments to pass into function ggplot2::scale_color_manual.
Only used when which is 2L.

options.linetype

A list of additional arguments to pass into function ggplot2::scale_linetype_manual.
Only used when which is 2L.

options.size A list of additional arguments to pass into function ggplot2::scale_size_manual.
Only used when which is 2L.

options.theme A list of additional arguments to pass into the theme function. Only use when
which is 2L.

Value

No return value, called for the plots produced.

See Also

ma2, cell, mgnk and toad for examples.

Examples

Not run:
toy_sim <- function(n, theta) matrix(rnorm(2*n, theta), nrow = n)
toy_sum <- ma2_sum

model <- newModel(fnSimVec = toy_sim, fnSum = toy_sum, sumArgs = list(epsilon = 2), theta0 = 0)

result1 <- bsl(y = 1:2, n = 100, M = 5e3, model = model, covRandWalk = matrix(1),
method = "BSL", plotOnTheFly = TRUE)

result2 <- bsl(y = 1:2, n = 100, M = 5e3, model = model, covRandWalk = matrix(1),
method = "uBSL", plotOnTheFly = TRUE)

result3 <- bsl(y = 1:2, n = 100, M = 5e3, model = model, covRandWalk = matrix(1),
method = "semiBSL", plotOnTheFly = TRUE)

combinePlotsBSL(list(result1, result2, result3), label = c("BSL","uBSL","semiBSL"), thin = 20)

End(Not run)

cor2cov Convert a correlation matrix to a covariance matrix

Description

This function converts a correlation matrix to a covariance matrix

Usage

cor2cov(corr, std)

18 estimateLoglike

Arguments

corr The correlation matrix to be converted. This must be symmetric.

std A vector that contains the standard deviations of the variables in the correlation
matrix.

Value

The covariance matrix.

estimateLoglike Estimate the synthetic likelihood

Description

This function computes the estimated synthetic (log) likelihood using one of the four methods
(“BSL”, “uBSL”, “semiBSL” and “BSLmisspec”). Please find the links below in the see also section
for more details.

Usage

estimateLoglike(
ssy,
ssx,
method = c("BSL", "uBSL", "semiBSL", "BSLmisspec"),
log = TRUE,
verbose = FALSE,
...

)

Arguments

ssy The observed summary statisic.

ssx A matrix of the simulated summary statistics. The number of rows is the same
as the number of simulations per iteration.

method A string argument indicating the method to be used. The default, “BSL”, runs
standard BSL. “uBSL” uses the unbiased estimator of a normal density of Ghurye
and Olkin (1969). “semiBSL” runs the semi-parametric BSL algorithm and is
more robust to non-normal summary statistics. “BSLmisspec” estimates the
Gaussian synthetic likelihood whilst acknowledging that there may be incom-
patibility between the model and the observed summary statistic (Frazier and
Drovandi 2021).

log A logical argument indicating if the log of likelihood is given as the result. The
default is TRUE.

verbose A logical argument indicating whether an error message should be printed if the
function fails to compute a likelihood. The default is FALSE.

estimateLoglike 19

... Arguments to be passed to methods.

• shrinkage Available for methods “BSL” and “semiBSL”. A string argu-
ment indicating which shrinkage method to be used. The default is NULL,
which means no shrinkage is used. Shrinkage estimation is only available
for methods “BSL” and “semiBSL”. Current options are “glasso” for the
graphical lasso method of Friedman et al. (2008) and “Warton” for the
ridge regularisation method of Warton (2008).

• penalty Available for methods “BSL” and “semiBSL”. The penalty value
to be used for the specified shrinkage method. Must be between zero and
one if the shrinkage method is “Warton”.

• standardise Available for method “BSL”. A logical argument that deter-
mines whether to standardise the summary statistics before applying the
graphical lasso. This is only valid if method is “BSL”, shrinkage is “glasso”
and penalty is not NULL. The diagonal elements will not be penalised if the
shrinkage method is “glasso”. The default is FALSE.

• GRC Available for method “BSL”. A logical argument indicating whether
the Gaussian rank correlation matrix (Boudt et al. 2012) should be used
to estimate the covariance matrix in “BSL” method. The default is FALSE,
which uses the sample covariance by default.

• whitening Available for method “BSL”. This argument determines whether
Whitening transformation should be used in “BSL” method with Warton’s
shrinkage. Whitening transformation helps decorrelate the summary statis-
tics, thus encourages sparsity of the synthetic likelihood covariance matrix.
This might allow heavier shrinkage to be applied without losing much accu-
racy, hence allowing the number of simulations to be reduced. By default,
NULL represents no Whitening transformation. Otherwise this is enabled if
a Whitening matrix is provided. See estimateWhiteningMatrix for the
function to estimate the Whitening matrix.

• ssyTilde Available for method “BSL”. The whitened observed summary
statisic. If this is not NULL, it will be used to save computation effort. Only
used if Whitening is enabled.

• kernel Available for method “semiBSL”. A string argument indicating the
smoothing kernel to pass into density for estimating the marginal distri-
bution of each summary statistic. Only “gaussian" and “epanechnikov" are
available. The default is “gaussian".

• type Available for method “BSLmisspec”. A string argument indicating
which method is used to account for and detect potential incompatibility.
The two options are "mean" and "variance".

• gamma Available for method “BSLmisspec”. The additional latent parame-
ter to account for possible incompatability between the model and observed
summary statistic. In “BSLmisspec” method, this is updated with a slice
sampler (Neal 2003).

Value

The estimated synthetic (log) likelihood value.

20 estimateWhiteningMatrix

References

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Robustness
Properties.” Statistics and Computing, 22(2), 471–483. doi: 10.1007/s1122201192370.

Frazier DT, Drovandi C (2021). “Robust Approximate Bayesian Inference with Synthetic Like-
lihood.” Journal of Computational and Graphical Statistics (In Press). https://arxiv.org/abs/
1904.04551.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Ghurye SG, Olkin I (1969). “Unbiased Estimation of Some Multivariate Probability Densities and
Related Functions.” Ann. Math. Statist., 40(4), 1261–1271.

Neal RM (2003). “Slice sampling.” The Annals of Statistics, 31(3), 705–767.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

See Also

gaussianSynLike, gaussianSynLikeGhuryeOlkin, semiparaKernelEstimate and synLikeMisspec.

Examples

data(ma2)
ssy <- ma2_sum(ma2$data)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start)
ssx <- simulation(m, n = 300, theta = c(0.6, 0.2), seed = 10)$ssx
estimateLoglike(ssy, ssx, method = "BSL")
estimateLoglike(ssy, ssx, method = "uBSL")
estimateLoglike(ssy, ssx, method = "semiBSL")
estimateLoglike(ssy, ssx, method = "BSLmisspec", type = "mean", gamma = rep(0.1, 50))

estimateWhiteningMatrix

Estimate the Whitening matrix to be used in the “wBSL” method of
Priddle et al. (2021)

Description

This function estimates the Whitening matrix to be used in BSL with Warton’s shrinkage and
Whitening (“wBSL” method of Priddle et al. (2021)). The Whitening transformation and decorre-
lation methods are detailed in Kessy et al. (2018).

https://doi.org/10.1007/s11222-011-9237-0
https://arxiv.org/abs/1904.04551
https://arxiv.org/abs/1904.04551
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021

estimateWhiteningMatrix 21

Usage

estimateWhiteningMatrix(
n,
model,
method = c("PCA", "ZCA", "Cholesky", "ZCA-cor", "PCA-cor"),
thetaPoint = NULL,
parallel = FALSE,
parallelArgs = NULL

)

Arguments

n The number of model simulations to estimate the Whitening matrix.

model A “MODEL” object generated with function newModel. See newModel.

method The type of Whitening method to be used. The default is “PCA”.

thetaPoint A point estimate of the parameter value with non-negligible posterior support.

parallel A logical value indicating whether parallel computing should be used for sim-
ulation and summary statistic evaluation. The default is FALSE. When model
simulation is fast, it may be preferable to perform serial or vectorised compu-
tations to avoid significant communication overhead between workers. Parallel
computation can only be used if not using a vectorised simulation function, see
MODEL for options of vectorised simulation function.

parallelArgs A list of additional arguments to pass into the foreach function. Only used
when parallel computing is enabled, default is NULL.

Value

The estimated Whitening matrix.

References

Kessy A, Lewin A, Strimmer K (2018). “Optimal Whitening and Decorrelation.” The American
Statistician, 72(4), 309–314. doi: 10.1080/00031305.2016.1277159.

Priddle JW, Sisson SA, Frazier DT, Turner I, Drovandi C (2021). “Efficient Bayesian Synthetic
Likelihood with Whitening Transformations.” Journal of Computational and Graphical Statistics
(In Press). https://arxiv.org/abs/1909.04857.

Examples

Not run:
data(ma2)
model <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args, theta0 = ma2$start)
W <- estimateWhiteningMatrix(20000, model, method = "PCA", thetaPoint = c(0.6, 0.2))

End(Not run)

https://doi.org/10.1080/00031305.2016.1277159
https://arxiv.org/abs/1909.04857

22 gaussianRankCorr

gaussianRankCorr Gaussian rank correlation

Description

This function computes the Gaussian rank correlation of Boudt et al. (2012).

Usage

gaussianRankCorr(x, vec = FALSE)

Arguments

x A numeric matrix representing data where the number of rows is the number of
independent data points and the number of columns is the number of variables
in the dataset.

vec A logical argument indicating if the vector of correlations should be returned
instead of a matrix.

Value

Gaussian rank correlation matrix (default) or a vector of pair correlations.

References

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Robustness
Properties.” Statistics and Computing, 22(2), 471–483. doi: 10.1007/s1122201192370.

See Also

cor2cov for conversion from correlation matrix to covariance matrix.

Examples

data(ma2)
model <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = list(TT = 10),

theta0 = ma2$start, fnLogPrior = ma2_prior)
set.seed(100)

generate 1000 simualtions from the ma2 model
x <- simulation(model, n = 1000, theta = c(0.6, 0.2))$x

corr1 <- cor(x) # traditional correlation matrix
corr2 <- gaussianRankCorr(x) # Gaussian rank correlation matrix
oldpar <- par()
par(mfrow = c(1, 2))
image(corr1, main = 'traditional correlation matrix')
image(corr2, main = 'Gaussian rank correlation matrix')
par(mfrow = oldpar$mfrow)

https://doi.org/10.1007/s11222-011-9237-0

gaussianSynLike 23

std <- apply(x, MARGIN = 2, FUN = sd) # standard deviations
cor2cov(gaussianRankCorr(x), std) # convert to covariance matrix

gaussianSynLike Estimate the Gaussian synthetic (log) likelihood

Description

This function estimates the Gaussian synthetic log-likelihood (see Wood 2010 and Price et al. 2018).
Several extensions are provided in this function: shrinkage enables shrinkage estimation of the
covariance matrix and is helpful to bring down the number of model simulations (see An et al.
(2019) for an example of BSL with glasso (Friedman et al. 2008) shrinkage estimation); GRC uses
Gaussian rank correlation (Boudt et al. 2012) to find a more robust correlation matrix; whitening
(Kessy et al. 2018) could further reduce the number of model simulations upon Warton’s shrinkage
(Warton 2008) by decorrelating the summary statistics.

Usage

gaussianSynLike(
ssy,
ssx,
shrinkage = NULL,
penalty = NULL,
standardise = FALSE,
GRC = FALSE,
whitening = NULL,
ssyTilde = NULL,
log = TRUE,
verbose = FALSE

)

Arguments

ssy The observed summary statisic.

ssx A matrix of the simulated summary statistics. The number of rows is the same
as the number of simulations per iteration.

shrinkage A string argument indicating which shrinkage method to be used. The default
is NULL, which means no shrinkage is used. Shrinkage estimation is only avail-
able for methods “BSL” and “semiBSL”. Current options are “glasso” for the
graphical lasso method of Friedman et al. (2008) and “Warton” for the ridge
regularisation method of Warton (2008).

penalty The penalty value to be used for the specified shrinkage method. Must be be-
tween zero and one if the shrinkage method is “Warton”.

24 gaussianSynLike

standardise A logical argument that determines whether to standardise the summary statis-
tics before applying the graphical lasso. This is only valid if method is “BSL”,
shrinkage is “glasso” and penalty is not NULL. The diagonal elements will not be
penalised if the shrinkage method is “glasso”. The default is FALSE.

GRC A logical argument indicating whether the Gaussian rank correlation matrix
(Boudt et al. 2012) should be used to estimate the covariance matrix in “BSL”
method. The default is FALSE, which uses the sample covariance by default.

whitening This argument determines whether Whitening transformation should be used in
“BSL” method with Warton’s shrinkage. Whitening transformation helps decor-
relate the summary statistics, thus encouraging sparsity of the synthetic likeli-
hood covariance matrix. This might allow heavier shrinkage to be applied with-
out losing much accuracy, hence allowing the number of simulations to be re-
duced. By default, NULL represents no Whitening transformation. Otherwise this
is enabled if a Whitening matrix is provided. See estimateWhiteningMatrix
for the function to estimate the Whitening matrix.

ssyTilde The whitened observed summary statisic. If this is not NULL, it will be used to
save computation effort. Only used if Whitening is enabled.

log A logical argument indicating if the log of likelihood is given as the result. The
default is TRUE.

verbose A logical argument indicating whether an error message should be printed if the
function fails to compute a likelihood. The default is FALSE.

Value

The estimated synthetic (log) likelihood value.

References

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Robust-
ness Properties.” Statistics and Computing, 22(2), 471–483. doi: 10.1007/s1122201192370.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Kessy A, Lewin A, Strimmer K (2018). “Optimal Whitening and Decorrelation.” The American
Statistician, 72(4), 309–314. doi: 10.1080/00031305.2016.1277159.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal of
Computational and Graphical Statistics, 27, 1–11. doi: 10.1080/10618600.2017.1302882.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021

gaussianSynLikeGhuryeOlkin 25

Wood SN (2010). “Statistical Inference for Noisy Nonlinear Ecological Dynamic Systems.” Nature,
466, 1102–1107. doi: 10.1038/nature09319.

See Also

Other available synthetic likelihood estimators: gaussianSynLikeGhuryeOlkin for the unbiased
synthetic likelihood estimator, semiparaKernelEstimate for the semi-parametric likelihood esti-
mator, synLikeMisspec for the Gaussian synthetic likelihood estimator for model misspecification.

Examples

data(ma2)
ssy <- ma2_sum(ma2$data)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start)
ssx <- simulation(m, n = 300, theta = c(0.6, 0.2), seed = 10)$ssx

the standard Gaussian synthetic likelihood (the likelihood estimator used in BSL)
gaussianSynLike(ssy, ssx)
the Gaussian synthetic likelihood with glasso shrinkage estimation
(the likelihood estimator used in BSLasso)
gaussianSynLike(ssy, ssx, shrinkage = 'glasso', penalty = 0.1)
the Gaussian synthetic likelihood with Warton's shrinkage estimation
gaussianSynLike(ssy, ssx, shrinkage = 'Warton', penalty = 0.9)
the Gaussian synthetic likelihood with Warton's shrinkage estimation and Whitening transformation
W <- estimateWhiteningMatrix(20000, m)
gaussianSynLike(ssy, ssx, shrinkage = 'Warton', penalty = 0.9, whitening = W)

gaussianSynLikeGhuryeOlkin

Estimate the Gaussian synthetic (log) likelihood with an unbiased es-
timator

Description

This function computes an unbiased, nonnegative estimate of a normal density function from simu-
lations assumed to be drawn from it. See Price et al. (2018) and Ghurye and Olkin (1969).

Usage

gaussianSynLikeGhuryeOlkin(ssy, ssx, log = TRUE, verbose = FALSE)

Arguments

ssy The observed summary statisic.

ssx A matrix of the simulated summary statistics. The number of rows is the same
as the number of simulations per iteration.

https://doi.org/10.1038/nature09319

26 getGamma

log A logical argument indicating if the log of likelihood is given as the result. The
default is TRUE.

verbose A logical argument indicating whether an error message should be printed if the
function fails to compute a likelihood. The default is FALSE.

Value

The estimated synthetic (log) likelihood value.

References

Ghurye SG, Olkin I (1969). “Unbiased Estimation of Some Multivariate Probability Densities and
Related Functions.” Ann. Math. Statist., 40(4), 1261–1271.

Price LF, Drovandi CC, Lee A, Nott DJ (2018). “Bayesian Synthetic Likelihood.” Journal of
Computational and Graphical Statistics, 27, 1–11. doi: 10.1080/10618600.2017.1302882.

See Also

Other available synthetic likelihood estimators: gaussianSynLike for the standard synthetic likeli-
hood estimator, semiparaKernelEstimate for the semi-parametric likelihood estimator, synLikeMisspec
for the Gaussian synthetic likelihood estimator for model misspecification.

Examples

data(ma2)
ssy <- ma2_sum(ma2$data)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start)
ssx <- simulation(m, n = 300, theta = c(0.6, 0.2), seed = 10)$ssx

unbiased estimate of the Gaussian synthetic likelihood
(the likelihood estimator used in uBSL)
gaussianSynLikeGhuryeOlkin(ssy, ssx)

getGamma Obtain the gamma samples (the latent parameters for BSLmisspec
method) from a "BSL" object

Description

see BSLclass

Usage

getGamma(object, ...)

https://doi.org/10.1080/10618600.2017.1302882

getLoglike 27

Arguments

object A “BSL” class object.
... Other arguments.

Value

The matrix of gamma samples (the latent parameters for BSLmisspec method), after removing
burn-in and thinning.

getLoglike Obtain the log-likelihoods from a "BSL" object

Description

see BSLclass

Usage

getLoglike(object, ...)

Arguments

object A “BSL” class object.
... Other arguments.

Value

The vector of log likelihood evaluations, after removing burn-in and thinning.

getPenalty Obtain the selected penalty values from a "PENALTY" object

Description

see PENALTYclass

Usage

getPenalty(object, ...)

Arguments

object A “PENALTY” class object.
... Other arguments.

Value

The selecty penalty values.

28 ma2

getTheta Obtain the samples from a "BSL" object

Description

see BSLclass

Usage

getTheta(object, ...)

Arguments

object A “BSL” class object.

... Other arguments.

Value

The matrix of samples, after removing burn-in and thinning.

ma2 An MA(2) model

Description

In this example we wish to estimate the parameters of a simple MA(2) time series model. We
provide the data and tuning parameters required to reproduce the results in An et al. (2019). The
journal article An et al. (2022) provides a full description of how to use this package for the toad
example.

Usage

data(ma2)

ma2_sim(theta, TT)

ma2_sim_vec(n, theta, TT)

ma2_sum(x, epsilon = 0, delta = 1)

ma2_prior(theta)

ma2 29

Arguments

theta A vector of proposed model parameters, θ1 and θ2.

TT The number of observations.

n The number of simulations to run with the vectorised simulation function.

x Observed or simulated data in the format of a vector of length TT .

epsilon The skewness parameter in the sinh-arcsinh transformation.

delta The kurtosis parameter in the sinh-arcsinh transformation.

Details

This example is based on estimating the parameters of a basic MA(2) time series model of the form

yt = zt + θ1zt−1 + θ2zt−2,

where t = 1, . . . , TT and zt ∼ N(0, 1) for t = −1, 0, . . . , TT . A uniform prior is used for this
example, subject to the restrictions that −2 < θ1 < 2, θ1 + θ2 > −1 and θ1 − θ2 < 1 so that
invertibility of the time series is satisfied. The summary statistics are simply the full data.

Functions

• ma2_sim: Simulates an MA(2) time series.

• ma2_sim_vec: Simulates n MA(2) time series with a vectorised simulation function.

• ma2_sum: Returns the summary statistics for a given data set. The skewness and kurtosis of the
summary statistics can be controlled via the ϵ and δ parameters. This is the sinh-arcsinnh trans-
formation of Jones and Pewsey (2009). By default, the summary statistics function simply
returns the raw data. Otherwise, the transformation is introduced to motivate the “semiBSL”
method.

• ma2_prior: Evaluates the (unnormalised) log prior, which is uniform subject to several re-
strictions related to invertibility of the time series.

A simulated dataset

An example “observed” dataset and the tuning parameters relevant to that example can be obtained
using data(ma2). This “observed” data is a simulated dataset with θ1 = 0.6, θ2 = 0.2 and TT =
50. Further information about this model and the specific choices of tuning parameters used in BSL
and BSLasso can be found in An et al. (2019).

• data: A time series dataset, in the form of a vector of length TT

• sim_args: A list containing TT = 50

• start: A vector of suitable initial values of the parameters for MCMC

• cov: The covariance matrix of a multivariate normal random walk proposal distribution used
in the MCMC, in the form of a 2 × 2 matrix

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

30 ma2

References

An Z, South LF, Drovandi CC (2022). “BSL: An R Package for Efficient Parameter Estimation
for Simulation-Based Models via Bayesian Synthetic Likelihood.” Journal of Statistical Software,
101(11), 1–33. doi: 10.18637/jss.v101.i11.

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Jones MC, Pewsey A (2009). “Sinh-arcsinh distributions.” Biometrika, 96(4), 761–780. ISSN
0006-3444.

Examples

Not run:
Load the data for this example and set up the model object
data(ma2)
model <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, fnLogPrior = ma2_prior)
thetaExact <- c(0.6, 0.2)

reduce the number of iterations M if desired for all methods below
Method 1: standard BSL
resultMa2BSL <- bsl(y = ma2$data, n = 500, M = 300000, model = model, covRandWalk = ma2$cov,

method = "BSL", verbose = 1L)
show(resultMa2BSL)
summary(resultMa2BSL)
plot(resultMa2BSL, thetaTrue = thetaExact, thin = 20)

Method 2: unbiased BSL
resultMa2uBSL <- bsl(y = ma2$data, n = 500, M = 300000, model = model, covRandWalk=ma2$cov,

method = "uBSL", verbose = 1L)
show(resultMa2uBSL)
summary(resultMa2uBSL)
plot(resultMa2uBSL, thetaTrue = thetaExact, thin = 20)

Method 3: BSLasso (BSL with glasso shrinkage estimation)
tune the penalty parameter fisrt
ssy <- ma2_sum(ma2$data)
lambdaAll <- list(exp(seq(-5.5,-1.5,length.out=20)))
set.seed(100)
penaltyGlasso <- selectPenalty(ssy = ssy, n = 300, lambdaAll, theta = thetaExact,

M = 100, sigma = 1.5, model = model, method = "BSL", shrinkage = "glasso")
penaltyGlasso
plot(penaltyGlasso)

resultMa2BSLasso <- bsl(y = ma2$data, n = 300, M = 250000, model = model, covRandWalk=ma2$cov,
method = "BSL", shrinkage = "glasso", penalty = 0.027, verbose = 1L)

show(resultMa2BSLasso)
summary(resultMa2BSLasso)
plot(resultMa2BSLasso, thetaTrue = thetaExact, thin = 20)

https://doi.org/10.18637/jss.v101.i11
https://doi.org/10.1080/10618600.2018.1537928

ma2 31

Method 4: BSL with Warton's shrinkage and Whitening
estimate the Whtieing matrix and tune the penalty parameter first
W <- estimateWhiteningMatrix(20000, model, method = "PCA", thetaPoint = ma2$start)
gammaAll <- list(seq(0.3, 0.8, 0.02))
set.seed(100)
penaltyWarton <- selectPenalty(ssy = ssy, n = 300, gammaAll, theta = thetaExact,

M = 100, sigma = 1.2, model = model, method = "BSL", shrinkage = "Warton",
whitening = W)

penaltyWarton
plot(penaltyWarton, logscale = FALSE)

resultMa2Whitening <- bsl(y = ma2$data, n = 300, M = 250000, model = model, covRandWalk=ma2$cov,
method = "BSL", shrinkage = "Warton", whitening = W,
penalty = 0.52, verbose = 1L)

show(resultMa2Whitening)
summary(resultMa2Whitening)
plot(resultMa2Whitening, thetaTrue = thetaExact, thin = 20)

Method 5: semiBSL, the summary statistics function is different from previous methods
model2 <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = ma2$sim_args,

sumArgs = list(epsilon = 2), theta0 = ma2$start, fnLogPrior = ma2_prior)
sim <- simulation(model, n = 1e4, theta = ma2$start, seed = 1) # run a short simulation
plot(density(sim$ssx[, 1])) # the first marginal summary statistic is right-skewed
resultMa2SemiBSL <- bsl(y = ma2$data, n = 500, M = 200000, model = model2, covRandWalk=ma2$cov,

method = "semiBSL", verbose = 1L)
show(resultMa2SemiBSL)
summary(resultMa2SemiBSL)
plot(resultMa2SemiBSL, thetaTrue = thetaExact, thin = 20)

Method 6: BSL with consideration of model misspecification (mean adjustment)
resultMa2Mean <- bsl(y = ma2$data, n = 500, M = 200000, model = model, covRandWalk=ma2$cov,

method = "BSLmisspec", misspecType = "mean", verbose = 1L)
show(resultMa2Mean)
summary(resultMa2Mean)
plot(resultMa2Mean, thetaTrue = thetaExact, thin = 20)

Method 7: BSL with consideration of model misspecification (variance inflation)
resultMa2Variance <- bsl(y = ma2$data, n = 500, M = 200000, model = model, covRandWalk=ma2$cov,

method = "BSLmisspec", misspecType = "variance", verbose = 1L)
show(resultMa2Variance)
summary(resultMa2Variance)
plot(resultMa2Variance, thetaTrue = thetaExact, thin = 20)

Plotting the results together for comparison
plot using the R default plot function
oldpar <- par()
par(mar = c(5, 4, 1, 2), oma = c(0, 1, 2, 0))
combinePlotsBSL(list(resultMa2BSL, resultMa2uBSL, resultMa2BSLasso, resultMa2SemiBSL), which = 1,

thetaTrue = thetaExact, thin = 20, label = c("bsl", "uBSL", "bslasso", "semiBSL"),
col = c("black", "red", "blue", "green"), lty = 1:4, lwd = 1)

mtext("Approximate Univariate Posteriors", outer = TRUE, cex = 1.5)

32 mgnk

plot using the ggplot2 package
combinePlotsBSL(list(resultMa2BSL, resultMa2uBSL, resultMa2BSLasso, resultMa2SemiBSL), which = 2,

thetaTrue = thetaExact, thin = 20, label = c("bsl", "ubsl", "bslasso", "semiBSL"),
options.color = list(values=c("black", "red", "blue", "green")),
options.linetype = list(values = 1:4), options.size = list(values = rep(1, 4)),
options.theme = list(plot.margin = grid::unit(rep(0.03,4), "npc"),
axis.title = ggplot2::element_text(size=12), axis.text = ggplot2::element_text(size = 8),

legend.text = ggplot2::element_text(size = 12)))
par(mar = oldpar$mar, oma = oldpar$oma)

End(Not run)

mgnk The multivariate G&K example

Description

Here we provide the data and tuning parameters required to reproduce the results from the multi-
variate G & K (Drovandi and Pettitt 2011) example from An et al. (2019).

Usage

data(mgnk)

mgnk_sim(theta_tilde, TT, J, bound)

mgnk_sum(y)

Arguments

theta_tilde A vector with 15 elements for the proposed model parameters.

TT The number of observations in the data.

J The number of variables in the data.

bound A matrix of boundaries for the uniform prior.

y A TT × J matrix of data.

Details

It is not practical to give a reasonable explanation of this example through R documentation given
the number of equations involved. We refer the reader to the BSLasso paper (An et al. 2019) at
<doi:10.1080/10618600.2018.1537928> for information on the model and summary statistic used
in this example.

mgnk 33

An example dataset

We use the foreign currency exchange data available from https://www.rba.gov.au/statistics/
historical-data.html as in An et al. (2019).

• data: A 1651 × 3 matrix of data.

• sim_args: Values of sim_args relevant to this example.

• start: A vector of suitable initial values of the parameters for MCMC.

• cov: The covariance matrix of a multivariate normal random walk proposal distribution used
in the MCMC, in the form of a 15 by 15 matrix

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Drovandi CC, Pettitt AN (2011). “Likelihood-free Bayesian estimation of multivariate quantile
distributions.” Computational Statistics & Data Analysis, 55(9), 2541–2556. ISSN 0167-9473,
doi: 10.1016/j.csda.2011.03.019.

Examples

Not run:
require(doParallel) # You can use a different package to set up the parallel backend
require(MASS)
require(elliplot)

Loading the data for this example
data(mgnk)
model <- newModel(fnSim = mgnk_sim, fnSum = mgnk_sum, simArgs = mgnk$sim_args, theta0 = mgnk$start,

thetaNames = expression(a[1],b[1],g[1],k[1],a[2],b[2],g[2],k[2],
a[3],b[3],g[3],k[3],delta[12],delta[13],delta[23]))

Performing BSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,

method = "BSL", parallel = FALSE, verbose = 1L, plotOnTheFly = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSL)
summary(resultMgnkBSL)
plot(resultMgnkBSL, which = 2, thin = 20)

Performing uBSL (reduce the number of iterations M if desired)

https://www.rba.gov.au/statistics/historical-data.html
https://www.rba.gov.au/statistics/historical-data.html
https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1016/j.csda.2011.03.019

34 mgnk

Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkuBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,

method = "uBSL", parallel = FALSE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkuBSL)
summary(resultMgnkuBSL)
plot(resultMgnkuBSL, which = 2, thin = 20)

Performing tuning for BSLasso
ssy <- mgnk_sum(mgnk$data)
lambda_all <- list(exp(seq(-2.5,0.5,length.out=20)), exp(seq(-2.5,0.5,length.out=20)),

exp(seq(-4,-0.5,length.out=20)), exp(seq(-5,-2,length.out=20)))

Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
set.seed(100)
sp_mgnk <- selectPenalty(ssy, n = c(15, 20, 30, 50), lambda = lambda_all, theta = mgnk$start,

M = 100, sigma = 1.5, model = model, method = "BSL", shrinkage = "glasso", standardise = TRUE,
parallelSim = TRUE, parallelSimArgs = list(.packages = "MASS", .export = "ninenum"),
parallelMain = TRUE)

stopCluster(cl)
registerDoSEQ()
sp_mgnk
plot(sp_mgnk)

Performing BSLasso with a fixed penalty (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkBSLasso <- bsl(mgnk$data, n = 20, M = 80000, model = model, covRandWalk = mgnk$cov,

method = "BSL", shrinkage = "glasso", penalty = 0.3, standardise = TRUE, parallel = FALSE,
verbose = 1L)

stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSLasso)
summary(resultMgnkBSLasso)
plot(resultMgnkBSLasso, which = 2, thin = 20)

Performing semiBSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkSemiBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,

method = "semiBSL", parallel = FALSE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkSemiBSL)

MODEL-class 35

summary(resultMgnkSemiBSL)
plot(resultMgnkSemiBSL, which = 2, thin = 20)

Plotting the results together for comparison
plot using the R default plot function
oldpar <- par()
par(mar = c(4, 4, 1, 1), oma = c(0, 1, 2, 0))
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),

which = 1, thin = 20, label = c("bsl", "ubsl", "bslasso", "semiBSL"),
col = c("red", "yellow", "blue", "green"), lty = 2:5, lwd = 1)

mtext("Approximate Univariate Posteriors", outer = TRUE, line = 0.75, cex = 1.2)

plot using the ggplot2 package
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),

which = 2, thin = 20, label=c("bsl","ubsl","bslasso","semiBSL"),
options.color=list(values=c("red","yellow","blue","green")),
options.linetype = list(values = 2:5), options.size = list(values = rep(1, 4)),
options.theme = list(plot.margin = grid::unit(rep(0.03,4),"npc"),
axis.title = ggplot2::element_text(size=12), axis.text = ggplot2::element_text(size = 8),

legend.text = ggplot2::element_text(size = 12)))
par(mar = oldpar$mar, oma = oldpar$oma)

End(Not run)

MODEL-class S4 class “MODEL”

Description

The S4 class contains the simulation and summary statistics function and other necessary arguments
for a model to run in the main bsl function.

newModel is the constructor function for a MODEL object.

simulation runs a number of simulations and computes the correponding summary statistics with
the provided model.

summStat computes the summary statistics with the given data and model object. The summary
statistics function and relevant arguments are obtained from the model.

Usage

newModel(
fnSim,
fnSimVec,
fnSum,
fnLogPrior,
simArgs,
sumArgs,
theta0,

36 MODEL-class

thetaNames,
test = TRUE,
verbose = TRUE

)

S4 method for signature 'MODEL'
simulation(
model,
n = 1,
theta = model@theta0,
summStat = TRUE,
parallel = FALSE,
parallelArgs = NULL,
seed = NULL

)

S4 method for signature 'ANY,MODEL'
summStat(x, model)

Arguments

fnSim A function that simulates data for a given parameter value. The first argument
should be the parameters. Other necessary arguments (optional) can be specified
with simArgs.

fnSimVec A vectorised function that simulates a number of datasets simultaneously for a
given parameter value. The first two arguments should be the number of simula-
tions to run and parameters, respectively. Other necessary arguments (optional)
can be specified with simArgs. The output must be a list of each simulation
result or a matrix with each row corresponding to a simulation.

fnSum A function for computing summary statistics of data. The first argument should
be the observed or simulated dataset. Other necessary arguments (optional) can
be specified with sumArgs.

fnLogPrior A function that computes the log of prior density for a parameter. If this is
missing, the prior by default is an improper flat prior over the real line for each
parameter. The function must have a single input: a vector of parameter values.

simArgs A list of additional arguments to pass into the simulation function. Only use
when the input fnSim requires additional arguments.

sumArgs A list of additional arguments to pass into the summary statistics function. Only
use when the input fnSum requires additional arguments.

theta0 Initial guess of the parameter value.

thetaNames A string vector of parameter names, which must have the same length as the
parameter vector.

test Logical, whether a short simulation test will be ran upon initialisation.

verbose Logical, whether to print verbose messages when initialising a “MODEL” ob-
ject.

model A “MODEL” class object.

MODEL-class 37

n The number of simulations to run.

theta The parameter value.

summStat Logical indicator whether the correpsonding summary statistics should be re-
turned or not. The default is TRUE.

parallel A logical value indicating whether parallel computing should be used for sim-
ulation and summary statistic evaluation. The default is FALSE. When model
simulation is fast, it may be preferable to perform serial or vectorised compu-
tations to avoid significant communication overhead between workers. Parallel
computation can only be used if not using a vectorised simulation function, see
MODEL for options of vectorised simulation function.

parallelArgs A list of additional arguments to pass into the foreach function. Only used
when parallel computing is enabled, default is NULL.

seed A seed number to pass to the set.seed function. The default is NULL, when no
seed number is specified. Please note parallel also affects the result even with
the same seed.

x The data to pass to the summary statistics function.

Value

A list of simulation results using the given parameter. x contains the raw simulated datasets. ssx
contains the summary statistics.

A vector of the summary statistics.

Slots

fnSim A function that simulates data for a given parameter value. The first argument should be the
parameters. Other necessary arguments (optional) can be specified with simArgs.

fnSimVec A vectorised function that simulates a number of datasets simultaneously for a given
parameter value. If this is not NULL, vectorised simulation function will be used instead of
fnSim. The first two arguments should be the number of simulations to run and parameters,
respectively. Other necessary arguments (optional) can be specified with simArgs. The output
must be a list of each simulation result.

fnSum A function for computing summary statistics of data. The first argument should be the
observed or simulated dataset. Other necessary arguments (optional) can be specified with
sumArgs. The users should code this function carefully so the output have fixed length and
never contain any Inf value.

fnLogPrior A function that computes the log of prior density for a parameter. The default is NULL,
which uses an improper flat prior over the real line for each parameter. The function must
have a single input: a vector of parameter values.

simArgs A list of additional arguments to pass into the simulation function. Only use when the
input fnSim or fnSimVec requires additional arguments. The default is NULL.

sumArgs A list of additional arguments to pass into the summary statistics function. Only use when
the input fnSum requires additional arguments. The default is NULL.

theta0 Initial guess of the parameter value, which is used as the starting value for MCMC.

thetaNames Expression, parameter names.

38 obsMat2deltax

ns The number of summary statistics of a single observation. Note this will be generated automat-
ically, thus is not required for initialisation.

test Logical, whether a short simulation test will be ran upon initialisation.

verbose Logical, whether to print verbose messages when initialising a “MODEL” object.

Examples

set up the model for the ma2 example
data(ma2)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, fnLogPrior = ma2_prior, verbose = FALSE)
validObject(m)

benchmark the serial and vectorised simulation function (require the rbenchmark package)
m1 <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, fnLogPrior = ma2_prior)
m2 <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, fnLogPrior = ma2_prior)
require("rbenchmark")

Not run:
benchmark(serial = simulation(m1, n = 1000, theta = c(0.6, 0.2)),

vectorised = simulation(m2, n = 1000, theta = c(0.6, 0.2)))

End(Not run)

obsMat2deltax Convert an observation matrix to a vector of n-day displacements

Description

Convert an observation matrix to a vector of n-day displacements. This is a function for the toad
example.

Usage

obsMat2deltax(X, lag)

Arguments

X The observation matrix to be converted.

lag Interger, the number of day lags to compute the displacement.

Value

A vector of displacements.

PENALTY-class 39

PENALTY-class S4 class “PENALTY”

Description

This S4 class contains the penalty selection result from function selectPenalty. show display the
penalty selection result. plot plot the penalty selection result using ggplot2.

Usage

S4 method for signature 'PENALTY'
show(object)

S4 method for signature 'PENALTY,ANY'
plot(x, logscale = TRUE)

S4 method for signature 'BSL'
getPenalty(object)

Arguments

object The S4 object of class “PENALTY” to show.
x The S4 object of class “PENALTY” to plot.
logscale A logical argument whether the x-axis (penalty) should be log transformed. The

default is TRUE.

Slots

loglike A list of the log-likelihood values. The list contains multiple matrices (each corresponds
to the result for a specific n value). The number of row of the matrix equals to the number of
repeats M. The columns of the matrix stands for different penalty values.

n A vector of n, the number of simulations from the model per MCMC iteration for estimating the
synthetic likelihood.

lambda A list, with each entry containing the vector of penalty values for the corresponding choice
of n.

M The number of repeats used in estimating the standard deviation of the estimated log synthetic
likelihood.

sigma The standard deviation of the log synthetic likelihood estimator to aim for, usually a value
between 1 and 2. This reflects the mixing of a Markov chain.

model A “MODEL” object generated with function newModel. See newModel.
stdLoglike A list contains the estimated standard deviations of log-likelihoods.
penalty The vector stores the selected penalty values for each given n by choosing from the candi-

date lambda list. The selected values produce closest standard deviations stdLoglike to the
target sigma.

result The result data frame.
call The original code used to run selectPenalty.

40 selectPenalty

See Also

selectPenalty for the function that selects the penalty parameter.

selectPenalty Selecting the Penalty Parameter

Description

This is the main function for selecting the shrinkage (graphical lasso or Warton’s estimator) penalty
parameter for method BSL or semiBSL based on a point estimate of the parameters. Parallel com-
puting is supported with the R package foreach. The penalty selection method is outlined in An et
al. (2019).

Usage

selectPenalty(
ssy,
n,
lambda,
M,
sigma = 1.5,
model,
theta = NULL,
method = c("BSL", "semiBSL"),
shrinkage = c("glasso", "Warton"),
parallelSim = FALSE,
parallelSimArgs = NULL,
parallelMain = FALSE,
verbose = 1L,
...

)

Arguments

ssy A summary statistic vector for the observed data.

n A vector of possible values of n, the number of simulations from the model per
MCMC iteration for estimating the synthetic likelihood.

lambda A list, with each entry containing the vector of penalty values to test for the
corresponding choice of n.

M The number of repeats to use in estimating the standard deviation of the esti-
mated log synthetic likelihood.

sigma The standard deviation of the log synthetic likelihood estimator to aim for, usu-
ally a value between 1 and 2. This parameter helps to control the mixing of a
Markov chain.

model A “MODEL” object generated with function newModel. See newModel.

selectPenalty 41

theta A point estimate of the parameter value which all of the simulations will be
based on. By default, if theta is NULL, it will be replaced by theta0 from the
given model.

method A string argument indicating the method to be used. If the method is “BSL”, the
shrinkage is applied to the Gaussian covariance matrix. Otherwise if the method
is “semiBSL”, the shrinkage is applied to the correlation matrix of the Gaussian
copula.

shrinkage A string argument indicating which shrinkage method to be used. Current op-
tions are “glasso” for the graphical lasso method of Friedman et al. (2008) and
“Warton” for the ridge regularisation method of Warton (2008).

parallelSim A logical value indicating whether parallel computing should be used for simu-
lation and summary statistic evaluation. Default is FALSE.

parallelSimArgs

A list of additional arguments to pass into the foreach function. Only used
when parallelSim is TRUE, default is NULL.

parallelMain A logical value indicating whether parallel computing should be used to com-
puting the graphical lasso function. Notice that this should only be turned on
when there are a lot of candidate values in lambda. Default is FALSE.

verbose An integer indicating the verbose style. 0L means no verbose messages will
be printed. 1L uses a custom progress bar to track the progress. 2L prints the
iteration numbers (1:M) to track the progress. The default is 1L.

... Other arguments to pass to gaussianSynLike (“BSL” method) or semiparaKernelEstimate
(“semiBSL” method).

Value

An S4 object PENALTY of the penalty selection results. The show and plot methods are provided
with the S4 class.

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

An Z, South LF, Nott DJ, Drovandi CC (2019). “Accelerating Bayesian Synthetic Likelihood
With the Graphical Lasso.” Journal of Computational and Graphical Statistics, 28(2), 471–475.
doi: 10.1080/10618600.2018.1537928.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021

42 semiparaKernelEstimate

See Also

PENALTY for the usage of the S4 class. ma2, cell and mgnk for examples. bsl for the main function
to run BSL.

Examples

Not run:
data(ma2)
model <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, fnLogPrior = ma2_prior)
theta <- c(0.6,0.2)

Performing tuning for BSLasso (BSL with glasso shrinkage estimation)
ssy <- ma2_sum(ma2$data)
lambda_all <- list(exp(seq(-3,0.5,length.out=20)), exp(seq(-4,-0.5,length.out=20)),

exp(seq(-5.5,-1.5,length.out=20)), exp(seq(-7,-2,length.out=20)))
set.seed(100)
sp_ma2 <- selectPenalty(ssy = ssy, n = c(50, 150, 300, 500), lambda_all, theta = theta,

M = 100, sigma = 1.5, model = model, method = 'BSL', shrinkage = 'glasso')
sp_ma2
plot(sp_ma2)

End(Not run)

semiparaKernelEstimate

Estimate the semi-parametric synthetic (log) likelihood

Description

This function computes the semi-parametric synthetic likelihood estimator of (An et al. 2019). The
advantage of this semi-parametric estimator over the standard synthetic likelihood estimator is that
the semi-parametric one is more robust to non-normal summary statistics. Kernel density estimation
is used for modelling each univariate marginal distribution, and the dependence structure between
summaries are captured using a Gaussian copula. Shrinkage on the correlation matrix parameter of
the Gaussian copula is helpful in decreasing the number of simulations.

Usage

semiparaKernelEstimate(
ssy,
ssx,
kernel = "gaussian",
shrinkage = NULL,
penalty = NULL,
log = TRUE

)

semiparaKernelEstimate 43

Arguments

ssy The observed summary statisic.

ssx A matrix of the simulated summary statistics. The number of rows is the same
as the number of simulations per iteration.

kernel A string argument indicating the smoothing kernel to pass into density for
estimating the marginal distribution of each summary statistic. Only “gaussian"
and “epanechnikov" are available. The default is “gaussian".

shrinkage A string argument indicating which shrinkage method to be used. The default
is NULL, which means no shrinkage is used. Current options are “glasso” for the
graphical lasso method of Friedman et al. (2008) and “Warton” for the ridge
regularisation method of Warton (2008).

penalty The penalty value to be used for the specified shrinkage method. Must be be-
tween zero and one if the shrinkage method is “Warton”.

log A logical argument indicating if the log of likelihood is given as the result. The
default is TRUE.

Value

The estimated synthetic (log) likelihood value.

References

An Z, Nott DJ, Drovandi C (2019). “Robust Bayesian Synthetic Likelihood via a Semi-Parametric
Approach.” Statistics and Computing (In Press).

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the Graph-
ical Lasso.” Biostatistics, 9(3), 432–441.

Warton DI (2008). “Penalized Normal Likelihood and Ridge Regularization of Correlation and Co-
variance Matrices.” Journal of the American Statistical Association, 103(481), 340–349. doi: 10.1198/
016214508000000021.

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Robustness
Properties.” Statistics and Computing, 22(2), 471–483. doi: 10.1007/s1122201192370.

See Also

Other available synthetic likelihood estimators: gaussianSynLike for the standard synthetic like-
lihood estimator, gaussianSynLikeGhuryeOlkin for the unbiased synthetic likelihood estimator,
synLikeMisspec for the Gaussian synthetic likelihood estimator for model misspecification.

https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1198/016214508000000021
https://doi.org/10.1007/s11222-011-9237-0

44 simulate_cell

Examples

data(ma2)
ssy <- ma2_sum(ma2$data)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,

theta0 = ma2$start, sumArgs = list(delta = 0.5))
ssx <- simulation(m, n = 300, theta = c(0.6, 0.2), seed = 10)$ssx

check the distribution of the first summary statistic: highly non-normal
plot(density(ssx[, 1]))

the standard synthetic likelihood estimator over-estimates the likelihood here
gaussianSynLike(ssy, ssx)
the semi-parametric synthetic likelihood estimator is more robust to non-normality
semiparaKernelEstimate(ssy, ssx)
using shrinkage on the correlation matrix of the Gaussian copula is also possible
semiparaKernelEstimate(ssy, ssx, shrinkage = "Warton", penalty = 0.8)

simulate_cell Simulation function of the cell biology example

Description

Simulation function of the cell biology example.

Usage

simulate_cell(x, rows, cols, Pm, Pp, sim_iters, num_obs)

Arguments

x The initial matrix of cell presences of size rows × cols.

rows The number of rows in the lattice (rows in the cell location matrix).

cols The number of columns in the lattice (columns in the cell location matrix).

Pm Parameter Pm, the probability of cell movement.

Pp Parameter Pp, the probability of cell proliferation.

sim_iters The number of discretisation steps to get to when an observation is actually
taken. For example, if observations are taken every 5 minutes but the dis-
cretisation level is 2.5 minutes, then sim_iters would be 2. Larger values of
sim_iters lead to more “accurate” simulations from the model, but they also
increase the simulation time.

num_obs The total number of images taken after initialisation.

Value

A rows × cols × num_obs array of the cell presences at times 1:num_obs (not time 0).

simulation 45

simulation Run simulations with a give "MODEL" object

Description

see MODEL

Usage

simulation(model, ...)

Arguments

model A “MODEL” object.

... Other arguments.

sim_toad The simulation function for the toad example

Description

The simulation function for the toad example.

Usage

sim_toad(params, ntoad, nday, model = 1L, d0 = 100)

Arguments

params A vector of proposed model parameters, α, gamma and p0.

ntoad The number of toads to simulate in the observation.

nday The number of days lasted of the observation.

model Which model to be used. 1 for the random return model, 2 for the nearest return
model, and 3 for the distance-based return probability model.

d0 Characteristic distance for model 3. Only used if model is 3.

Value

A data matrix.

Examples

sim_toad(c(1.7,36,0.6), 10, 8, 1)

46 synLikeMisspec

summStat Compute the summary statistics with the given data

Description

see MODEL

Usage

summStat(x, model)

Arguments

x The data to pass to the summary statistics function.

model A “MODEL” object.

synLikeMisspec Estimate the Gaussian synthetic (log) likelihood whilst acknowledging
model incompatibility

Description

This function estimates the Gaussian synthetic likelihood whilst acknowledging that there may
be incompatibility between the model and the observed summary statistic. The method has two
different ways to account for and detect incompatibility (mean adjustment and variance inflation).
An additional free parameter gamma is employed to account for the model misspecification. See
the R-BSL methods of Frazier and Drovandi (2021) for more details. Note this function is mainly
designed for interal use as the latent variable gamma need to be chosen otherwise. Alternatively,
gamma is updated with a slice sampler (Neal 2003), which is the method of Frazier and Drovandi
(2021).

Usage

synLikeMisspec(
ssy,
ssx,
type = c("mean", "variance"),
gamma = numeric(length(ssy)),
log = TRUE,
verbose = FALSE

)

synLikeMisspec 47

Arguments

ssy The observed summary statisic.

ssx A matrix of the simulated summary statistics. The number of rows is the same
as the number of simulations per iteration.

type A string argument indicating which method is used to account for and detect
potential incompatibility. The two options are "mean" and "variance" for mean
adjustment and variance inflation, respectively.

gamma The additional latent parameter to account for possible incompatability between
the model and observed summary statistic. In “BSLmisspec” method, this is
updated with a slice sampler (Neal 2003). The default gamma implies no model
misspecification and is equivalent to the standard gaussianSynLike estimator.

log A logical argument indicating if the log of likelihood is given as the result. The
default is TRUE.

verbose A logical argument indicating whether an error message should be printed if the
function fails to compute a likelihood. The default is FALSE.

Value

The estimated synthetic (log) likelihood value.

References

Frazier DT, Drovandi C (2021). “Robust Approximate Bayesian Inference with Synthetic Likeli-
hood.” Journal of Computational and Graphical Statistics (In Press). https://arxiv.org/abs/
1904.04551.

Neal RM (2003). “Slice sampling.” The Annals of Statistics, 31(3), 705–767.

See Also

Other available synthetic likelihood estimators: gaussianSynLike for the standard synthetic like-
lihood estimator, gaussianSynLikeGhuryeOlkin for the unbiased synthetic likelihood estimator,
semiparaKernelEstimate for the semi-parametric likelihood estimator, synLikeMisspec for the
Gaussian synthetic likelihood estimator for model misspecification. Slice sampler to sample gamma
sliceGammaMean and sliceGammaVariance (internal functions).

Examples

a toy model (for details see section 4.1 from Frazier et al 2019)
the true underlying model is a normal distribution with standard deviation equals to 0.2
whist the data generation process has the standard deviation fixed to 1
set.seed(1)
y <- rnorm(50, 1, sd = 0.2)
ssy <- c(mean(y), var(y))
m <- newModel(fnSim = function(theta) rnorm(50, theta), fnSum = function(x) c(mean(x), var(x)),

theta0 = 1, fnLogPrior = function(x) log(dnorm(x, sd = sqrt(10))))
ssx <- simulation(m, n = 300, theta = 1, seed = 10)$ssx

https://arxiv.org/abs/1904.04551
https://arxiv.org/abs/1904.04551

48 toad

gamma is updated with a slice sampler
gamma <- rep(0.1, length(ssy))
synLikeMisspec(ssy, ssx, type = "variance", gamma = gamma)

toad Toad example

Description

This example estimates the parameter for the toad example. The model simulates the movement
of an amphibian called Fowler’s toad. The model is proposed by Marchand et al. (2017). This
example includes both simulated and real data. The real data is obtained from the supplementary
material of Marchand et al. (2017). The journal article An et al. (2022) provides a full description
of how to use this package for the toad example.

Usage

data(toad)

toad_sim(
theta,
ntoads,
ndays,
model = 1,
d0 = 100,
na = matrix(FALSE, ndays, ntoads)

)

toad_sum(X, lag = c(1, 2, 4, 8), p = seq(0, 1, 0.1))

toad_prior(theta)

Arguments

theta A vector of proposed model parameters, α, γ and p0.

ntoads The number of toads to simulate in the observation.

ndays The number of days observed.

model Which model to be used: 1 for the random return model, 2 for the nearest return
model, and 3 for the distance-based return probability model. The default is 1.

d0 Characteristic distance for model 3. Only used if model is 3.

na Logical. This is the index matrix for missing observations. By default, matrix(FALSE,
ndays, ntoads) indicates there is no missingness in the observation matrix.

X The data matrix.

lag The lag of days to compute the summary statistics, default as 1, 2, 4 and 8.

p The numeric vector of probabilities to compute the quantiles.

toad 49

Details

The example includes the three different returning models of Marchand et al. (2017). Please see
Marchand et al. (2017) for a full description of the toad model, and also An et al. (2019) for
Bayesian inference with the semi-BSL method.

Functions

• toad_sim: Simulates data from the model, using C++ in the backend.

• toad_sum: Computes the summary statistics for this example. The summary statistics are the
log differences between adjacent quantiles and also the median.

• toad_prior: Evaluates the log prior at the chosen parameters.

datasets (simulated and real)

A simulated dataset and a real dataset are provided in this example. Both datasets contain ob-
servations from 66 toads for 63 days. The simulated dataset is simulated with parameter θ =
(1.7, 35, 0.6). This is the data used in An et al. (2019). The real dataset is obtained from the
supplementary data of Marchand et al. (2017).

• data_simulated: A 63 × 66 matrix of the observed toad locations (simulated data).

• data_real: A 63 × 66 matrix of the observed toad locations (real data).

• cov: The covariance matrix of a multivariate normal random walk proposal distribution used
in the MCMC, in the form of a 3 × 3 matrix.

• theta0: A vector of suitable initial values of the parameters for MCMC.

• sim_args_simulated and sim_args_real: A list of the arguments to pass into the simulation
function.

– ndays: The number of days observed.
– ntoads: The total number of toads being observed.
– model: Indicator of which model to be used.
– na: Indicator matrix for missingness.

Author(s)

Ziwen An, Leah F. South and Christopher Drovandi

References

An Z, Nott DJ, Drovandi C (2019). “Robust Bayesian Synthetic Likelihood via a Semi-Parametric
Approach.” Statistics and Computing (In Press).

An Z, South LF, Drovandi CC (2022). “BSL: An R Package for Efficient Parameter Estimation
for Simulation-Based Models via Bayesian Synthetic Likelihood.” Journal of Statistical Software,
101(11), 1–33. doi: 10.18637/jss.v101.i11.

Marchand P, Boenke M, Green DM (2017). “A stochastic movement model reproduces patterns
of site fidelity and long-distance dispersal in a population of Fowlers toads (Anaxyrus fowleri).”
Ecological Modelling, 360, 63–69. ISSN 0304-3800, doi: 10.1016/j.ecolmodel.2017.06.025.()

https://doi.org/10.18637/jss.v101.i11
https://doi.org/10.1016/j.ecolmodel.2017.06.025

50 toad

Examples

Not run:
require(doParallel) # You can use a different package to set up the parallel backend

data(toad)

run standard BSL for the simulated dataset
model1 <- newModel(fnSim = toad_sim, fnSum = toad_sum, theta0 = toad$theta0,

fnLogPrior = toad_prior, simArgs = toad$sim_args_simulated,
thetaNames = expression(alpha,gamma,p[0]))

paraBound <- matrix(c(1,2,0,100,0,0.9), 3, 2, byrow = TRUE)

Performing BSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultToadSimulated <- bsl(toad$data_simulated, n = 1000, M = 10000, model = model1,

covRandWalk = toad$cov, logitTransformBound = paraBound,
parallel = TRUE, verbose = 1L, plotOnTheFly = 100)

stopCluster(cl)
registerDoSEQ()
show(resultToadSimulated)
summary(resultToadSimulated)
plot(resultToadSimulated, thetaTrue = toad$theta0, thin = 20)

run standard BSL for the real dataset
model2 <- newModel(fnSim = toad_sim, fnSum = toad_sum, theta0 = toad$theta0,

fnLogPrior = toad_prior, simArgs = toad$sim_args_real,
thetaNames = expression(alpha,gamma,p[0]))

paraBound <- matrix(c(1,2,0,100,0,0.9), 3, 2, byrow = TRUE)

Performing BSL (reduce the number of iterations M if desired)
Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultToadReal <- bsl(toad$data_real, n = 1000, M = 10000, model = model2,

covRandWalk = toad$cov, logitTransformBound = paraBound,
parallel = TRUE, verbose = 1L, plotOnTheFly = 100)

stopCluster(cl)
registerDoSEQ()
show(resultToadReal)
summary(resultToadReal)
plot(resultToadReal, thetaTrue = toad$theta0, thin = 20)

End(Not run)

Index

BSL, 7
BSL (BSL-package), 3
bsl, 3, 5, 9, 42
BSL-class, 9
BSL-package, 3
BSLclass, 26–28
BSLclass (BSL-class), 9

cell, 4, 8, 11, 17, 42
cell_prior (cell), 11
cell_sim (cell), 11
cell_sum (cell), 11
combinePlotsBSL, 15
cor2cov, 17, 22

estimateLoglike, 18
estimateWhiteningMatrix, 7, 19, 20, 24

gaussianRankCorr, 22
gaussianSynLike, 20, 23, 26, 41, 43, 47
gaussianSynLikeGhuryeOlkin, 20, 25, 25,

43, 47
getGamma, 26
getGamma,BSL-method (BSL-class), 9
getLoglike, 27
getLoglike,BSL-method (BSL-class), 9
getPenalty, 27
getPenalty,BSL-method (PENALTY-class),

39
getTheta, 28
getTheta,BSL-method (BSL-class), 9

ma2, 4, 8, 17, 28, 42
ma2_prior (ma2), 28
ma2_sim (ma2), 28
ma2_sim_vec (ma2), 28
ma2_sum (ma2), 28
mgnk, 4, 8, 17, 32, 42
mgnk_sim (mgnk), 32
mgnk_sum (mgnk), 32

MODEL, 7, 21, 37, 45, 46
MODEL (MODEL-class), 35
MODEL-class, 35

newModel, 6, 21, 39, 40
newModel (MODEL-class), 35

obsMat2deltax, 38

PENALTY (PENALTY-class), 39
PENALTY-class, 39
PENALTYclass, 27
PENALTYclass (PENALTY-class), 39
plot, 8
plot,BSL,ANY-method (BSL-class), 9
plot,PENALTY,ANY-method

(PENALTY-class), 39

selectPenalty, 3, 8, 39, 40, 40
semiparaKernelEstimate, 20, 25, 26, 41, 42,

47
show,BSL-method (BSL-class), 9
show,PENALTY-method (PENALTY-class), 39
sim_toad, 45
simulate_cell, 44
simulation, 45
simulation,MODEL-method (MODEL-class),

35
sliceGammaMean, 47
sliceGammaVariance, 47
summary,BSL-method (BSL-class), 9
summStat, 46
summStat,ANY,MODEL-method

(MODEL-class), 35
synLikeMisspec, 20, 25, 26, 43, 46, 47

toad, 4, 8, 17, 48
toad_prior (toad), 48
toad_sim (toad), 48
toad_sum (toad), 48

51

	BSL-package
	bsl
	BSL-class
	cell
	combinePlotsBSL
	cor2cov
	estimateLoglike
	estimateWhiteningMatrix
	gaussianRankCorr
	gaussianSynLike
	gaussianSynLikeGhuryeOlkin
	getGamma
	getLoglike
	getPenalty
	getTheta
	ma2
	mgnk
	MODEL-class
	obsMat2deltax
	PENALTY-class
	selectPenalty
	semiparaKernelEstimate
	simulate_cell
	simulation
	sim_toad
	summStat
	synLikeMisspec
	toad
	Index

