Package 'BMisc'

February 4, 2025

Title Miscellaneous Functions for Panel Data, Quantiles, and Printing Results

Version 1.4.8

Description These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas.

Depends R (>= 3.1.0)

Imports data.table, dplyr, Rcpp, caret, tidyr

License GPL-2

Suggests testthat (>= 3.0.0), plm, tibble

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo

URL https://bcallaway11.github.io/BMisc/

BugReports https://github.com/bcallaway11/BMisc/issues

NeedsCompilation yes

Author Brantly Callaway [aut, cre]

Maintainer Brantly Callaway callaway@uga.edu>

Repository CRAN

Date/Publication 2025-02-04 15:20:01 UTC

Contents

add_cov_to_formula	3
block_boot_sample	3
checkfun	4
check_staggered	5
combine_ecdfs	5
compare_binary	6
cs2panel	7
drop_collinear	7
drop_cov_from_formula	8
	8
	9
get_group	9
get_lagYi	0
get_list_element	0
get_principal_components	1
get_Yi1 1	2
get_Yibar	2
get_Yibar_pre	3
get_YiGmin1	3
get_Yit	4
ids2rownum	4
invert_ecdf	5
lhs_vars	5
make_balanced_panel	6
make_dist	7
multiplier_bootstrap	8
mv_mult	8
orig2t 1	9
panel2cs	9
panel2cs2	0
rhs	20
rhs_vars	1
source_all	2
subsample	2
t2orig	3
time_invariant_to_panel	3
toformula	4
TorF	4
weighted_checkfun	5
weighted_combine_list	25
weighted_ecdf	6
weighted_mean	6
	27

28

Description

add_cov_to_formula adds some covariates to a formula; covs should be a list of variable names

Usage

```
add_cov_to_formula(covs, formula)
```

Arguments

COVS	should be a list of variable names
formula	which formula to add covariates to

Value

formula

Examples

ff <- y ~ x
add_cov_to_formula(list("w", "z"), ff)

ff <- ~x
add_cov_to_formula("z", ff)</pre>

block_boot_sample Block Bootstrap

Description

make draws of all observations with the same id in a panel data context. This is useful for bootstrapping with panel data.

Usage

block_boot_sample(data, idname)

data	data.frame from which you want to bootstrap
idname	column in data which contains an individual identifier

Value

data.frame bootstrapped from the original dataset; this data.frame will contain new ids

Examples

```
data("LaborSupply", package = "plm")
bbs <- block_boot_sample(LaborSupply, "id")
nrow(bbs)
head(bbs$id)</pre>
```

checkfun

Check Function

Description

The check function used for optimizing to get quantiles

Usage

checkfun(a, tau)

Arguments

а	vector to compute quantiles for
tau	between 0 and 1, ex5 implies get the median

Value

numeric value

Examples

```
x <- rnorm(100)
x[which.min(checkfun(x, 0.5))] ## should be around 0</pre>
```

check_staggered check_staggered

Description

A function to check if treatment is staggered in a panel data set.

Usage

check_staggered(df, idname, treatname)

Arguments

df	the data.frame used in the function
idname	name of column that holds the unit id
treatname	name of column with the treatment indicator

Value

a logical indicating whether treatment is staggered

combine_ecdfs Combine Two Distribution Functions
--

Description

Combines two distribution functions with given weights by 'weights'

Usage

combine_ecdfs(y.seq, dflist, weights = NULL, ...)

Arguments

y.seq	sequence of possible y values
dflist	list of distribution functions to combine
weights	a vector of weights to put on each distribution function; if weights are not pro- vided then equal weight is given to each distribution function
	additional arguments that can be past to BMisc::make_dist

Value

ecdf

Examples

```
x <- rnorm(100)
y <- rnorm(100, 1, 1)
Fx <- ecdf(x)
Fy <- ecdf(y)
both <- combineDfs(seq(-2, 3, 0.1), list(Fx, Fy))
plot(Fx, col = "green")
plot(Fy, col = "blue", add = TRUE)
plot(both, add = TRUE)</pre>
```

compare_binary Compare Variables across Groups

Description

compare_binary takes in a variable e.g. union and runs bivariate regression of x on treatment (for summary statistics)

Usage

```
compare_binary(
    x,
    on,
    dta,
    w = rep(1, nrow(dta)),
    report = c("diff", "levels", "both")
)
```

Arguments

х	variables to run regression on
on	binary variable
dta	the data to use
W	weights
report	which type of report to make; diff is the difference between the two variables by group

Value

matrix of results

6

cs2panel

Description

Turn repeated cross sections data into panel data by imposing rank invariance; does not require that the inputs have the same length

Usage

cs2panel(cs1, cs2, yname)

Arguments

cs1	data frame, the first cross section
cs2	data frame, the second cross section
yname	the name of the variable to calculate difference for (should be the same in each dataset)

Value

the change in outcomes over time

drop_collinear drop_collinear

Description

A function to check for multicollinearity and drop collinear terms from a matrix

Usage

```
drop_collinear(matrix)
```

Arguments

matrix a matrix for which the function will remove collinear columns

Value

a matrix with collinear columns removed

drop_cov_from_formula Drop a Covariate from a Formula

Description

drop_cov_from_formula adds drops some covariates from a formula; covs should be a list of variable names

Usage

drop_cov_from_formula(covs, formula)

Arguments

COVS	should be a list of variable names
formula	the formula to drop covariates from

Value

formula

Examples

```
ff <- y ~ x + w + z
drop_cov_from_formula(list("w", "z"), ff)</pre>
```

```
drop_cov_from_formula("z", ff)
```

element_wise_mult element_wise_mult

Description

This is a function that takes in two matrices of dimension nxB and nxk and returns a Bxk matrix that comes from element-wise multiplication of every column in the first matrix times the entire second matrix and the averaging over the n-dimension. It is equivalent (but faster than) the following R code: 'sapply(1:biters, function(b) qrt(n)*colMeans(Umat[,b]*inf.func))'. This function is particularly useful for fast computations using the multiplier bootstrap.

Usage

```
element_wise_mult(U, inf_func)
```

Arguments

U	nxB matrix (e.g., these could be a matrix of Rademachar weights for B bootstrap iterations using the multiplier bootstrap
inf_func	nxk matrix of (e.g., these could be a matrix containing the influence function for different parameter estimates)

Value

a Bxk matrix

get_first_difference get_first_difference

Description

A function that calculates the first difference in a panel data setting. If the data.frame that is passed in has nxT rows, the resulting vector will also have nxT elements with one element for each unit set to be NA.

Usage

get_first_difference(df, idname, yname, tname)

Arguments

the data.frame used in the function
name of column that holds the unit id
name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
name of column that holds the time period

Description

A function to calculate a unit's group in a panel data setting with a binary treatment and staggered treatment adoption and where there is a column in the data indicating whether or not a unit is treated

Usage

get_group(df, idname, tname, treatname)

Arguments

df	the data.frame used in the function
idname	name of column that holds the unit id
tname	name of column that holds the time period
treatname	name of column with the treatment indicator

get_lagYi

get_lagYi

Description

A function that calculates lagged outcomes in a panel data setting. If the data.frame that is passed in has nxT rows, the resulting vector will also have nxT elements with one element for each unit set to be NA

Usage

get_lagYi(df, idname, yname, tname, nlags = 1)

Arguments

df	the data.frame used in the function
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
tname	name of column that holds the time period
nlags	The number of periods to lag. The default is 1, which computes the lag from the previous period.

get_list_element Return Particular Element from Each Element in a List

Description

a function to take a list and get a particular part out of each element in the list

Usage

get_list_element(listolists, whichone = 1)

listolists	a list
whichone	which item to get out of each list (can be numeric or name)

Value

list of all the elements 'whichone' from each list

Examples

```
len <- 100 # number elements in list
lis <- lapply(1:len, function(l) list(x = (-l), y = 1^2)) # create list
getListElement(lis, "x")[1] # should be equal to -1
getListElement(lis, 1)[1] # should be equal to -1
```

get_principal_components

get_principal_components

Description

A function to calculate unit-specific principal components, given panel data

Usage

```
get_principal_components(
   xformula,
   data,
   idname,
   tname,
   n_components = NULL,
   ret_wide = FALSE,
   ret_id = FALSE
)
```

xformula	a formula specifying the variables to use in the principal component analysis
data	a data.frame containing the panel data
idname	the name of the column containing the unit id
tname	the name of the column containing the time period
n_components	the number of principal components to retain, the default is NULL which will result in all principal components being retained
ret_wide	whether to return the data in wide format (where the number of rows is equal to $n = length(unique(data[[idname]]))$ or long format (where the number of rows is equal to $nT = nrow(data)$). The default is FALSE, so that long data is returned by default.
ret_id	whether to return the id column in the output data.frame. The default is FALSE.

Value

a data.frame containing the original data with the principal components appended

|--|

Description

A function to calculate outcomes for units in the first time period that is available in a panel data setting (this function can also be used to recover covariates, etc. in the first period).

Usage

get_Yi1(df, idname, yname, tname, gname)

Arguments

df	the data.frame used in the function
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
tname	name of column that holds the time period
gname	name of column containing the unit's group

get_Yibar

get_Yibar

Description

A function to calculate the average outcome across all time periods separately for each unit in a panel data setting (this function can also be used to recover covariates, etc.).

Usage

```
get_Yibar(df, idname, yname)
```

df	the data.frame used in the function
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period

get_Yibar_pre get_Yibar_pre

Description

A function to calculate average outcomes for units in their pre-treatment periods (this function can also be used to recover pre-treatment averages of covariates, etc.). For units that do not participate in the treatment (and therefore have group==0), the function calculates their overall average outcome.

Usage

get_Yibar_pre(df, idname, yname, tname, gname)

Arguments

df	the data.frame used in the function
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
tname	name of column that holds the time period
gname	name of column containing the unit's group

get_YiGmin1 get_YiGmin1

Description

A function to calculate outcomes for units in the period right before they become treated (this function can also be used to recover covariates, etc. in the period right before a unit becomes treated). For units that do not participate in the treatment (and therefore have group==0), they are assigned their outcome in the last period.

Usage

get_YiGmin1(df, idname, yname, tname, gname)

df	the data.frame used in the function
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
tname	name of column that holds the time period
gname	name of column containing the unit's group

get_Yit

Description

A function to calculate outcomes for units in a particular time period 'tp' in a panel data setting (this function can also be used to recover covariates, etc. in the first period).

Usage

get_Yit(df, tp, idname, yname, tname)

Arguments

df	the data.frame used in the function
tp	The time period for which to get the outcome
idname	name of column that holds the unit id
yname	name of column containing the outcome (or other variable) for which to calcu- late its outcome in the immediate pre-treatment period
tname	name of column that holds the time period

Value

a vector of outcomes in period t, the vector will have the length nT (i.e., this is returned for each element in the panel, not for a particular period)

ids2rownum

Convert Vector of ids into Vector of Row Numbers

Description

ids2rownum takes a vector of ids and converts it to the right row number in the dataset; ids should be unique in the dataset that is, don't pass the function panel data with multiple same ids

Usage

ids2rownum(ids, data, idname)

ids	vector of ids
data	data frame
idname	unique id

invert_ecdf

Value

vector of row numbers

Examples

```
ids <- seq(1, 1000, length.out = 100)
ids <- ids[order(runif(100))]
df <- data.frame(id = ids)
ids2rownum(df$id, df, "id")</pre>
```

invert_ecdf In	vert Ecdf
----------------	-----------

Description

take an ecdf object and invert it to get a step-quantile function

Usage

invert_ecdf(df)

Arguments

df

an ecdf object

Value

stepfun object that contains the quantiles of the df

lhs_vars

Left-hand Side Variables

Description

Take a formula and return a vector of the variables on the left hand side, it will return NULL for a one sided formula

Usage

lhs_vars(formula)

Arguments

formula a formula

Value

vector of variable names

Examples

ff <- yvar ~ x1 + x2
lhs.vars(ff)</pre>

make_balanced_panel Balance a Panel Data Set

Description

This function drops observations from data.frame that are not part of balanced panel data set.

Usage

make_balanced_panel(data, idname, tname, return_data.table = FALSE)

Arguments

data	data.frame used in function	
idname	unique id	
tname	time period name	
return_data.table		
	if TRUE, make_balanced_panel will return a data.table rather than a data.frame. Default is FALSE.	

Value

data.frame that is a balanced panel

Examples

```
id <- rep(seq(1, 100), each = 2) # individual ids for setting up a two period panel
t <- rep(seq(1, 2), 100) # time periods
y <- rnorm(200) # outcomes
dta <- data.frame(id = id, t = t, y = y) # make into data frame
dta <- dta[-7, ] # drop the 7th row from the dataset (which creates an unbalanced panel)
dta <- make_balanced_panel(dta, idname = "id", tname = "t")</pre>
```

16

make_dist

Description

turn vectors of a values and their distribution function values into an ecdf. Vectors should be the same length and both increasing.

Usage

```
make_dist(
    x,
    Fx,
    sorted = FALSE,
    rearrange = FALSE,
    force01 = FALSE,
    method = "constant"
)
```

Arguments

х	vector of values
Fx	vector of the distribution function values
sorted	boolean indicating whether or not x is already sorted; computation is somewhat faster if already sorted
rearrange	boolean indicating whether or not should monotize distribution function
force01	boolean indicating whether or not to force the values of the distribution function (i.e. Fx) to be between 0 and 1 $$
method	which method to pass to approxfun to approximate the distribution function. Default is "constant"; other possible choice is "linear". "constant" returns a step function, just like an empirical cdf; "linear" linearly interpolates between neighboring points.

Value

ecdf

Examples

```
y <- rnorm(100)
y <- y[order(y)]
u <- runif(100)
u <- u[order(u)]
F <- make_dist(y, u)</pre>
```

multiplier_bootstrap multiplier_bootstrap

Description

A function that takes in an influence function (an nxk matrix) and the number of bootstrap iterations and returns a Bxk matrix of bootstrap results. This function uses Rademechar weights.

Usage

```
multiplier_bootstrap(inf_func, biters)
```

Arguments

inf_func	nxk matrix of (e.g., these could be a matrix containing the influence function for
	different parameter estimates)
biters	the number of bootstrap iterations

Value

a Bxk matrix

mv_mult

Matrix-Vector Multiplication

Description

This function multiplies a matrix by a vector and returns a numeric vector.

Usage

 $mv_mult(A, v)$

Arguments

A	an nxk matrix.
V	a vector (can be stored as numeric or as a kx1 matrix)

Value

A numeric vector resulting from the multiplication of the matrix by the vector.

Examples

A <- matrix(1:9, nrow = 3, ncol = 3) v <- c(2, 4, 6) mv_mult(A, v) orig2t

Description

A helper function to switch from original time periods to "new" time periods (which are just time periods going from 1 to total number of available periods). This allows for periods not being exactly spaced apart by 1.

Usage

orig2t(orig, original_time.periods)

Arguments

orig a vector of original time periods to convert to new time periods. original_time.periods

vector containing all original time periods.

Value

new time period converted from original time period

panel2cs

Panel Data to Repeated Cross Sections

Description

panel2cs takes a 2 period dataset and turns it into a cross sectional dataset. The data includes the change in time varying variables between the time periods. The default functionality is to keep all the variables from period 1 and add all the variables listed by name in timevars from period 2 to those.

Usage

panel2cs(data, timevars, idname, tname)

Arguments

data	data.frame used in function
timevars	vector of names of variables to keep
idname	unique id
tname	time period name

Value

data.frame

panel2cs2

Description

panel2cs2 takes a 2 period dataset and turns it into a cross sectional dataset; i.e., long to wide. This function considers a particular case where there is some outcome whose value can change over time. It returns the dataset from the first period with the outcome in the second period and the change in outcomes over time appended to it

Usage

panel2cs2(data, yname, idname, tname, balance_panel = TRUE)

Arguments

data	data.frame used in function
yname	name of outcome variable that can change over time
idname	unique id
tname	time period name
balance_panel	whether to ensure that panel is balanced. Default is TRUE, but code runs some- what faster if this is set to be FALSE.

Value

data from first period with .y0 (outcome in first period), .y1 (outcome in second period), and .dy (change in outcomes over time) appended to it

rhs

Right-hand Side of Formula

Description

Take a formula and return the right hand side of the formula

Usage

```
rhs(formula)
```

Arguments

formula a formula

rhs_vars

Value

a one sided formula

Examples

ff <- yvar ~ x1 + x2 rhs(ff)

rhs_vars

Right-hand Side Variables

Description

Take a formula and return a vector of the variables on the right hand side

Usage

rhs_vars(formula)

Arguments

formula a formula

Value

vector of variable names

Examples

ff <- yvar ~ x1 + x2
rhs_vars(ff)</pre>

 $ff <- y \sim x1 + I(x1^2)$ rhs_vars(ff) source_all source_all

Description

Source all the files in a folder

Usage

source_all(fldr)

Arguments

fldr path to a folder

subsample

Subsample of Observations from Panel Data

Description

returns a subsample of a panel data set; in particular drops all observations that are not in keepids. If it is not set, randomly keeps nkeep observations.

Usage

```
subsample(dta, idname, tname, keepids = NULL, nkeep = NULL)
```

Arguments

dta	a data.frame which is a balanced panel
idname	the name of the id variable
tname	the name of the time variable
keepids	which ids to keep
nkeep	how many ids to keep (only used if keepids is not set); the default is the number of unique ids

Value

a data.frame that contains a subsample of dta

Examples

```
data("LaborSupply", package = "plm")
nrow(LaborSupply)
unique(LaborSupply$year)
ss <- subsample(LaborSupply, "id", "year", nkeep = 100)
nrow(ss)</pre>
```

t2orig

Description

A helper function to switch from "new" t values to original t values. This allows for periods not being exactly spaced apart by 1.

Usage

```
t2orig(t, original_time.periods)
```

Arguments

t a vector of time periods to convert back to original time periods. original_time.periods vector containing all original time periods.

Value

original time period converted from new time period

```
time_invariant_to_panel
```

time_invariant_to_panel

Description

This function takes a time-invariant variable and repeats it for each period in a panel data set.

Usage

```
time_invariant_to_panel(x, df, idname, balanced_panel = TRUE)
```

Arguments

х	a vector of length equal to the number of unique ids in df.
df	the data.frame used in the function
idname	name of column that holds the unit id
balanced_panel	a logical indicating whether the panel is balanced. If TRUE, the function will optimize the repetition process. Default is TRUE.

Value

a vector of length equal to the number of rows in df.

toformula

Description

take a name for a y variable and a vector of names for x variables and turn them into a formula

Usage

```
toformula(yname, xnames)
```

Arguments

yname	the name of the y variable
xnames	vector of names for x variables

Value

a formula

Examples

toformula("yvar", c("x1", "x2"))

should return yvar ~ 1
toformula("yvar", rhs.vars(~1))

TorF

TorF

Description

A function to replace NA's with FALSE in vector of logicals

Usage

```
TorF(cond, use_isTRUE = FALSE)
```

Arguments

cond	a vector of conditions to check
use_isTRUE	whether or not to use a vectorized version of isTRUE. This is generally slower
	but covers more cases.

Value

logical vector

weighted_checkfun Weighted Check Function

Description

Weights the check function

Usage

weighted_checkfun(q, cvec, tau, weights)

Arguments

q	the value to check
cvec	vector of data to compute quantiles for
tau	between 0 and 1, ex5 implies get the median
weights	the weights, weighted.checkfun normalizes the weights to sum to 1.

Value

numeric

weighted_combine_list weighted_combine_list

Description

A function that takes in either a list of vectors or matrices and computes a weighted average of them, where the weights are applied to every element in the list.

Usage

weighted_combine_list(1, w, normalize_weights = TRUE)

Arguments

a list that contains either vectors or matrices of the same dimension that are to	
be combined	
a vector of weights, the weights should have the same number of elements as 'length(l)'	
normalize_weights	
whether or not to force the weights to sum to 1, default is true	

Value

matrix or vector corresponding to the weighted average of all of the elements in 'l'

weighted_ecdf

Description

Get a distribution function from a vector of values after applying some weights

Usage

weighted_ecdf(y, y.seq = NULL, weights = NULL, norm = TRUE)

Arguments

У	a vector to compute the mean for
y.seq	an optional vector of values to compute the distribution function for; the default is to use all unique values of y
weights	the vector of weights, can be NULL, then will just return mean
norm	normalize the weights so that they have mean of 1, default is to normalize

Value

ecdf

|--|--|

Description

Get the mean applying some weights

Usage

```
weighted_mean(y, weights = NULL, norm = TRUE)
```

Arguments

У	a vector to compute the mean for
weights	the vector of weights, can be NULL, then will just return mean
norm	normalize the weights so that they have mean of 1, default is to normalize

Value

the weighted mean

weighted_quantile weighted_quantile

Description

function to recover quantiles of a vector with weights

Usage

weighted_quantile(tau, cvec, weights = NULL, norm = TRUE)

Arguments

tau	a vector of values between 0 and 1
cvec	a vector to compute quantiles for
weights	the weights, weighted.checkfun normalizes the weights to sum to 1.
norm	normalize the weights so that they have mean of 1, default is to normalize

Value

vector of quantiles

Index

add_cov_to_formula, 3 block_boot_sample, 3 check_staggered, 5 checkfun, 4 combine_ecdfs, 5 compare_binary, 6 cs2panel, 7 drop_collinear, 7 drop_cov_from_formula, 8 element_wise_mult, 8 get_first_difference, 9 get_group, 9 get_lagYi, 10 get_list_element, 10 get_principal_components, 11 get_Yi1, 12 get_Yibar, 12 get_Yibar_pre, 13 get_YiGmin1, 13 get_Yit, 14 ids2rownum, 14 invert_ecdf, 15 lhs_vars, 15 make_balanced_panel, 16 make_dist, 17 multiplier_bootstrap, 18 $mv_mult, 18$ orig2t, 19 panel2cs, 19 panel2cs2, 20

rhs, 20

rhs_vars, 21

source_all, 22
subsample, 22

t2orig, 23
time_invariant_to_panel, 23
toformula, 24
TorF, 24

weighted_checkfun, 25
weighted_combine_list, 25
weighted_ecdf, 26
weighted_mean, 26
weighted_quantile, 27