
Package ‘BNPmix’
January 20, 2025

Type Package

Title Bayesian Nonparametric Mixture Models

Version 1.0.2

Date 2022-07-15

Author Riccardo Corradin [aut, cre], Antonio Canale [ctb], Bernardo Nipoti [ctb]

Maintainer Riccardo Corradin <riccardo.corradin@gmail.com>

Description Functions to perform Bayesian nonparametric univariate and multivariate density estima-
tion and clustering, by means of Pitman-Yor mixtures, and dependent Dirichlet process mix-
tures for partially exchangeable data. See Cor-
radin et al. (2021) <doi:10.18637/jss.v100.i15> for more details.

License LGPL-3 | file LICENSE

NeedsCompilation yes

Imports methods, stats, ggplot2, coda, Rcpp, ggpubr

Depends R (>= 3.5.0)

LinkingTo RcppArmadillo, Rcpp(>= 0.12.13), RcppDist

Suggests R.rsp

VignetteBuilder R.rsp

RoxygenNote 7.1.2

Encoding UTF-8

Repository CRAN

Date/Publication 2022-07-15 22:50:02 UTC

Contents
BNPdens . 2
BNPdens2coda.BNPdens . 3
BNPpart . 4
dBNPdens.BNPdens . 5
DDPdensity . 5
partition.BNPdens . 8

1

https://doi.org/10.18637/jss.v100.i15

2 BNPdens

plot.BNPdens . 9
print.BNPdens . 11
PYcalibrate . 12
PYdensity . 12
PYregression . 17
summary.BNPdens . 20

Index 22

BNPdens BNPdens class constructor

Description

A constructor for the BNPdens class. The class BNPdens is a named list containing the output gen-
erated by a specified Bayesian nonparametric mixture model implemented by means of a specified
MCMC strategy, as in PYdensity, DDPdensity, and PYregression.

Usage

BNPdens(
density = NULL,
data = NULL,
grideval = NULL,
grid_x = NULL,
grid_y = NULL,
clust = NULL,
mean = NULL,
beta = NULL,
sigma2 = NULL,
probs = NULL,
niter = NULL,
nburn = NULL,
tot_time = NULL,
univariate = TRUE,
regression = FALSE,
dep = FALSE,
group_log = NULL,
group = NULL,
wvals = NULL

)

Arguments

density a matrix containing the values taken by the density at the grid points;

data a dataset;

grideval a set of values where to evaluate the density;

BNPdens2coda.BNPdens 3

grid_x regression grid, independent variable;

grid_y regression grid, dependent variable;

clust a (niter - nburn) × nrow(data)-dimensional matrix containing the cluster la-
bels for each observation (cols) and MCMC iteration (rows);

mean values for the location parameters;

beta coefficients for regression model (only for PYregression);

sigma2 values of the scale parameters;

probs values for the mixture weights;

niter number of MCMC iterations;

nburn number of MCMC iterations to discard as burn-in;

tot_time total execution time;

univariate logical, TRUE if the model is univariate;

regression logical, TRUE for the output of PYregression;

dep logical, TRUE for the output of DDPdensity;

group_log group allocation for each iteration (only for DDPdensity);

group vector, allocation of observations to strata (only for DDPdensity);

wvals values of the processes weights (only for DDPdensity).

Examples

data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy, mcmc = list(niter = 100,

nburn = 10, nupd = 100), output = list(grid = grid))
str(est_model)
class(est_model)

BNPdens2coda.BNPdens Export to coda interface

Description

The method BNPdens2coda converts a BNPdens object into a coda mcmc object.

Usage

S3 method for class 'BNPdens'
BNPdens2coda(object, dens = FALSE)

Arguments

object a BNPdens object;

dens logical, it can be TRUE only for models estimated with PYdensity. If TRUE, it
converts to coda also the estimated density. Default FALSE.

4 BNPpart

Value

an mcmc object

Examples

data_toy <- cbind(c(rnorm(100, -3, 1), rnorm(100, 3, 1)),
c(rnorm(100, -3, 1), rnorm(100, 3, 1)))

grid <- expand.grid(seq(-7, 7, length.out = 50),
seq(-7, 7, length.out = 50))

est_model <- PYdensity(y = data_toy, mcmc = list(niter = 200, nburn = 100),
output = list(grid = grid))

coda_mcmc <- BNPdens2coda(est_model)
class(coda_mcmc)

BNPpart BNPpart class constructor

Description

A constructor for the BNPpart class. The class BNPpart is a named list containing the output of
partition estimation methods.

Usage

BNPpart(partitions = NULL, scores = NULL, psm = NULL)

Arguments

partitions a matrix, each row is a visited partition;

scores a vector, each value is the score of a visited partition;

psm a matrix, posterior similarity matrix.

Examples

data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy, mcmc = list(niter = 100,

nburn = 10, nupd = 100), output = list(grid = grid))
part <- partition(est_model)
class(part)

dBNPdens.BNPdens 5

dBNPdens.BNPdens Evaluate estimated univariate densities at a given point

Description

The method dBNPdens provides an approximated evaluation of estimated univariate densities at a
given point, for a BNPdens class object.

Usage

S3 method for class 'BNPdens'
dBNPdens(object, x)

Arguments

object a BNPdens object (only if univariate);

x the point where to evaluate the density.

Value

a numeric value

Examples

data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy, mcmc = list(niter = 200, nburn = 100),

output = list(grid = grid))
x <- 1.4
dBNPdens(est_model, x)

DDPdensity MCMC for GM-dependent Dirichlet process mixtures of Gaussians

Description

The DDPdensity function generates posterior density samples for a univariate Griffiths-Milne de-
pendent Dirichlet process mixture model with Gaussian kernel, for partially exchangeable data. The
function implements the importance conditional sampler method.

Usage

DDPdensity(y, group, mcmc = list(), prior = list(), output = list())

6 DDPdensity

Arguments

y a vector or matrix giving the data based on which densities are to be estimated;

group vector of length length(y) containing the group labels (integers) for the ele-
ments of y;

mcmc list of MCMC arguments:

• niter (mandatory), number of iterations.
• nburn (mandatory), number of iterations to discard as burn-in.
• nupd, argument controlling the number of iterations to be displayed on

screen: the function reports on standard output every time nupd new it-
erations have been carried out (default is niter/10).

• print_message, control option. If equal to TRUE, the status is printed to
standard output every nupd iterations (default is TRUE).

• m_imp, number of generated values for the importance sampling step of the
importance conditional sampler (default is 10). See details.

• var_MH_step, variance of the Gaussian proposal for the Metropolis-Hastings
of the weights update (default is 0.25).

prior a list giving the prior information, which contains:

• strength, the strength parameter, or total mass, of the marginal Dirichlet
processes (default 1);

• m0, mean of the normal base measure on the location parameter (default is
the sample mean of the data);

• k0, scale factor appearing in the normal base measure on the location pa-
rameter (default 1);

• a0, shape parameter of the inverse gamma base measure on the scale pa-
rameter (default 2);

• b0, scale parameter of the inverse gamma base measure on the scale param-
eter (default is the sample variance of the data);

• wei, parameter controlling the strength of dependence across Dirichlet pro-
cesses (default 1/2).

output a list of arguments for generating posterior output. It contains:

• grid, a grid of points at which to evaluate the estimated posterior mean
densities (common for all the groups).

• out_type, if out_type = "FULL", return the estimated partitions and the re-
alizations of the posterior density for each iterations. If out_type = "MEAN",
return the estimated partitions and the mean of the densities sampled at each
iterations. If out_type = "CLUST", return the estimated partitions. Default
out_type = "FULL".

Details

This function fits a Griffiths-Milne dependent Dirichlet process (GM-DDP) mixture for density
estimation for partially exchangeable data (Lijoi et al., 2014). For each observation the group vari-
able allows the observations to be gathered into L=length(unique(group)) distinct groups. The

DDPdensity 7

model assumes exchangeability within each group, with observations in the lth group marginally
modelled by a location-scale Dirichlet process mixtures, i.e.

f̃l(y) =

∫
ϕ(y;µ, σ2)p̃l(dµ, dσ

2)

where each p̃l is a Dirichlet process with total mass strength and base measure P0. The vector
p̃ = (p̃1, . . . , p̃L) is assumed to be jointly distributed as a vector of GM-DDP(strength, wei; P0),
where strength and P0 are the total mass parameter and the base measure of each p̃l, and wei
controls the dependence across the components of p̃. Admissible values for wei are in (0, 1), with
the two extremes of the range corresponding to full exchangeability (wei→ 0) and independence
across groups (wei→ 1).

P0 is a normal-inverse gamma base measure, i.e.

P0(dµ, dσ
2) = N(dµ;m0, σ

2/k0)× IGa(dσ2; a0, b0).

Posterior sampling is obtained by implementing the importance conditional sampler (Canale et al.,
2019). See Corradin et al. (to appear) for more details.

Value

A BNPdensity class object containing the estimated densities for each iteration, the allocations for
each iteration; the grid used to evaluate the densities (for each group); the densities sampled from
the posterior distribution (for each group); the groups; the weights of the processes. The function
returns also informations regarding the estimation: the number of iterations, the number of burn-in
iterations and the execution time.

References

Lijoi, A., Nipoti, B., and Pruenster, I. (2014). Bayesian inference with dependent normalized com-
pletely random measures. Bernoulli 20, 1260–1291, doi:10.3150/13-BEJ521

Canale, A., Corradin, R., & Nipoti, B. (2019). Importance conditional sampling for Bayesian
nonparametric mixtures. arXiv preprint arXiv:1906.08147

Corradin, R., Canale, A., Nipoti, B. (2021), BNPmix: An R Package for Bayesian Nonparametric
Modeling via Pitman-Yor Mixtures, Journal of Statistical Software, doi:10.18637/jss.v100.i15

Examples

data_toy <- c(rnorm(50, -4, 1), rnorm(100, 0, 1), rnorm(50, 4, 1))
group_toy <- c(rep(1,100), rep(2,100))
grid <- seq(-7, 7, length.out = 50)
est_model <- DDPdensity(y = data_toy, group = group_toy,
mcmc = list(niter = 200, nburn = 100, var_MH_step = 0.25),
output = list(grid = grid))
summary(est_model)
plot(est_model)

8 partition.BNPdens

partition.BNPdens Estimate the partition of the data

Description

The partition method estimates the partition of the data based on the output generated by a
Bayesian nonparametric mixture model, according to a specified criterion, for a BNPdens class
object.

Usage

S3 method for class 'BNPdens'
partition(object, dist = "VI", max_k = NULL, ...)

Arguments

object an object of class BNPdens;

dist a loss function defined on the space of partitions; it can be variation of informa-
tion ("VI") or "Binder", default "VI". See details;

max_k maximum number of clusters passed to the cutree function. See value below;

... additional arguments to be passed.

Details

This method returns point estimates for the clustering of the data induced by a nonparametric mix-
ture model. This result is achieved exploiting two different loss fuctions on the space of partitions:
variation of information (dist = 'VI') and Binder’s loss (dist = 'Binder'). The function is based
on the mcclust.ext code by Sara Wade (Wade and Ghahramani, 2018).

Value

The method returns a list containing a matrix with nrow(data) columns and 3 rows. Each row
reports the cluster labels for each observation according to three different approaches, one per row.
The first and second rows are the output of an agglomerative clustering procedure obtained by
applying the function hclust to the dissimilarity matrix, and by using the complete or average
linkage, respectively. The number of clusters is between 1 and max_k and is choosen according to
a lower bound on the expected loss, as described in Wade and Ghahramani (2018). The third row
reports the partition visited by the MCMC with the minimum distance dist from the dissimilarity
matrix.

In addition, the list reports a vector with three scores representing the lower bound on the expected
loss for the three partitions.

References

Wade, S., Ghahramani, Z. (2018). Bayesian cluster analysis: Point estimation and credible balls.
Bayesian Analysis, 13, 559-626.

plot.BNPdens 9

Examples

data_toy <- c(rnorm(10, -3, 1), rnorm(10, 3, 1))
grid <- seq(-7, 7, length.out = 50)
fit <- PYdensity(y = data_toy, mcmc = list(niter = 100,

nburn = 10, nupd = 100), output = list(grid = grid))
class(fit)
partition(fit)

plot.BNPdens Density plot for BNPdens class

Description

Extension of the plot method to the BNPdens class. The method plot.BNPdens returns suitable
plots for a BNPdens object. See details.

Usage

S3 method for class 'BNPdens'
plot(
x,
dimension = c(1, 2),
col = "#0037c4",
show_points = F,
show_hist = F,
show_clust = F,
bin_size = NULL,
wrap_dim = NULL,
xlab = "",
ylab = "",
band = T,
conf_level = c(0.025, 0.975),
...

)

Arguments

x an object of class BNPdens;

dimension if x is the output of a model fitted to multivariate data, dimensions specifies
the two dimensions for the bivariate contour plot (if they are equal, a marginal
univarite plot is returned);

col the color of the lines;

show_points if TRUE, the function plots also the observations, default FALSE;

show_hist if TRUE, and the model is univariate, the function plots also the histogram of the
data, default FALSE;

10 plot.BNPdens

show_clust if TRUE the function plots also the points colored with respect to the estimated
partition, default FALSE;

bin_size if show_hist = TRUE, it correponds to the size of each bin, default range(data)
/ 30;

wrap_dim bivariate vector, if x is the output of DDPdensity, it correponds to the number
of rows and columns in the plot. Default c(ngroup, 1);

xlab label of the horizontal axis;

ylab label of the vertical axis;

band if TRUE and x is the output of a univariate model or of DDPdensity, the plot
method displays quantile-based posterior credible bands along with estimated
densities;

conf_level bivariate vector, order of the quantiles for the posterior credible bands. Default
c(0.025, 0.975);

... additional arguments to be passed.

Details

If the BNPdens object is generated by PYdensity, the function returns the univariate or bivariate
estimated density plot. If the BNPdens object is generated by PYregression, the function returns
the scatterplot of the response variable jointly with the covariates (up to four), coloured according
to the estimated partition. up to four covariates. If x is a BNPdens object generated by DDPdensity,
the function returns a wrapped plot with one density per group. The plots can be enhanced in several
ways: for univariate densities, if show_hist = TRUE, the plot shows also the histogram of the data;
if show_points = TRUE, the plot shows also the observed points along the x-axis; if show_points
= TRUE and show_clust = TRUE, the points are colored according to the partition estimated with
the partition function. For multivariate densities: if show_points = TRUE, the plot shows also
the scatterplot of the data; if show_points = TRUE and show_clust = TRUE, the points are colored
according to the estimated partition.

Value

A ggplot2 object.

Examples

PYdensity example
data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy,
mcmc = list(niter = 200, nburn = 100, nupd = 100),
output = list(grid = grid))
class(est_model)
plot(est_model)

PYregression example
x_toy <- c(rnorm(100, 3, 1), rnorm(100, 3, 1))
y_toy <- c(x_toy[1:100] * 2 + 1, x_toy[101:200] * 6 + 1) + rnorm(200, 0, 1)
grid_x <- c(0, 1, 2, 3, 4, 5)

print.BNPdens 11

grid_y <- seq(0, 35, length.out = 50)
est_model <- PYregression(y = y_toy, x = x_toy,
mcmc = list(niter = 200, nburn = 100),
output = list(grid_x = grid_x, grid_y = grid_y))
summary(est_model)
plot(est_model)

DDPdensity example
data_toy <- c(rnorm(50, -4, 1), rnorm(100, 0, 1), rnorm(50, 4, 1))
group_toy <- c(rep(1,100), rep(2,100))
grid <- seq(-7, 7, length.out = 50)
est_model <- DDPdensity(y = data_toy, group = group_toy,
mcmc = list(niter = 200, nburn = 100, napprox_unif = 50),
output = list(grid = grid))
summary(est_model)
plot(est_model)

print.BNPdens BNPdens print method

Description

The BNPdens method prints the type of a BNPdens object.

Usage

S3 method for class 'BNPdens'
print(x, ...)

Arguments

x an object of class BNPdens;

... additional arguments.

Examples

data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy, mcmc = list(niter = 100,

nburn = 10, napprox = 10), output = list(grid = grid))
class(est_model)
print(est_model)

12 PYdensity

PYcalibrate Pitman-Yor prior elicitation

Description

The function PYcalibrate elicits the strength parameter of the Pitman-Yor process, given the dis-
count parameter and the prior expected number of clusters.

Usage

PYcalibrate(Ek, n, discount = 0)

Arguments

Ek prior expected number of cluster;

n sample size;

discount discount parameter; default is set equal to 0, corresponding to a Dirichlet process
prior.

Value

A named list containingtthe values of strength and discount parameters.

Examples

PYcalibrate(5, 100)

PYcalibrate(5, 100, 0.5)

PYdensity MCMC for Pitman-Yor mixtures of Gaussians

Description

The PYdensity function generates a posterior density sample for a selection of univariate and mul-
tivariate Pitman-Yor process mixture models with Gaussian kernels. See details below for the de-
scription of the different specifications of the implemented models.

Usage

PYdensity(y, mcmc = list(), prior = list(), output = list())

PYdensity 13

Arguments

y a vector or matrix giving the data based on which the density is to be estimated;

mcmc a list of MCMC arguments:

• niter (mandatory), number of iterations.
• nburn (mandatory), number of iterations to discard as burn-in.
• method, the MCMC sampling method to be used, options are 'ICS', 'MAR'

and 'SLI' (default is 'ICS'). See details.
• model, the type of model to be fitted (default is 'LS'). See details.
• nupd, argument controlling the number of iterations to be displayed on

screen: the function reports on standard output every time nupd new it-
erations have been carried out (default is niter/10).

• print_message, control option. If equal to TRUE, the status is printed to
standard output every nupd iterations (default is TRUE).

• m_imp, number of generated values for the importance sampling step of
method = 'ICS' (default is 10). See details.

• slice_type, when method = 'SLI' it specifies the type of slice sampler.
Options are 'DEP' for dependent slice-efficient, and 'INDEP' for indepen-
dent slice-efficient (default is 'DEP'). See details.

• hyper, if equal to TRUE, hyperprior distributions on the base measure’s pa-
rameters are added, as specified in prior and explained in details (default
is TRUE).

prior a list giving the prior information. The list includes strength and discount,
the strength and discount parameters of the Pitman-Yor process (default are
strength = 1 and discount = 0, the latter leading to the Dirichlet process). The
remaining parameters depend on the model choice.

• If model = 'L' (location mixture) and y is univariate:
m0 and s20 are mean and variance of the base measure on the location
parameter (default are sample mean and sample variance of the data); a0
and b0 are shape and scale parameters of the inverse gamma prior on the
common scale parameter (default are 2 and the sample variance of the data).
If hyper = TRUE, optional hyperpriors on the base measure’s parameters are
added: specifically, m1 and k1 are the mean parameter and the scale factor
defining the normal hyperprior on m0 (default are the sample mean of the
data and 1), and a1 and b1 are shape and rate parameters of the inverse
gamma hyperprior on b0 (default are 2 and the sample variance of the data).
See details.

• If model = 'LS' (location-scale mixture) and y is univariate:
m0 and k0 are the mean parameter and the scale factor defining the normal
base measure on the location parameter (default are the sample mean of the
data and 1), and a0 and b0 are shape and scale parameters of the inverse
gamma base measure on the scale parameter (default are 2 and the sample
variance of the data). If hyper = TRUE, optional hyperpriors on the base
measure’s parameters are added: specifically, m1 and s21 are mean and
variance parameters of the normal hyperprior on m0 (default are the sam-
ple mean and the sample variance of the data); tau1 and zeta1 are shape

14 PYdensity

and rate parameters of the gamma hyperprior on k0 (default is 1 for both);
a1 and b1 are shape and rate parameters of the gamma hyperprior on b0
(default are the sample variance of the data and 1). See details.

• If model = 'L' (location mixture) and y is multivariate (p-variate):
m0 and S20 are mean and covariance of the base measure on the location
parameter (default are the sample mean and the sample covariance of the
data); Sigma0 and n0 are the parameters of the inverse Whishart prior on
the common scale matrix (default are the sample covariance of the data and
p+2). If hyper = TRUE, optional hyperpriors on the base measure’s parame-
ters are added: specifically, m1 and k1 are the mean parameter and the scale
factor defining the normal hyperprior on m0 (default are the sample mean
of the data and 1), and lambda and Lambda1 are the parameters (degrees of
freedom and scale) of the inverse Wishart prior on S20 (default are p+2 and
the sample covariance of the data). See details.

• If model = 'LS' (location-scale mixture) and y is multivariate (p-variate):
m0 and k0 are the mean parameter and the scale factor defining the normal
base measure on the location parameter (default are the sample mean of
the data and 1), and n0 and Sigma0 are the parameters (degrees of freedom
and scale) of the inverse Wishart base measure on the location parameter
(default are p+2 and the sample covariance of the data). If hyper = TRUE,
optional hyperpriors on the base measure’s parameters are added: specifi-
cally, m1 and S1 are mean and covariance matrix parameters of the normal
hyperprior on m0 (default are the sample mean and the sample covariance
of the data); tau1 and zeta1 are shape and rate parameters of the gamma
hyperprior on k0 (default is 1 for both); n1 and Sigma1 are the parameters
(degrees of freedom and scale) of the Wishart prior for Sigma0 (default are
p+2 and the sample covariance of the data divided p+2). See details.

• If model = 'DLS' (diagonal location-scale mixture):
m0 and k0 are the mean vector parameter and the vector of scale factors
defining the normal base measure on the location parameter (default are the
sample mean and a vector of ones), and a0 and b0 are vectors of shape and
scale parameters defining the base measure on the scale parameters (default
are a vector of twos and the diagonal of the sample covariance of the data).
If hyper = TRUE, optional hyperpriors on the base measure’s parameters are
added: specifically, m1 and s21 are vectors of mean and variance parameters
for the normal hyperpriors on the components of m0 (default are the sample
mean and the diagonal of the sample covariance of the data); tau1 and
zeta1 are vectors of shape and rate parameters of the gamma hyperpriors
on the components of k0 (default is a vector of ones for both); a1 and b1
are vectors of shape and rate parameters of the gamma hyperpriors on the
components of b0 (default is the diagonal of the sample covariance of the
data and a vector of ones). See details.

output a list of arguments for generating posterior output. It contains:
• grid, a grid of points at which to evaluate the estimated posterior mean

density; a data frame obtained with the expand.grid function.
• out_param, if equal to TRUE, the function returns the draws of the kernel’s

parameters for each MCMC iteration, default is FALSE. See value for de-
tails.

PYdensity 15

• out_type, if out_type = "FULL", the function returns the visited partitions
and the realizations of the posterior density for each iterations. If out_type
= "MEAN", the function returns the estimated partitions and the mean of the
densities sampled at each iterations. If out_type = "CLUST", the function
returns the estimated partition. Default "FULL".

Details

This generic function fits a Pitman-Yor process mixture model for density estimation and clustering.
The general model is

f̃(y) =

∫
K(y; θ)p̃(dθ),

where K(y; θ) is a kernel density with parameter θ ∈ Θ. Univariate and multivariate Gaussian ker-
nels are implemented with different specifications for the parametric space Θ, as described below.
The mixing measure p̃ has a Pitman-Yor process prior with strength parameter ϑ, discount param-
eter α, and base measure P0 admitting the specifications presented below. For posterior sampling,
three MCMC approaches are implemented. See details below.

Univariate data
For univariate y the function implements both a location and location-scale mixture model. The
former assumes

f̃(y) =

∫
ϕ(y;µ, σ2)p̃(dµ)π(σ2),

where ϕ(y;µ, σ2) is a univariate Gaussian kernel function with mean µ and variance σ2, and π(σ2)
is an inverse gamma prior. The base measure is specified as

P0(dµ) = N(dµ;m0, σ
2
0),

and σ2 ∼ IGa(a0, b0). Optional hyperpriors for the base measure’s parameters are

(m0, σ
2
0) ∼ N(m1, σ

2
0/k1)× IGa(a1, b1).

The location-scale mixture model, instead, assumes

f̃(y) =

∫
ϕ(y;µ, σ2)p̃(dµ, dσ2)

with normal-inverse gamma base measure

P0(dµ, dσ
2) = N(dµ;m0, σ

2/k0)× IGa(dσ2; a0, b0).

and (optional) hyperpriors

m0 ∼ N(m1, σ
2
1), k0 ∼ Ga(τ1, ζ1), b0 ∼ Ga(a1, b1).

Multivariate data
For multivariate y (p-variate) the function implements a location mixture model (with full covari-
ance matrix) and two different location-scale mixture models, with either full or diagonal covariance
matrix. The location mixture model assumes

f̃(y) =

∫
ϕp(y;µ,Σ)p̃(dµ)π(Σ)

16 PYdensity

where ϕp(y;µ,Σ) is a p-dimensional Gaussian kernel function with mean vector µ and covariance
matrix Σ. The prior on Σ is inverse Whishart with parameters Σ0 and ν0, while the base measure is

P0(dµ) = N(dµ;m0, S0),

with optional hyperpriors

m0 ∼ N(m1, S0/k1), S0 ∼ IW (λ1,Λ1).

The location-scale mixture model assumes

f̃(x) =

∫
ϕp(y;µ,Σ)p̃(dµ, dΣ).

Two possible structures for Σ are implemented, namely full and diagonal covariance. For the full
covariance mixture model, the base measure is the normal-inverse Wishart

P0(dµ, dΣ) = N(dµ;m0,Σ/k0)× IW (dΣ; ν0,Σ0),

with optional hyperpriors

m0 ∼ N(m1, S1), k0 ∼ Ga(τ1, ζ1), b0 ∼ W (ν1,Σ1).

The second location-scale mixture model assumes a diagonal covariance structure. This is equiva-
lent to write the mixture model as a mixture of products of univariate normal kernels, i.e.

f̃(y) =

∫ p∏
r=1

ϕ(yr;µr, σ
2
r)p̃(dµ1, . . . , dµp, dσ

2
1 , . . . , dσ

2
p).

For this specification, the base measure is assumed defined as the product of p independent normal-
inverse gamma distributions, that is

P0 =

p∏
r=1

P0r

where
P0r(dµr, dσ

2
r) = N(dµr;m0r, σ

2
r/k0r)×Ga(dσ2

r ; a0r, b0r).

Optional hyperpriors can be added, and, for each component, correspond to the set of hyperpriors
considered for the univariate location-scale mixture model.

Posterior simulation methods
This generic function implements three types of MCMC algorithms for posterior simulation. The
default method is the importance conditional sampler 'ICS' (Canale et al. 2019). Other options
are the marginal sampler 'MAR' (Neal, 2000) and the slice sampler 'SLI' (Kalli et al. 2011). The
importance conditional sampler performs an importance sampling step when updating the values
of individual parameters θ, which requires to sample m_imp values from a suitable proposal. Large
values of m_imp are known to improve the mixing of the chain at the cost of increased running time
(Canale et al. 2019). Two options are available for the slice sampler, namely the dependent slice-
efficient sampler (slice_type = 'DEP'), which is set as default, and the independent slice-efficient
sampler (slice_type = 'INDEP') (Kalli et al. 2011). See Corradin et al. (to appear) for more
details.

PYregression 17

Value

A BNPdens class object containing the estimated density and the cluster allocations for each itera-
tions. If out_param = TRUE the output contains also the kernel specific parameters for each iteration.
If mcmc_dens = TRUE the output contains also a realization from the posterior density for each iter-
ation. IF mean_dens = TRUE the output contains just the mean of the realizations from the posterior
density. The output contains also informations as the number of iterations, the number of burn-in
iterations, the used computational time and the type of estimated model (univariate = TRUE or
FALSE).

References

Canale, A., Corradin, R., Nipoti, B. (2019), Importance conditional sampling for Bayesian non-
parametric mixtures, arXiv preprint, arXiv:1906.08147

Corradin, R., Canale, A., Nipoti, B. (2021), BNPmix: An R Package for Bayesian Nonparametric
Modeling via Pitman-Yor Mixtures, Journal of Statistical Software, 100, doi:10.18637/jss.v100.i15

Kalli, M., Griffin, J. E., and Walker, S. G. (2011), Slice sampling mixture models. Statistics and
Computing 21, 93-105, doi:10.1007/s11222-009-9150-y

Neal, R. M. (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models, Jour-
nal of Computational and Graphical Statistics 9, 249-265, doi:10.2307/1390653

Examples

data_toy <- cbind(c(rnorm(100, -3, 1), rnorm(100, 3, 1)),
c(rnorm(100, -3, 1), rnorm(100, 3, 1)))

grid <- expand.grid(seq(-7, 7, length.out = 50),
seq(-7, 7, length.out = 50))

est_model <- PYdensity(y = data_toy, mcmc = list(niter = 200, nburn = 100),
output = list(grid = grid))
summary(est_model)
plot(est_model)

PYregression MCMC for Pitman-Yor mixture of Gaussian regressions

Description

The PYregression function generates a posterior sample for mixtures of linear regression models
inspired by the ANOVA-DDP model introduced in De Iorio et al. (2004). See details below for
model specification.

Usage

PYregression(y, x, mcmc = list(), prior = list(), output = list())

18 PYregression

Arguments

y a vector of observations, univariate dependent variable;

x a matrix of observations, multivariate independent variable;

mcmc a list of MCMC arguments:

• niter (mandatory), number of iterations.
• nburn (mandatory), number of iterations to discard as burn-in.
• method, the MCMC sampling method to be used. Options are 'ICS', 'MAR'

and 'SLI' (default is 'ICS'). See details.
• model the type of model to be fitted (default is ’LS’). See details.
• nupd, argument controlling the number of iterations to be displayed on

screen: the function reports on standard output every time nupd new it-
erations have been carried out (default is niter/10).

• print_message, control option. If equal to TRUE, the status is printed to
standard output every nupd iterations (default is TRUE).

• m_imp, number of generated values for the importance sampling step of
method = 'ICS' (default is 10). See details.

• slice_type, when method = 'SLI' it specifies the type of slice sampler.
Options are 'DEP' for dependent slice-efficient, and 'INDEP' for indepen-
dent slice-efficient (default is 'DEP'). See details.

• m_marginal, number of generated values for the augmentation step needed,
if method = 'MAR', to implement Algorithm 8 of Neal, 2000. (Default is
100). See details.

• hyper, if equal to TRUE, hyperprior distributions on the base measure’s pa-
rameters are added, as specified in prior and explained in details (default
is TRUE).

prior a list giving the prior information. The list includes strength and discount,
the strength and discount parameters of the Pitman-Yor process (default are
strength = 1 and discount = 0, the latter leading to the Dirichlet process). The
remaining parameters specify the base measure: m0 and S0 are the mean and co-
variance of normal base measure on the regression coefficients (default are a
vector of zeroes, except for the first element equal to mean(y), and a diagonal
matrix with each element equal to 100); a0 and b0 are the shape and scale pa-
rameters of the inverse gamma base measure on the scale component (default
are 2 and var(y)). If hyper = TRUE, optional hyperpriors on the base measure’s
parameters are added: specifically, m1 and k1 are the mean parameter and scale
factor defining the normal hyperprior on m0 (default are a vector of zeroes, ex-
cept for the first element equal to the sample mean of the dependent observed
variable, and 1); tau1 and zeta1 are the shape and rate parameters of the gamma
hyperprior on b0 (default is 1 for both); n1 and S1 are the parameters (degrees of
freedom and scale) of the Wishart prior for S0 (default 4 and a diagonal matrix
with each element equal to 100); See details.

output list of posterior summaries:

• grid_y, a vector of points where to evaluate the estimated posterior mean
density of y, conditionally on each value of x in grid_x;

PYregression 19

• grid_x, a matrix of points where to evaluate the realization of the posterior
conditional densities of y given x;

• out_type, if out_type = "FULL", the function returns the estimated par-
titions and the realizations of the posterior density for each iteration; If
out_type = "MEAN", return the estimated partitions and the mean of the
densities sampled at each iteration; If out_type = "CLUST", return the esti-
mated partitions. Default out_type = "FULL";

• out_param, if equal to TRUE, the function returns the draws of the kernel’s
parameters for each MCMC iteration, default is FALSE. See value for de-
tails.

Details

This function fits a Pitman-Yor process mixture of Gaussian linear regression models, i.e

f̃(y) =

∫
ϕ(y;xTβ, σ2)p̃(dβ, dσ2)

where x is a bivariate vector containing the dependent variable in x and a value of 1 for the intercept
term. The mixing measure p̃ has a Pitman-Yor process prior with strength ϑ, discount parameter α.
The location model assume a base measures P0 specified as

P0(dβ) = N(dβ;m0, S0).

while the location-scale model assume a base measures P0 specified as

P0(dβ, dσ
2) = N(dβ;m0, S0)× IGa(dσ2; a0, b0).

Optional hyperpriors complete the model specification:

m0 ∼ N(m1, S0/k1), S0 ∼ IW (ν1, S1), b0 ∼ G(τ1, ζ1).

Posterior simulation methods
This generic function implements three types of MCMC algorithms for posterior simulation. The
default method is the importance conditional sampler 'ICS' (Canale et al. 2019). Other options
are the marginal sampler 'MAR' (algorithm 8 of Neal, 2000) and the slice sampler 'SLI' (Kalli et
al. 2011). The importance conditional sampler performs an importance sampling step when updat-
ing the values of individual parameters θ, which requires to sample m_imp values from a suitable
proposal. Large values of m_imp are known to improve the mixing of the posterior distribution at
the cost of increased running time (Canale et al. 2019). When updateing the individual parame-
ter θ, Algorithm 8 of Neal, 2000, requires to sample m_marginal values from the base measure.
m_marginal can be chosen arbitrarily. Two options are available for the slice sampler, namely the
dependent slice-efficient sampler (slice_type = 'DEP'), which is set as default, and the indepen-
dent slice-efficient sampler (slice_type = 'INDEP') (Kalli et al. 2011). See Corradin et al. (to
appear) for more details.

Value

A BNPdens class object containing the estimated density and the cluster allocations for each iter-
ations. The output contains also the data and the grids. If out_param = TRUE the output contains

20 summary.BNPdens

also the kernel specific parameters for each iteration. If mcmc_dens = TRUE, the function returns
also a realization from the posterior density for each iteration. If mean_dens = TRUE, the output
contains just the mean of the densities sampled at each iteration. The output retuns also the number
of iterations, the number of burn-in iterations, the computational time and the type of model.

References

Canale, A., Corradin, R., Nipoti, B. (2019), Importance conditional sampling for Bayesian non-
parametric mixtures, arXiv preprint, arXiv:1906.08147

Corradin, R., Canale, A., Nipoti, B. (2021), BNPmix: An R Package for Bayesian Nonparametric
Modeling via Pitman-Yor Mixtures, Journal of Statistical Software, doi:10.18637/jss.v100.i15

De Iorio, M., Mueller, P., Rosner, G.L., and MacEachern, S. (2004), An ANOVA Model for Depen-
dent Random Measures, Journal of the American Statistical Association 99, 205-215, doi:10.1198/016214504000000205

Kalli, M., Griffin, J. E., and Walker, S. G. (2011), Slice sampling mixture models. Statistics and
Computing 21, 93-105, doi:10.1007/s11222-009-9150-y

Neal, R. M. (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models, Jour-
nal of Computational and Graphical Statistics 9, 249-265, doi:10.2307/1390653

Examples

x_toy <- c(rnorm(100, 3, 1), rnorm(100, 3, 1))
y_toy <- c(x_toy[1:100] * 2 + 1, x_toy[101:200] * 6 + 1) + rnorm(200, 0, 1)
grid_x <- c(0, 1, 2, 3, 4, 5)
grid_y <- seq(0, 35, length.out = 50)
est_model <- PYregression(y = y_toy, x = x_toy,
mcmc = list(niter = 200, nburn = 100),
output = list(grid_x = grid_x, grid_y = grid_y))
summary(est_model)
plot(est_model)

summary.BNPdens BNPdens summary method

Description

The summary.BNPdens method provides summary information on BNPdens objects.

Usage

S3 method for class 'BNPdens'
summary(object, ...)

Arguments

object an object of class BNPdens;

... additional arguments

summary.BNPdens 21

Examples

data_toy <- c(rnorm(100, -3, 1), rnorm(100, 3, 1))
grid <- seq(-7, 7, length.out = 50)
est_model <- PYdensity(y = data_toy, mcmc = list(niter = 100,

nburn = 10, napprox = 10), output = list(grid = grid))
class(est_model)
summary(est_model)

Index

BNPdens, 2
BNPdens2coda.BNPdens, 3
BNPpart, 4

dBNPdens.BNPdens, 5
DDPdensity, 5

partition.BNPdens, 8
plot.BNPdens, 9
print.BNPdens, 11
PYcalibrate, 12
PYdensity, 12
PYregression, 17

summary.BNPdens, 20

22

	BNPdens
	BNPdens2coda.BNPdens
	BNPpart
	dBNPdens.BNPdens
	DDPdensity
	partition.BNPdens
	plot.BNPdens
	print.BNPdens
	PYcalibrate
	PYdensity
	PYregression
	summary.BNPdens
	Index

