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Abstract

This manual is a brief introduction to applied Bayesian Model Averaging with the R package
BMS. The manual is structured as a hands-on tutorial for readers with few experience with
BMA. Readers from a more technical background are advised to consult the table of contents
for formal representations of the concepts used in BMS.
For other tutorials and more information, please refer to http://bms.zeugner.eu.
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1 A Brief Introduction to Bayesian Model Averaging

This section reiterates some basic concepts, and introduces some notation for readers with
limited knowledge of BMA. Readers with more experience in BMA should skip this chapter
and directly go to section 2. For a more thorough introduction to BMA, consult Hoeting
et al. (1999). Note that a version this vignette has been published as Feldkircher and Zeugner
(2015). If needed, please cite from the latter reference.

1.1 Bayesian Model Averaging

Bayesian Model Averaging (BMA) addresses model uncertainty in a canonical regression prob-
lem. Suppose a linear model structure, with y being the dependent variable, αγ a constant,
βγ the coefficients, and ε a normal IID error term with variance σ2:

y = αγ +Xγβγ + ε ε ∼ N(0, σ2I) (1)

A problem arises when there are many potential explanatory variables in a matrix X:
Which variables Xγ ∈ {X} should be then included in the model? And how important are
they? The direct approach to do inference on a single linear model that includes all variables
is inefficient or even infeasible with a limited number of observations.

BMA tackles the problem by estimating models for all possible combinations of {X} and
constructing a weighted average over all of them. If X contains K potential variables, this
means estimating 2K variable combinations and thus 2K models. The model weights for this
averaging stem from posterior model probabilities that arise from Bayes’ theorem:

p(Mγ |y,X) =
p(y|Mγ , X)p(Mγ)

p(y|X)
=

p(y|Mγ , X)p(Mγ)∑2K

s=1
p(y|Ms, X)p(Ms)

(2)

Here, p(y|X) denotes the integrated likelihood which is constant over all models and is thus
simply a multiplicative term. Therefore, the posterior model probability (PMP) p(Mγ |y,X)
is proportional to1 the marginal likelihood of the model p(y|Mγ , X) (the probability of the
data given the model Mγ) times a prior model probability p(Mγ) – that is, how probable
the researcher thinks model Mγ before looking at the data. Renormalization then leads to
the PMPs and thus the model weighted posterior distribution for any statistic θ (e.g. the
coefficients β):

p(θ|y,X) =

2K∑
γ=1

p(θ|Mγ , y,X)p(Mγ |X, y)

The model prior p(Mγ) has to be elicited by the researcher and should reflect prior beliefs. A
popular choice is to set a uniform prior probability for each model p(Mγ) ∝ 1 to represent the
lack of prior knowledge. Further model prior options will be explored in section 3.

1.2 Bayesian Linear Models and Zellner’s g prior

The specific expressions for marginal likelihoods p(Mγ |y,X) and posterior distributions p(θ|Mγ , y,X)
depend on the chosen estimation framework. The literature standard is to use a ’Bayesian re-
gression’ linear model with a specific prior structure called ’Zellner’s g prior’ as will be outlined
in this section.2

For each individual model Mγ suppose a normal error structure as in (1). The need to obtain
posterior distributions requires to specify the priors on the model parameters. Here, we place
’improper’ priors on the constant and error variance, which means they are evenly distributed
over their domain: p(αγ) ∝ 1, i.e. complete prior uncertainty where the prior is located.
Similarly, set p(σ) ∝ σ−1.

The crucial prior is the one on regression coefficients βγ : Before looking into the data
(y,X), the researcher formulates her prior beliefs on coefficients into a normal distribution
with a specified mean and variance. It is common to assume a conservative prior mean of zero

1Proportionality is expressed with the sign ∝: i.e. p(Mγ |y,X) ∝ p(y|Mγ , X)p(Mγ)
2Note that the presented framework is very similar to the natural normal-gamma-conjugate model - which employs

proper priors for α and σ. Nonetheless, the resulting posterior statistics are virtually identical.
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for the coefficients to reflect that not much is known about them. Their variance structure is
defined according to Zellner’s g: σ2( 1

g
X ′γXγ)−1:

βγ |g ∼ N

(
0, σ2

(
1

g
X ′γXγ

)−1
)

This means that the researcher thinks coefficients are zero, and that their variance-covariance
structure is broadly in line with that of the data Xγ . The hyperparameter g embodies how
certain the researcher is that coefficients are indeed zero: A small g means few prior coeffi-
cient variance and therefore implies the researcher is quite certain (or conservative) that the
coefficients are indeed zero. In contrast, a large g means that the researcher is very uncertain
that coefficients are zero.

The posterior distribution of coefficients reflects prior uncertainty: Given g, it follows a
t-distribution with expected value E(βγ |y,X, g,Mγ) = g

1+g
β̂γ , where β̂γ is the standard OLS

estimator for model γ. The expected value of coefficients is thus a convex combination of OLS
estimator and prior mean (zero). The more conservative (smaller) g, the more important is
the prior, and the more the expected value of coefficients is shrunk toward the prior mean zero.
As g → ∞, the coefficient estimator approaches the OLS estimator. Similarly, the posterior
variance of βγ is affected by the choice of g:3

Cov(βγ |y,X, g,Mγ) =
(y − ȳ)′(y − ȳ)

N − 3

g

1 + g

(
1− g

1 + g
R2
γ

)
(X ′γXγ)−1

I.e. the posterior covariance is similar to that of the OLS estimator, times a factor that includes
g and R2

γ , the OLS R-squared for model γ. The appendix shows how to apply the function
zlm in order to estimate such models out of the BMA context.

For BMA, this prior framwork results into a very simple marginal likelihood p(y|Mγ , X, g),
that is related to the R-squared and includes a size penalty factor adjusting for model size kγ :

p(y|Mγ , X, g) ∝ (y − ȳ)′(y − ȳ)−
N−1

2 (1 + g)−
kγ
2

(
1− g

1 + g

)−N−1
2

The crucial choice here concerns the form of the hyperparameter g. A popular ’default’ ap-
proach is the ’unit information prior’ (UIP), which sets g = N commonly for all models and
thus attributes about the same information to the prior as is contained in one observation.
(Please refer to section 5 for a discussion of other g-priors.)4

2 A BMA Example: Attitude Data

This section shows how to perform basic BMA with a small data set and how to obtain posterior
coefficient and model statistics.

2.1 Model Sampling

Equipped with this basic framework, let us explore one of the data sets built into R: The
’attitude’ dataset describes the overall satisfaction rating of a large organization’s employees,
as well as several specific factors such as complaints, the way of handling complaints within
the organization (for more information type help(attitude)). The data includes 6 variables,
which means 26 = 64 model combinations. Let us stick with the UIP g-prior (in this case
g = N = 30). Moreover, assume uniform model priors (which means that our expected prior
model parameter size is K/2 = 3).

First load the data set by typing

> data(attitude)

In order to perform BMA you have to load the BMS library first, via the command:

> library(BMS)

3here, N denotes sample size, and ȳ the sample mean of the response variable
4Note that BMS is, in principle not restricted to Zellner’s g-priors, as quite different coefficient priors might be

defined by R-savy users.
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Now perform Bayesian model sampling via the function bms, and write results into the variable
att.

> att = bms(attitude, mprior = "uniform", g="UIP", user.int=F)

mprior = "uniform" means to assign a uniform model prior, g="UIP", the unit information
prior on Zellner’s g. The option user.int=F is used to suppress user-interactive output for
the moment.5 The first argument is the data frame attitude, and bms assumes that its first
column is the response variable.6

2.2 Coefficient Results

The coefficient results can be obtained via

> coef(att)

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.9996351 0.684449094 0.13038429 1.00000000 1

learning 0.4056392 0.096481513 0.15135419 1.00000000 3

advance 0.2129325 -0.026686161 0.09133894 0.00000107 6

privileges 0.1737658 -0.011854183 0.06143387 0.00046267 2

raises 0.1665853 0.010567022 0.08355244 0.73338938 4

critical 0.1535886 0.001034563 0.05465097 0.89769774 5

The above matrix shows the variable names and corresponding statistics: The second column
Post Mean displays the coefficients averaged over all models, including the models wherein the
variable was not contained (implying that the coefficient is zero in this case). The covariate
complaints has a comparatively large coefficient and seems to be most important. The impor-
tance of the variables in explaining the data is given in the first column PIP which represents
posterior inclusion probabilities - i.e. the sum of PMPs for all models wherein a covariate was
included. We see that with 99.9%, virtually all of posterior model mass rests on models that
include complaints. In contrast, learning has an intermediate PIP of 40.6%, while the other
covariates do not seem to matter much. Consequently their (unconditional) coefficients7 are
quite low, since the results quite often include models where these coefficients are zero.

The coefficients’ posterior standard deviations (Post SD) reflect further evidence: complaints
is certainly positive, while advance is most likely negative. In fact, the coefficient sign can
also be inferred from the fourth column Cond.Pos.Sign, the ’posterior probability of a posi-
tive coefficient expected value conditional on inclusion’, respectively ’sign certainty’. Here, we
see that in all encountered models containing this variables, the (expected values of) coeffi-
cients for complaints and learning were positive. In contrast, the corresponding number for
privileges is near to zero, i.e. in virtually all models that include privileges, its coefficient
sign is negative. Finally, the last column idx denotes the index of the variables’ appearance
in the original data set, as our results are obviously sorted by PIP.

Further inferring about the importance of our variables, it might be really more interesting
to look at their standardized coefficients.8 Type:

> coef(att, std.coefs=T, order.by.pip=F, include.constant=T)

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.9996351 0.7486734114 0.14261872 1.00000000 1

privileges 0.1737658 -0.0119154065 0.06175116 0.00046267 2

learning 0.4056392 0.0930292869 0.14593855 1.00000000 3

raises 0.1665853 0.0090258498 0.07136653 0.73338938 4

critical 0.1535886 0.0008409819 0.04442502 0.89769774 5

5Note that the argument g="UIP" is actually redundant, as this is the default option for bms. The default
model prior is somewhat different but does not matter very much with this data. Therefore, the command att =

bms(attitude) gives broadly similar results.
6The specification of data can be supplied in different manners, e.g. in ’formulas’. Type help(lm) for a comparable

function.

7Unconditional coefficients are defined as E(β|y,X) =
∑2K

γ=1
p(βγ |, y,X,Mγ)p(Mγ |y,X) i.e. a weighted average

over all models, including those where this particular coeffiecnt was restricted to zero. A conditional coeffienct
in contrast, is ’conditional on inclusion’, i.e. a weighted average only over those models where its regressor was
included. Conditional coefficients may be obtained with the command coef(att, condi.coef =TRUE).

8Standardized coefficients arise if both the response y and the regressors X are normalized to mean zero and
variance one – thus effectively bringing the data down to same order of magnitude.
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advance 0.2129325 -0.0225561446 0.07720309 0.00000107 6

(Intercept) 1.0000000 1.2015488514 NA NA 0

The standardized coefficients reveal similar importance as discussed above, but one sees that
learning actually does not matter much in terms of magnitude. Note that order.by.pip=F

represents covariates in their original order. The argument include.constant=T also prints
out a (standardized) constant.

2.3 Other Results

Other basic information about the sampling procedure can be obtained via 9.

> summary(att)

Mean no. regressors Draws Burnins

"2.1121" "64" "0"

Time No. models visited Modelspace 2^K

"0.03022647 secs" "64" "64"

% visited % Topmodels Corr PMP

"100" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "uniform / 3" "UIP"

Shrinkage-Stats

"Av=0.9677"

It reiterates some of the facts we already know, but adds some additional information such as
Mean no. regressors, posterior expected model size (cf. section 3).

Finally, let’s look into which models actually perform best: The function topmodels.bma

prints out binary representations for all models included, but for the sake of illustration let us
focus on the best three:10

> topmodels.bma(att)[,1:3]

20 28 29

complaints 1 1.00 1.00

privileges 0 0.00 0.00

learning 0 1.00 1.00

raises 0 0.00 0.00

critical 0 0.00 0.00

advance 0 0.00 1.00

PMP (Exact) 101237 57068.95 22938.02

PMP (MCMC) 101237 57068.95 22938.02

We see that the output also includes the posterior model probability for each model.11 The
best model, with 29% posterior model probability,12 is the one that only includes complaints.
However the second best model includes learning in addition and has a PMP of 16%. Use the
command beta.draws.bma(att) to obtain the actual (expected values of) posterior coefficient
estimates for each of these models.

In order to get a more comprehensive overview over the models, use the command

> image(att)

9Note that the command print(att) is equivalent to coef(att); summary(att)
10topmodel.bma results in a matrix in which each row corresponds to a covariate and each column to a model

(ordered left-to-right by their PMP). The best three models are therefore in the three leftmost columns resulting
from topmodel.bma, which are extracted via index assignment [, 1:3].

11To access the PMP for any model, consider the function pmpmodel – cf. help(pmpmodel) .
12The differentiation between PMP (Exact) and PMP (MCMC) is of importance if an MCMC sampler was used – cf.

section 4.3
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Model Inclusion Based on Best  64  Models

Cumulative Model Probabilities

0 101236.98 181243.95 258127.76 329681.96

critical

raises

privileges

advance

learning

complaints

Here, blue color corresponds to a positive coefficient, red to a negative coefficient, and white
to non-inclusion (a zero coefficient). On the horizontal axis it shows the best models, scaled
by their PMPs. We see again that the best model with most mass only includes complaints.
Moreover we see that complaints is included in virtually all model mass, and unanimously with
a positive coefficient. In contrast, raises is included very little, and its coefficient sign changes
according to the model. (Use image(att,yprop2pip=T) for another illustrating variant of this
chart.)

3 Model Size and Model Priors

Invoking the command summary(att) yielded the important posterior statistic Mean no. regressors,
the posterior expected model size (i.e. the average number of included regressors), which in
our case was 2.11. Note that the posterior expected model size is equal to the sum of PIPs –
verify via

> sum(coef(att)[,1])

[1] 2.112147

This value contrasts with the prior expected model size implictely used in our model sam-
pling: With 2K possible variable combinations, a uniform model prior means a common prior
model probability of p(Mγ) = 2−K . However, this implies a prior expected model size of∑K

k=0

(
K
k

)
k2−K = K/2. Moreover, since there are more possible models of size 3 than e.g.

of size 1 or 5, the uniform model prior puts more mass on intermediate model sizes – e.g.
expecting a model size of kγ = 3 with

(
6
3

)
2−K = 31% probability. In order to examine how far

the posterior model size distribution matches up to this prior, type:

> plotModelsize(att)
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We see that while the model prior implies a symmetric distribution around K/2 = 3,
updating it with the data yields a posterior that puts more importance on parsimonious models.

In order to illustrate the impact of the uniform model prior assumption, we might consider
other popular model priors that allow more freedom in choosing prior expected model size and
other factors.

3.1 Binomial Model Prior

The binomial model prior constitutes a simple and popular alternative to the uniform prior we
just employed. It starts from the covariates’ viewpoint, placing a common and fixed inclusion
probability θ on each regressor. The prior probability of a model of size k is therefore the
product of inclusion and exclusion probabilities:

p(Mγ) = θkγ (1− θ)K−kγ

Since expected model size is m̄ = Kθ, the researcher’s prior choice reduces to eliciting a prior
expected model size m̄ (which defines θ via the relation θ = m̄/K). Choosing a prior model
size of K/2 yields θ = 1

2
and thus exactly the uniform model prior p(Mγ) = 2−K . Therefore,

putting prior model size at a value < 1
2

tilts the prior distribution toward smaller model sizes
and vice versa. For instance, let’s impose this fixed inclusion probability prior such that prior
model size equals m̄ = 2: Here, the option user.int=T directly prints out the results as from
coef and summary.13

> att_fixed = bms(attitude, mprior="fixed", mprior.size=2, user.int=T)

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 0.99971415 0.7034253730 0.12131094 1.00000000 1

learning 0.23916017 0.0536357004 0.11957391 1.00000000 3

advance 0.10625062 -0.0103177406 0.05991418 0.00000250 6

privileges 0.09267430 -0.0057118663 0.04446276 0.00040634 2

13The command g="UIP" was omitted here since bms sets this by default anyway.
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raises 0.09089754 0.0061503218 0.06011618 0.81769332 4

critical 0.08273046 0.0002573042 0.03992658 0.92899714 5

Mean no. regressors Draws Burnins

"1.6114" "64" "0"

Time No. models visited Modelspace 2^K

"0.01247144 secs" "64" "64"

% visited % Topmodels Corr PMP

"100" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "fixed / 2" "UIP"

Shrinkage-Stats

"Av=0.9677"

Time difference of 0.01247144 secs

As seen in Mean no. regressors, the posterior model size is now 1.61 which is somewhat
smaller than with uniform model priors. Since posterior model size equals the sum of PIPs,
many of them have also become smaller than under att But interestingly, the PIP of complaints
has remained at near 100%.

3.2 Custom Prior Inclusion Probabilities

In view of the pervasive impact of complaints, one might wonder whether its importance
would also remain robust to a greatly unfair prior. For instance, one could define a prior
inclusion probability of only θ = 0.01 for the complaints while setting a ’standard’ prior
inclusion probability of θ = 0.5 for all other variables. Such a prior might be submitted to bms

by assigning a vector of prior inclusion probabilities via its mprior.size argument:14

> att_pip = bms(attitude, mprior="pip", mprior.size=c(.01,.5,.5,.5,.5,.5), user.int=F)

But the results (obtained with coef(att_pip)) show that complaints still retains its PIP of
near 100%. Instead, posterior model size decreases (as evidenced in a call to
plotModelsize(att_pip)), and all other variables obtain a far smaller PIP.

3.3 Beta-Binomial Model Priors

Like the uniform prior, the fixed common θ in the binomial prior centers the mass of of its
distribution near the prior model size. A look on the prior model distribution with the following
command shows that the prior model size distribution is quite concentrated around its mode.

> plotModelsize(att_fixed)

This feature is sometimes criticized, in particular by Ley and Steel (2009): They note that
to reflect prior uncertainty about model size, one should rather impose a prior that is less
tight around prior expected model size. Therefore, Ley and Steel (2009) propose to put a
hyperprior on the inclusion probability θ, effectively drawing it from a Beta distribution. In
terms of researcher input, this prior again only requires to choose the prior expected model
size. However, the resulting prior distribution is considerably less tight and should thus reduce
the risk of unintended consequences from imposing a particular prior model size.15

For example, take the beta-binomial prior with prior model size K/216 – and compare this
to the results from att (which is equivalent to a fixed θ model prior of prior model size K/2.)

> att_random = bms(attitude, mprior="random", mprior.size=3, user.int=F)

> plotModelsize(att_random)

14This implies a prior model size of m̄ = 0.01 + 5× 0.5 = 2.51
15Therefore, the beta-binomial model prior with random theta is implemented as the default choice in bms.
16Note that the arguments here are actually the default values of bms, therefore this command is equivalent to

att_random=bms(attitude).
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With the beta-binomial specification and prior model size m̄ = K/2, the model prior is
completely flat over model sizes, while the posterior model size turns out to be 1.73. In terms
of coefficient and posterior model size distribution, the results are very similar to those of
att_fixed, even though the latter approach involved a tighter model prior. Concluding, a
decrease of prior importance by the use of the beta-binomial framework supports the results
found in att_fixed.

We can compare the PIPs from the four approaches presented so far with the following
command:17

> plotComp(Uniform=att, Fixed=att_fixed, PIP=att_pip, Random=att_random)

17This is equivalent to the command plotComp(att, att_fixed, att_pip, att_random)
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Here as well, att_fixed (Fixed) and att_random (Random) display similar results with
PIPs plainly smaller than those of att (Uniform).

Note that the appendix contains an overview of the built-in model priors available in BMS.
Moreover, BMS allows the user to define any custom model prior herself and straightforwardly
use it in bms - for examples, check http://bms.zeugner.eu/custompriors.php. Another con-
cept relating to model priors is to keep fixed regressors to be included in every sampled model:
Section A.4 provides some examples.

4 MCMC Samplers and More Variables

4.1 MCMC Samplers

With a small number of variables, it is straightforward to enumerate all potential variable
combinations to obtain posterior results. For a larger number of covariates, this becomes more
time intensive: enumerating all models for 25 covariates takes about 3 hours on a modern
PC, and doing a bit more already becomes infeasible: With 50 covariates for instance, there
are more than a quadrillion (≈ 1015) potential models to consider. In such a case, MCMC
samplers gather results on the most important part of the posterior model distribution and
thus approximate it as closely as possible. BMA mostly relies on the Metropolis-Hastings
algorithm, which ’walks’ through the model space as follows:

At step i, the sampler stands at a certain ’current’ model Mi with PMP p(Mi|y,X). In
step i + 1 a candidate model Mj is proposed. The sampler switches from the current model
to model Mj with probability pi,j :

pi,j = min(1, p(Mj |y,X)/p(Mi|y, x))

In case model Mj is rejected, the sampler moves to the next step and proposes a new model
Mk against Mi. In case model Mj is accepted, it becomes the current model and has to survive
against further candidate models in the next step. In this manner, the number of times each
model is kept will converge to the distribution of posterior model probabilities p(Mi|y,X).
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In addition to enumerating all models, BMS implements two MCMC samplers that differ
in the way they propose candidate models:

� Birth-death sampler (bd): This is the standard model sampler used in most BMA rou-
tines. One of the K potential covariates is randomly chosen; if the chosen covariate forms
already part of the current model Mi, then the candidate model Mj will have the same
set of covariates as Mi but for the chosen variable (’dropping’ a variable). If the chosen
covariate is not contained in Mi, then the candidate model will contain all the variables
from Mi plus the chosen covariate (’adding’ a variable).

� Reversible-jump sampler (rev.jump): Adapted to BMA by Madigan and York (1995) this
sampler either draws a candidate by the birth-death method with 50% probability. In the
other case (chosen with 50% probability) a ’swap’ is proposed, i.e. the candidate model
Mj randomly drops one covariate with respect to Mi and randomly adds one chosen at
random from the potential covariates that were not included in model Mi.

� Enumeration (enum): Up to fourteen covariates, complete enumeration of all models
is the default option: This means that instead of an approximation by means of the
aforementioned MCMC sampling schemes all possible models are evaluated. As enumer-
ation becomes quite time-consuming or infeasible for many variables, the default option is
mcmc="bd" in case of K > 14, though enumeration can still be invoked with the command
mcmc="enumerate".

The quality of an MCMC approximation to the actual posterior distribution depends on
the number of draws the MCMC sampler runs through. In particular, the sampler has to start
out from some model18 that might not be a ’good’ one. Hence the first batch of iterations will
typically not draw models with high PMPs as the sampler will only after a while converge to
spheres of models with the largest marginal likelihoods. Therefore, this first set of iterations
(the ’burn-ins’) is to be omitted from the computation of results. In bms, the argument burn

specifies the number of burn-ins, and the argument iter the number of subsequent iterations
to be retained.

4.2 An Example: Economic Growth

In one of the most prominent applications of BMA, Fernández et al. (2001b) analyze the
importance of 41 explanatory variables on long-term term economic growth in 72 countries
by the means of BMA. The data set is built into BMS, a short description is available via
help(datafls). They employ a uniform model prior and the birth-death MCMC sampler.
Their g prior is set to g = max(N,K2), a mechanism such that PMPs asymptotically either
behave like the Bayesian information criterion (with g = N) or the risk inflation criterion
(g = K2) – in bms this prior is assigned via the argument g="BRIC".

Moreover Fernández et al. (2001b) employ more than 200 million number of iterations after
a substantial number of burn-ins. Since this would take quite a time, the following example
reenacts their setting with only 50,000 burn-ins and 100,000 draws and will take about 30
seconds on a modern PC:

> data(datafls)

> fls1 = bms(datafls, burn=50000, iter=100000, g="BRIC", mprior="uniform", nmodel=2000, mcmc="bd", user.int=F)

Before looking at the coefficients, check convergence by invoking the summary command:19

> summary(fls1)

Mean no. regressors Draws Burnins

"10.3757" "1e+05" "50000"

Time No. models visited Modelspace 2^K

"7.803406 secs" "26106" "2.2e+12"

% visited % Topmodels Corr PMP

"1.2e-06" "44" "0.8985"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

18bms has some simple algorithms implemented to choose ’good’ starting models – consult the option start.value

under help(bms) for more information.
19Since MCMC sampling chains are never completely equal, the results presented here might differ from what you

get on your machine.
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Shrinkage-Stats

"Av=0.9994"

Under Corr PMP, we find the correlation between iteration counts and analytical PMPs for
the 2000 best models (the number 2000 was specified with the nmodel=2000 argument). At
0.8985, this correlation is far from perfect but already indicates a good degree of convergence.
For a closer look at convergence between analytical and MCMC PMPs, compare the actual
distribution of both concepts:

> plotConv(fls1)
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The chart presents the best 2,000 models encountered ordered by their analytical PMP
(the red line), and plots their MCMC iteration counts (the blue line). For an even closer look,
one might just check the corresponding image for just the best 100 models with the following
command:20

> plotConv(fls1[1:100])

20With bma objects such as fls1, the indexing parentheses [] are used to select subsets of the (ranked) best
models retained in the object. For instance, while fls1 contains 2,000 models, fls1[1:100] only contains the 100
best models among them. Correspondingly, fls1[37] would only contain the 37th-best model. Cf. help(’[.bma’)
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4.3 Analytical vs. MCMC likelihoods

The example above already achieved a decent level of correlation among analytical likelihoods
and iteration counts with a comparatively small number of sampling draws. In general, the
more complicated the distribution of marginal likelihoods, the more difficulties the sampler will
meet before converging to a good approximation of PMPs. The quality of approximation may
be inferred from the number of times a model got drawn vs. their actual marginal likelihoods.
Partly for this reason, bms retains a pre-specified number of models with the highest PMPs
encountered during MCMC sampling, for which PMPs and draw counts are stored. Their
respective distributions and their correlation indicate how well the sampler has converged.

However, due to RAM limits, the sampling chain can hardly retain more than a few 100,000
of these models. Instead, it computes aggregate statistics on-the-fly, taking iteration counts as
model weights. For model convergence and some posterior statistics bms retains only the ’top’
(highest PMP) nmodel models it encounters during iteration. Since the time for updating the
iteration counts for the ’top’ models grows in line with their number, the sampler becomes
considerably slower the more ’top’ models are to be kept. Still, if they are sufficiently numerous,
those best models can already cover most of posterior model mass - in this case it is feasible
to base posterior statistics on analytical likelihoods instead of MCMC frequencies, just as in
the enumeration case from section 2. From bms results, the PMPs of ’top’ models may be
displayed with the command pmp.bma. For instance, one could display the PMPs of the best
five models for fls1 as follows:21

> pmp.bma(fls1)[1:5,]

PMP (Exact) PMP (MCMC)

0046845800c 0.010914105 0.00810

0046844800c 0.009532020 0.00654

21pmp.bma returns a matrix with two columns and one row for each model. Consequently pmp.bma(fls1)[1:5,]

extracts the first five rows and all columns of this matrix.
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00474440008 0.006351611 0.00400

00064450008 0.004247053 0.00321

00464440008 0.003910244 0.00513

The numbers in the left-hand column represent analytical PMPs (PMP (Exact)) while the right-
hand side displays MCMC-based PMPs (PMP (MCMC)). Both decline in roughly the same fash-
ion, however sometimes the values for analytical PMPs differ considerably from the MCMC-
based ones. This comes from the fact that MCMC-based PMPs derive from the number of
iteration counts, while the ’exact’ PMPs are calculated from comparing the analytical like-
lihoods of the best models – cf. equation (2).22 In order to see the importance of all ’top
models’ with respect to the full model space, we can thus sum up their MCMC-based PMPs
as follows:

> colSums(pmp.bma(fls1))

PMP (Exact) PMP (MCMC)

0.43707 0.43707

Both columns sum up to the same number and show that in total, the top 2,000 models account
for ca. 44% of posterior model mass.23 They should thus provide a rough approximation of
posterior results that might or might not be better than the MCMC-based results. For this
purpose, compare the best 5 covariates in terms of PIP by analytical and MCMC methods:
coef(fls1) will display the results based on MCMC counts.

> coef(fls1)[1:5,]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 0.99909 -0.0161864596 0.0031207313 0 12

Confucian 0.98792 0.0566709814 0.0147170065 1 19

LifeExp 0.94225 0.0008497347 0.0003336649 1 11

EquipInv 0.92195 0.1601858531 0.0688902481 1 38

SubSahara 0.71283 -0.0110656860 0.0085394284 0 7

In contrast, the results based on analytical PMPs will be invoked with the exact argument:

> coef(fls1,exact=TRUE)[1:5,]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 1.0000000 -0.0162519441 0.0029430486 0 12

Confucian 0.9993987 0.0563416196 0.0125466528 1 19

LifeExp 0.9663382 0.0008473307 0.0002997708 1 11

EquipInv 0.9629370 0.1660656671 0.0596502222 1 38

SubSahara 0.7789498 -0.0118872756 0.0077913006 0 7

The ordering of covariates in terms of PIP as well as the coefficients are roughly similar.
However, the PIPs under exact = TRUE are somewhat larger than with MCMC results. Closer
inspection will also show that the analytical results downgrade the PIPs of the worst variables
with respect to MCMC-PIPs. This stems from the fact that analytical results do not take into
account the many ’bad’ models that include ’worse’ covariates and are factored into MCMC
results.

Whether to prefer analytical or MCMC results is a matter of taste – however the literature
prefers coefficients the analytical way: Fernández et al. (2001b), for instance, retain 5,000
models and report results based on them.

4.4 Combining Sampling Chains

The MCMC samplers described in section 4.1 need to discard the first batch of draws (the
burn-ins) since they start out from some peculiar start model and may reach the altitudes
of ’high’ PMPs only after many iterations. Here, choosing an appropriate start model may
help to speed up convergence. By default bms selects its start model as follows: from the full

22In the call to topmodels.bma on page 5, the PMPs under ’MCMC’ and analytical (’exact’) concepts were equal
since 1) enumeration bases both ’top’ model calculation and aggregate on-the-fly results on analytical PMPs and 2)
because all possible models were retained in the object att.

23Note that this share was already provided in column % Topmodels resulting from the summary command on page
11.
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model24, all covariates with OLS t-statistics > 0.2 are kept and included in the start model.
Other start models may be assigned outright or chosen according to a similar mechanism (cf.
argument start.value in help(bms)).

However, in order to improve the sampler’s convergence to the PMP distribution, one
might actually start from several different start models. This could by particularly helpful
if the models with high PMPs are clustered in distant ’regions’. For instance, one could set
up the Fernández et al. (2001b) example above to get iteration chains from different starting
values and combine them subsequently. Start e.g. a shorter chain from the null model (the
model containing just an intercept), and use the ’reversible jump’ MCMC sampler:

> fls2= bms(datafls, burn=20000, iter=50000, g="BRIC", mprior="uniform", mcmc="rev.jump", start.value=0, user.int=F)

> summary(fls2)

Mean no. regressors Draws Burnins

"10.5334" "50000" "20000"

Time No. models visited Modelspace 2^K

"4.59514 secs" "10608" "2.2e+12"

% visited % Topmodels Corr PMP

"4.8e-07" "28" "0.8483"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

Shrinkage-Stats

"Av=0.9994"

With 0.85, the correlation between analytical and MCMC PMPs is a bit smaller than the
0.9 from the fls1 example in section 4.3. However, the results of this sampling run may be
combined to yield more iterations and thus a better representation of the PMP distribution.

> fls_combi = c(fls1,fls2)

> summary(fls_combi)

Mean no. regressors Draws Burnins

"10.4283" "150000" "70000"

Time No. models visited Modelspace 2^K

"12.39855 secs" "36714" "2.2e+12"

% visited % Topmodels Corr PMP

"1.7e-06" "38" "0.9337"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "BRIC"

Shrinkage-Stats

"Av=0.9994"

With 0.93, the PMP correlation from the combined results is broadly better than either of its
two constituent chains fls1 and fls2. Still, the PIPs and coefficients do not change much
with respect to fls1 – as evidenced e.g. by plotComp(fls1, fls_combi, comp="Std Mean").

5 Alternative Formulations for Zellner’s g Prior

5.1 Alternative Fixed g-Priors

Virtually all BMA applications rely on the presented framework with Zellner’s g prior, and
the bulk of them relies on specifying a fixed g. As mentioned in section 1.2, the value of g
corresponds to the degree of prior uncertainty: A low g renders the prior coefficient distribution
tight around a zero mean, while a large g implies large prior coefficient variance and thus
decreases the importance of the coefficient prior.

While some popular default elicitation mechanisms for the g prior (we have seen UIP and
BRIC) are quite popular, they are also subject to severe criticism. Some (e.g Fernández et al.
2001a) advocate a comparatively large g prior to minimize prior impact on the results, stay
close to OLS coefficients, and represent the absolute lack of prior knowledge. Others (e.g.
Ciccone and Jarociński 2010) demonstrate that such a large g may not be robust to noise
innovations and risks over-fitting – in particular if the the noise component plays a substantial

24actually, a model with randomly drawn min(K,N − 3) variables
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role in the data. Again others (Eicher et al., 2009) advocate intermediate fixed values for the
g priors or present alternative default specifications (Liang et al., 2008).25

In BMS, any fixed g-prior may be specified directly by submitting its value to the bms

function argument g. For instance, compare the results for the Fernández et al. (2001b)
setting when a more conservative prior such as g = 5 is employed (and far too few iterations
are performed):

> fls_g5 = bms(datafls, burn=20000, iter=50000, g=5, mprior="uniform", user.int=F)

> coef(fls_g5)[1:5,]

PIP Post Mean Post SD Cond.Pos.Sign Idx

GDP60 0.99102 -0.0137193578 0.0040562187 0.00000000 12

Confucian 0.93230 0.0458470035 0.0211175121 1.00000000 19

LifeExp 0.86986 0.0006646135 0.0004002169 0.99997701 11

EquipInv 0.81066 0.1013934402 0.0733896643 1.00000000 38

SubSahara 0.78428 -0.0110842168 0.0086569003 0.00066303 7

> summary(fls_g5)

Mean no. regressors Draws Burnins

"20.1727" "50000" "20000"

Time No. models visited Modelspace 2^K

"4.999622 secs" "44165" "2.2e+12"

% visited % Topmodels Corr PMP

"2e-06" "1.9" "0.1354"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "numeric"

Shrinkage-Stats

"Av=0.8333"

The PIPs and coefficients for the best five covariates are comparable to the results from section
4.2 but considerably smaller, due to a tight shrinkage factor of g

1+g
= 5

6
(cf. section 1.2). More

important, the posterior expected model size 20.2 exceeds that of fls_combi by a large amount.
This stems from the less severe size penalty imposed by eliciting a small g. Finally, with 0.14,
the correlation between analytical and MCMC PMPs means that the MCMC sampler has not
at all converged yet. Feldkircher and Zeugner (2009) show that the smaller the g prior, the less
concentrated is the PMP distribution, and therefore the harder it is for the MCMC sampler
to provide a reasonable approximation to the actual PMP distribution. Hence the above
command should actually be run with many more iterations in order to achieve meaningful
results.

5.2 Model-specific g-Priors

Eliciting a fixed g-prior common to all models can be fraught with difficulties and unintended
consequences. Several authors have therefore proposed to rely on model-specific priors (cf.
Liang et al. 2008 for an overview), of which the following allow for closed-form solutions and
are implemented in BMS:

� Empirical Bayes g – local (EBL): gγ = argmaxg p(y|Mγ , X, g). Authors such as George
and Foster (2000) or Hansen and Yu (2001) advocate an ’Empirical Bayes’ approach by
using information contained in the data (y,X) to elicit g via maximum likelihood. This
amounts to setting gγ = max(0, FOLSγ − 1) where FOLSγ is the standard OLS F-statistic
for model Mγ . Apart from obvious advantages discussed below, the EBL prior is not so
popular since it involves ’peeking’ at the data in prior formulation. Moreover, asymptotic
’consistency’ of BMA is not guaranteed in this case.

� Hyper-g prior (hyper): Liang et al. (2008) propose putting a hyper-prior g; In order to
arrive at closed-form solutions, they suggest a Beta prior on the shrinkage factor of the
form g

1+g
∼ Beta

(
1, a

2
− 1
)
, where a is a parameter in the range 2 < a ≤ 4. Then, the

prior expected value of the shrinkage factor is E( g
1+g

) = 2
a

. Moreover, setting a = 4
corresponds to uniform prior distribution of g

1+g
over the interval [0, 1], while a → 2

25Note however, that g should in general be monotonously increasing in N : Fernández et al. (2001a) prove that
this sufficient for ’consistency’, i.e. if there is one single linear model as in equation (1), than its PMP asymptotically
reaches 100% as sample size N →∞.
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concentrates prior mass very close to unity (thus corresponding to g →∞). (bms allows
to set a via the argument g="hyper=x", where x denotes the a parameter.) The virtue
of the hyper-prior is that it allows for prior assumptions about g, but relies on Bayesian
updating to adjust it. This limits the risk of unintended consequences on the posterior
results, while retaining the theoretical advantages of a fixed g. Therefore Feldkircher and
Zeugner (2009) prefer the use of hyper-g over other available g-prior frameworks.

Both model-specific g priors adapt to the data: The better the signal-to-noise ratio, the
closer the (expected) posterior shrinkage factor will be to one, and vice versa. Therefore
average statistics on the shrinkage factor offer the interpretation as a ’goodness-of-fit’ indicator
(Feldkircher and Zeugner (2009) show that both EBL and hyper-g can be interpreted in terms
of the OLS F-statistic).

Consider, for instance, the Fernández et al. (2001b) example under an Empirical Bayes
prior:

> fls_ebl = bms(datafls, burn=20000, iter=50000, g="EBL", mprior="uniform", nmodel=1000, user.int=F)

> summary(fls_ebl)

Mean no. regressors Draws Burnins

"20.7063" "50000" "20000"

Time No. models visited Modelspace 2^K

"4.854738 secs" "28381" "2.2e+12"

% visited % Topmodels Corr PMP

"1.3e-06" "8.3" "0.1572"

No. Obs. Model Prior g-Prior

"72" "uniform / 20.5" "EBL"

Shrinkage-Stats

"Av=0.9606"

The result Shrinkage-Stats reports a posterior average EBL shrinkage factor of 0.961, which
corresponds to a shrinkage factor g

1+g
under g ≈ 24. Consequently, posterior model size is

considerably larger than under fls_combi, and the sampler has had a harder time to converge,
as evidenced in a quite low Corr PMP. Both conclusions can also be drawn from performing
the plot(fls_ebl) command that combines the plotModelsize and plotConv functions:

> plot(fls_ebl)

17



0.
00

0.
10

Posterior Model Size Distribution 
 Mean: 20.7063

Model Size

0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41

Posterior Prior

0 200 400 600 800 1000

0.
00

0
0.

01
5

Posterior Model Probabilities
(Corr: 0.1572)

Index of Models

PMP (MCMC) PMP (Exact)

The upper chart shows that posterior model size distribution remains very close to the
model prior; The lower part displays the discord between iteration count frequencies and
analytical PMPs.

The above results show that using a flexible and model-specific prior on Fernández et al.
(2001b) data results in rather small posterior estimates of g

1+g
, thus indicating that the

g="BRIC" prior used in fls_combi may be set too far from zero. This interacts with the
uniform model prior to concentrate posterior model mass on quite large models. However,
imposing a uniform model prior means to expect a model size of K/2 = 20.5, which may seem
overblown. Instead, try to impose smaller model size through a corresponding model prior –
e.g. impose a prior model size of 7 as in Sala-i-Martin et al. (2004). This can be combined
with a hyper-g prior, where the argument g="hyper=UIP" imposes an a parameter such that
the prior expected value of g corresponds to the unit information prior (g = N).26

> fls_hyper = bms(datafls, burn=20000, iter=50000, g="hyper=UIP", mprior="random", mprior.size=7, nmodel=1000, user.int=F)

> summary(fls_hyper)

Mean no. regressors Draws Burnins

"15.1598" "50000" "20000"

Time No. models visited Modelspace 2^K

"4.777031 secs" "23242" "2.2e+12"

% visited % Topmodels Corr PMP

"1.1e-06" "13" "0.1658"

No. Obs. Model Prior g-Prior

"72" "random / 7" "hyper (a=2.02778)"

Shrinkage-Stats

"Av=0.9607, Stdev=0.018"

From Shrinkage-Stats, posterior expected shrinkage is 0.961, with rather tight standard
deviation bounds. Similar to the EBL case before, the data thus indicates that shrinkage

26This is the default hyper-g prior and may therefore be as well obtained with g="hyper ".
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should be rather small (corresponding to a fixed g of g ≈ 24) and not vary too much from
its expected value. Since the hyper-g prior induces a proper posterior distribution for the
shrinkage factor, it might be helpful to plot its density with the command below. The chart
confirms that posterior shrinkage is tightly concentrated above 0.94.

> gdensity(fls_hyper)
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While the hyper-g prior had an effect similar to the EBL case fls_ebl, the model prior
now employed leaves the data more leeway to adjust posterior model size. The results depart
from the expected prior model size and point to an intermediate size of ca. 15. The focus on
smaller models is evidenced by charting the best 1,000 models with the image command:

> image(fls_hyper)
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In a broad sense, the coefficient results correspond to those of fls_combi, at least in
expected values. However, the results from fls_hyper were obtained under more sophisticated
priors that were specifically designed to avoid unintended influence from prior parameters: By
construction, the large shrinkage factor under fls_combi induced a quite small posterior model
size of 10.4 and concentrated posterior mass tightly on the best models encountered (they make
up 38% of the entire model mass). In contrast, the hyper-g prior employed for fls_hyper

indicated a rather low posterior shrinkage factor and consequently resulted in higher posterior
model size (15.2) and less model mass concentration (13%).

5.3 Posterior Coefficient Densities

In order to compare more than just coefficient expected values, it is advisable to consult the
entire posterior distribution of coefficients. For instance, consult the posterior density of the
coefficient for Muslim, a variable with a PIP of 66.3%: The density method produces marginal
densities of posterior coefficient distributions and plots them, where the argument reg specifies
the variable to be analyzed.

> density(fls_combi,reg="Muslim")
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We see that the coefficient is neatly above zero, but somewhat skewed. The integral of this
density will add up to 0.688, conforming to the analytical PIP of Muslim. The vertical bars
correspond to the analytical coefficient conditional on inclusion from fls_combi as in

> coef(fls_combi,exact=T,condi.coef=T)["Muslim",]

PIP Post Mean Post SD Cond.Pos.Sign Idx

0.687790245 0.012849494 0.004575044 1.000000000 23.000000000

Note that the posterior marginal density is actually a model-weighted mixture of posterior
densities for each model and can this be calculated only for the top models contained in
fls_combi (here 2041).

Now let us compare this density with the results under the hyper-g prior:27

> dmuslim=density(fls_hyper,reg="Muslim",addons="Eebl")

27Since for the hyper-g prior, the marginal posterior coefficient distribution derive from quite complicated expres-
sions, executing this command could take a few seconds.
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Here, the addons argument assigns the vertical bars to be drawn: the expected conditional
coefficient from MCMC (E) results should be indicated in contrast to the expected coefficient
based on analytical PMPs (e). In addition the expected coefficients under the individual
models are plotted (b) and a legend is included (l). The density seems more symmetric than
before and the analytical results seem to be only just smaller than what could be expected
from MCMC results.

Nonetheless, even though fls_hyper and fls_combi applied very different g and model
priors, the results for the Muslim covariate are broadly similar: It is unanimously positive,
with a conditional expected value somewhat above 0.01. In fact 95% of the posterior coefficient
mass seems to be concentrated between 0.004 and 0.024:

> quantile(dmuslim, c(0.025, 0.975))

2.5% 97.5%

0.00433047 0.02352947

6 Predictive Densities

Of course, BMA lends itself not only to inference, but also to prediction. The employed
’Bayesian Regression’ models naturally give rise to predictive densities, whose mixture yields
the BMA predictive density – a procedure very similar to the coefficient densities explored in
the previous section.

Let us, for instance, use the information from the first 70 countries contained in datafls

to forecast economic growth for the latter two, namely Zambia (identifier ZM) and Zimbabwe
(identifier ZW). We then can use the function pred.density on the BMA object fcstbma to
form predictions based on the explanatory variables for Zambia and Zimbabwe (which are in
datafls[71:72,]).

> fcstbma= bms(datafls[1:70,], mprior="uniform", burn=20000, iter=50000, user.int=FALSE)

> pdens = pred.density(fcstbma, newdata=datafls[71:72,])
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The resulting object pdens holds the distribution of the forecast for the two countries,
conditional on what we know from other countries, and the explanatory data from Zambia
and Zimbabwe. The expected value of this growth forecast is very similar to the classical point
forecast and can be accessed with pdens$fit.28 Likewise the standard deviations of the predic-
tive distribution correspond to classical standard errors and are returned by pdens$std.err.
But the predictive density for the growth in e.g. Zimbabwe might be as well visualized with
the following command:29

> plot(pdens, 2)
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Here, we see that conditional on Zimbabwe’s explanatory data, we expect growth to be
concentrated around 0. And the actual value in datafls[72,1] with 0.0046 is not too far off
from that prediction. A closer look at both our densities with the function quantile shows
that for Zimbabwe, any growth rate between -0.01 and 0.01 is quite likely.

> quantile(pdens, c(0.05, 0.95))

5% 95%

ZM 0.003178629 0.02733864

ZW -0.011010810 0.01116183

For Zambia (ZM), though, the explanatory variables suggest that positive economic growth
should be expected. But over our evaluation period, Zambian growth has been even worse
than in Zimbabwe (with -0.01 as from datafls["ZM",1]).30 Under the predictive density for
Zambia, this actual outcome seems quite unlikely.

To compare the BMA prediction performs with actual outcomes, we could look e.g. at the
forecast error pdens$fit - datafls[71:72,1]. However it would be better to take standard
errors into account, and even better follow the ’Bayesian way’ and evaluate the predictive
density of the outcomes as follows:

28Note that this is equivalent to predict(fcstbma, datafls[71:72, ]) .
29Here, 2 means to plot for the second forecasted observation, in this case ZW, the 72-th row of datafls.
30Note that since ZM is the rowname of the 71-st row of datafls, this is equivalent to calling datafls[71, ].
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> pdens$dyf(datafls[71:72,1])

[1] 0.07450366 46.85209999

The density for Zimbabwe is quite high (similar to the mode of predictive density as seen in
the chart above), whereas the one for Zambia is quite low. In order to visualize how bad the
forecast for Zambia was, compare a plot of predictive density to the actual outcome, which is
situated far to the left.

> plot(pdens, "ZM", realized.y=datafls["ZM",1])
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The results for Zambia suggest either that it is an outlier or that our forecast model might
not perform that well. One could try out other prior settings or data, and compare the
differing models in their joint predictions for Zambia and Zimbabwe (or even more countries).
A standard approach to evaluate the goodness of forecasts would be to e.g. look at root mean
squared errors. However Bayesians (as e.g Fernández et al. 2001a) often prefer to look at
densities of the outcome variables and combine them in a ’log-predictive score’ (LPS). It is
defined as follows, where p(yfi |X, y,X

f
i ) denotes predictive density for yfi (Zambian growth)

based on the model information (y,X) (the first 70 countries) and the explanatory variables
for the forecast observation (Zambian investment, schooling, etc.).

−
∑
i

log(p(yfi |X, y,X
f
i ))

The log-predictive score can be accessed with lps.bma.

> lps.bma(pdens, datafls[71:72,1])

[1] -0.6250444

Note however, that the LPS is only meaningful when comparing different forecast settings.
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A Appendix

A.1 Available Model Priors – Synopsis

The following provides an overview over the model priors available in bms. Default is mprior="random".
For details and examples on built-in priors, consult help(bms). For defining different, custom
g-priors, consult help(gprior) or http://bms.zeugner.eu/custompriors.php.

Uniform Model Prior

� Argument : mprior="uniform"

� Parameter : none

� Concept : p(Mγ) ∝ 1

� Reference: none

Binomial Model Prior

� Argument : mprior="fixed"

� Parameter (mprior.size): prior model size m̄ (scalar); Default is m̄ = K/2

� Concept : p(Mγ) ∝
(
m̄
K

)kγ (
1− m̄

K

)K−kγ
� Reference: Sala-i-Martin et al. (2004)

Beta-Binomial Model Prior

� Argument : mprior="random"

� Parameter (mprior.size): prior model size m̄ (scalar)

� Concept : p(Mγ) ∝ Γ(1 + kγ)Γ(K−m
m

+K − kγ); Default is m̄ = K/2

� Reference: Ley and Steel (2009)

Custom Prior Inclusion Probabilities

� Argument : mprior="pip"

� Parameter (mprior.size): A vector of size K, detailing K prior inclusion probabilities
πi: 0 < π < 1 ∀i

� Concept : p(Mγ) ∝
∏
i∈γ πi

∏
j /∈γ(1− πj)

� Reference: none

Custom Model Size Prior

� Argument : mprior="customk"

� Parameter (mprior.size): A vector of size K + 1, detailing prior θj for 0 to K size
models: any real >0 admissible

� Concept : p(Mγ) ∝ θkγ
� Reference: none

A.2 Available g-Priors – Synopsis

The following provides an overview over the g-priors available in bms. Default is g="UIP".
For implementation details and examples, consult help(bms). For defining different, custom
g-priors, consult help(gprior) or http://bms.zeugner.eu/custompriors.php.

Fixed g

� Argument : g=x where x is a positive real scalar;

� Concept : Fixed g common to all models

� Reference: Fernández et al. (2001a)

� Sub-options: Unit information prior g="UIP" sets g = N ; g="BRIC" sets g = max(N,K2),
a combination of BIC and RIC. (Note these two options guarantee asymptotic consis-
tency.) Other options include g="RIC" for g = K2 and g="HQ"' for the Hannan-Quinn
setting g = log(N)3.
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Empirical Bayes (Local) g

� Argument : g="EBL"

� Concept : Model-specific gγ estimated via maximum likelihood: amounts to gγ = max(0, Fγ−
1), where Fγ ≡

R2
γ(N−1−kγ)

(1−R2
γ)kγ

and R2
γ is the OLS R-squared of model Mγ .

� Reference: George and Foster (2000); Liang et al. (2008)

� Sub-options: none

Hyper-g prior

� Argument : g="hyper"

� Concept : A Beta prior on the shrinkage factor with p( g
1+g

) = B(1, a
2
− 1). Parameter

a (2 < a ≤ 4) represents prior beliefs: a = 4 implies prior shrinkage to be uniformly
distributed over [0, 1], a→ 2 concentrates mass close to unity. Note that prior expected
value of the shrinkage facor is E( g

1+g
) = 2

a
.

� Reference: Liang et al. (2008); Feldkircher and Zeugner (2009)

� Sub-options: g="hyper=x" with x defining the parameter a (e.g. g="hyper=3" sets a = 3).
g="hyper" resp. g="hyper=UIP" sets the prior expected shrinkage factor equivalent to
the UIP prior E( g

1+g
) = N

1+N
; g="hyper=BRIC" sets the prior expected shrinkage factor

equivalent to the BRIC prior. Note that the latter two options guarantee asymptotic
consistency.

A.3 ’Bayesian Regression’ with Zellner’s g – Bayesian Model Selection

The linear model presented in section 1.2 using Zellner’s g prior is implemented under the
function zlm. For instance, we might consider the attitude data from section 2 and estimate
just the full model containing all 6 variables. For this purpose, first load the built-in data set
with the command

> data(attitude)

The full model is obtained by applying the function zlm on the data set and storing the
estimation into att_full. Zellner’s g prior is estimated by the argument g just in the same
way as in section 5.31

> att_full = zlm(attitude,g="UIP")

The results can then be displayed by using e.g. the summary method.

> summary(att_full)

Coefficients

Exp.Val. St.Dev.

(Intercept) 12.52405242 NA

complaints 0.59340736 0.1524868

privileges -0.07069369 0.1285614

learning 0.30999882 0.1596262

raises 0.07909561 0.2097886

critical 0.03714334 0.1392373

advance -0.21005485 0.1688040

Log Marginal Likelihood:

-113.7063

g-Prior: UIP

Shrinkage Factor: 0.968

The results are very similar to those resulting from OLS (which can be obtained via summary(lm(attitude))).
The less conservative, i.e. the larger g becomes, the closer the results get to OLS. But remem-
ber that the full model was not the best model from the BMA application in section 2. In
order to extract the best encountered model, use the function as.zlm to extract this single
model for further analysis (with the argument model specifying the rank-order of the model to
be extracted). The following command reads the best model from the BMA results in section
into the variable att_best.

31Likewise, most methods applicable to bms, such as density, predict or coef, work analogously for zlm.
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> att_best = as.zlm(att,model=1)

> summary(att_best)

Coefficients

Exp.Val. St.Dev.

(Intercept) 15.9975134 NA

complaints 0.7302676 0.1010205

Log Marginal Likelihood:

-107.4047

g-Prior: UIP

Shrinkage Factor: 0.968

As suspected, the best model according to BMA is the on including only complaints and
the intercept, as it has the highest log-marginal likelihood (logLik(att_best)). In such a way,
the command as.zlm can be combined with bms for ’Bayesian Model Selection’, i.e. using the
model prior and posterior framework to focus on teh model with highest posterior mass. Via
the utility model.frame, this best model can be straightforwardly converted into a standard
OLS model:

> att_bestlm = lm(model.frame(as.zlm(att)))

> summary(att_bestlm)

Call:

lm(formula = model.frame(as.zlm(att)))

Residuals:

Min 1Q Median 3Q Max

-12.8799 -5.9905 0.1783 6.2978 9.6294

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.37632 6.61999 2.172 0.0385 *

complaints 0.75461 0.09753 7.737 1.99e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.993 on 28 degrees of freedom

Multiple R-squared: 0.6813, Adjusted R-squared: 0.6699

F-statistic: 59.86 on 1 and 28 DF, p-value: 1.988e-08

A.4 BMA when Keeping a Fixed Set of Regressors

While BMA should usually compare as many models as possible, some considerations might
dictate the restriction to a subspace of the 2K models. For complicated settings one might
employ a customly designed model prior (cf. section A.1). The by far most common setting,
though, is to keep some regressors fixed in the model setting, and apply Bayesian Model
uncertainty only to a subset of regressors.

Suppose, for instance, that prior research tells us that any meaningful model for attitude
(as in section 2) must include the variables complaints and learning. The only question
is whether the additional four variables matter (which reduces the potential model space to
24 = 16). We thus sample over these models while keeping complaints and learning as fixed
regressors:

> att_learn = bms(attitude,mprior="uniform", fixed.reg=c("complaints", "learning") )

PIP Post Mean Post SD Cond.Pos.Sign Idx

complaints 1.0000000 0.622480469 0.12718297 1.0000000 1

learning 1.0000000 0.237607970 0.15086061 1.0000000 3

advance 0.2878040 -0.053972968 0.11744640 0.0000000 6

privileges 0.1913388 -0.017789715 0.06764219 0.0000000 2

raises 0.1583504 0.001767835 0.07951209 0.3080239 4

critical 0.1550556 0.002642777 0.05409412 1.0000000 5
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Mean no. regressors Draws Burnins

"2.7925" "16" "0"

Time No. models visited Modelspace 2^K

"0.003446579 secs" "16" "64"

% visited % Topmodels Corr PMP

"25" "100" "NA"

No. Obs. Model Prior g-Prior

"30" "uniform / 4" "UIP"

Shrinkage-Stats

"Av=0.9677"

Time difference of 0.003446579 secs

The results show that the PIP and the coefficients for the remaining variables increase a
bit compared to att. The higher PIPs are related to the fact that the posterior model size (as
in sum(coef(att_learn)[,1])) is quite larger as under att. This follows naturally from our
model prior: putting a uniform prior on all models between parameter size 2 (the base model)
and 6 (the full model) implies a prior expected model size of 4 for att_learn instead of the 3
for att.32 So to achieve comparable results, one needs to take the number of fixed regressors
into account when setting the model prior parameter mprior.size. Consider another example:

Suppose we would like to sample the importance and coefficients for the cultural dummies
in the dataset datafls, conditional on information from the remaining ’hard’ variables. This
implies keeping 27 fixed regressors, while sampling over the 14 cultural dummies. Since model
uncertainty thus applies only to 214 = 16, 384 models, we resort to full enumeration of the
model space.

> fls_culture = bms(datafls,fixed.reg=c(1,8:16,24,26:41), mprior="random", mprior.size=28, mcmc="enumeration", user.int=F)

Here, the vector c(1,8:16,24,26:41) denotes the indices of the regressors in datafls to be
kept fixed.33 Moreover, we use the beta-binomial (’random’) model prior. The prior model
size of 30 embodies our prior expectation that on average 1 out of the 14 cultural dummies
should be included in the true model. As we only care about those 14 variables, let us just
display the results for the 14 variables with the least PIP:

> coef(fls_culture)[28:41, ]

PIP Post Mean Post SD Cond.Pos.Sign Idx

Confucian 0.99950018 6.796387e-02 0.0130198193 1.00000000 19

Hindu 0.94793751 -7.519094e-02 0.0270173174 0.00000000 21

SubSahara 0.84127891 -1.584077e-02 0.0091307736 0.00000000 7

EthnoL 0.70497895 9.238430e-03 0.0070484067 0.99999675 20

Protestants 0.57157577 -6.160916e-03 0.0061672877 0.00001431 25

Muslim 0.53068726 7.908574e-03 0.0086009027 0.99999949 23

LatAmerica 0.52063035 -6.538488e-03 0.0074843453 0.00469905 6

Spanish 0.21738032 2.105990e-03 0.0047683535 0.98325917 2

French 0.17512267 1.065459e-03 0.0027682773 0.99999954 3

Buddha 0.11583307 9.647944e-04 0.0033462133 0.99999992 17

Brit 0.10056773 4.095469e-04 0.0017468022 0.94203569 4

Catholic 0.09790780 -1.072004e-05 0.0019274111 0.45246829 18

WarDummy 0.07478332 -1.578379e-04 0.0007599415 0.00123399 5

Jewish 0.04114852 -5.614758e-05 0.0018626191 0.24834675 22

As before, we find that Confucian (with positive sign) as well as Hindu and SubSahara

(negative signs) have the most important impact conditional on ’hard’ information. Moreover,
the data seems to attribute more importance to cultural dummies as we expectd with our
model prior: Comparing prior and posterior model size with the following command shows
how much importance is attributed to the dummies.

> plotModelsize(fls_culture, ksubset=27:41)

32The command att_learn2 = bms(attitude, mprior=’fixed’, mprior.size=3, fixed.reg=c(’complaints’,

’learning’) ) produces coefficients that are much more similar to att.
33Here, indices start from the first regressor, i.e. they do not take the dependent variable into account. The fixed

data used above therefore corresponds to datafls[ ,c(1,8:16,24,26:41) + 1].

29



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Posterior Model Size Distribution 
 Mean: 32.9393

Model Size

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Posterior Prior

Expected posterior model size is close to 33, which means that 6 of the cultural dummies
should actually be included in a ’true’ model.
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