
Package ‘AzureQstor’
April 23, 2025

Title Interface to 'Azure Queue Storage'

Version 1.0.2

Description An interface to 'Azure Queue Storage'. This is a cloud service for storing large num-
bers of messages, for example from automated sensors, that can be accessed remotely via au-
thenticated calls using HTTP or HTTPS. Queue storage is often used to create a back-
log of work to process asynchronously. Part of the 'AzureR' family of packages.

URL https://github.com/hongooi73/AzureQstor

https://github.com/Azure/AzureR

BugReports https://github.com/hongooi73/AzureQstor/issues

License MIT + file LICENSE

Depends R (>= 3.3)

Imports utils, AzureRMR (>= 2.0.0), AzureStor (>= 3.0.0), openssl,
httr

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation no

Author Hong Ooi [aut, cre],
Microsoft [cph]

Maintainer Hong Ooi <hongooi73@gmail.com>

Repository CRAN

Date/Publication 2025-04-23 06:40:02 UTC

Contents
QueueMessage . 2
queue_endpoint . 4
StorageQueue . 5
storage_queue . 10

Index 13

1

https://github.com/hongooi73/AzureQstor
https://github.com/Azure/AzureR
https://github.com/hongooi73/AzureQstor/issues

2 QueueMessage

QueueMessage R6 class representing a message from an Azure storage queue

Description

This class stores the data, metadata and behaviour associated with a message.

To generate a message object, call one of the methods exposed by the StorageQueue class.

Public fields

queue The queue this message is from, an object of class StorageQueue

id The message ID.

insertion_time The message insertion (creation) time.

expiry_time The message expiration time.

text The message text.

receipt A pop receipt. This is present if the message was obtained by means other than peeking,
and is required for updating or deleting the message.

next_visible_time The time when this message will be next visible.

dequeue_count The number of times this message has been read.

Methods

Public methods:
• QueueMessage$new()

• QueueMessage$delete()

• QueueMessage$update()

• QueueMessage$print()

• QueueMessage$clone()

Method new(): Creates a new message object. Rather than calling the new method manually,
objects of this class should be created via the methods exposed by the StorageQueue object.

Usage:
QueueMessage$new(message, queue)

Arguments:

message Details about the message.
queue Object of class StorageQueue.

Method delete(): Deletes this message from the queue.

Usage:
QueueMessage$delete()

Returns: NULL, invisibly.

QueueMessage 3

Method update(): Updates this message in the queue.
This operation can be used to continually extend the invisibility of a queue message. This func-
tionality can be useful if you want a worker role to "lease" a message. For example, if a worker
role calls get_messages and recognizes that it needs more time to process a message, it can
continually extend the message’s invisibility until it is processed. If the worker role were to fail
during processing, eventually the message would become visible again and another worker role
could process it.

Usage:
QueueMessage$update(visibility_timeout, text = self$text)

Arguments:

visibility_timeout The new visibility timeout (time to when the message will again be vis-
ible).

text Optionally, new message text, either a raw or character vector. If a raw vector, it is base64-
encoded, and if a character vector, it is collapsed into a single string before being sent to the
queue.

Returns: The message object, invisibly.

Method print(): Print method for this class.

Usage:
QueueMessage$print(...)

Arguments:

... Not currently used.

Returns: The message object, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
QueueMessage$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

endp <- storage_endpoint("https://mystorage.queue.core.windows.net", key="key")
queue <- storage_queue(endp, "queue1")

msg <- queue$get_message()
msg$update(visibility_timeout=60, text="updated message")
msg$delete()

End(Not run)

4 queue_endpoint

queue_endpoint Create a queue endpoint object

Description

Create a queue endpoint object

Usage

queue_endpoint(
endpoint,
key = NULL,
token = NULL,
sas = NULL,
api_version = getOption("azure_storage_api_version")

)

Arguments

endpoint The URL (hostname) for the endpoint, of the form http[s]://{account-name}.queue.{core-host-name}.
On the public Azure cloud, endpoints will be of the form https://{account-name}.queue.core.windows.net.

key The access key for the storage account.

token An Azure Active Directory (AAD) authentication token. This can be either a
string, or an object of class AzureToken created by AzureRMR::get_azure_token.
The latter is the recommended way of doing it, as it allows for automatic refresh-
ing of expired tokens.

sas A shared access signature (SAS) for the account.

api_version The storage API version to use when interacting with the host. Defaults to
"2019-07-07".

Details

This is the queue storage counterpart to the endpoint functions defined in the AzureStor package.

Value

An object of class queue_endpoint, inheriting from storage_endpoint.

See Also

AzureStor::storage_endpoint, AzureStor::blob_endpoint, storage_queue

StorageQueue 5

Examples

Not run:

obtaining an endpoint from the storage account resource object
AzureRMR::get_azure_login()$

get_subscription("sub_id")$
get_resource_group("rgname")$
get_storage_account("mystorage")$
get_queue_endpoint()

creating an endpoint standalone
queue_endpoint("https://mystorage.queue.core.windows.net/", key="access_key")

End(Not run)

StorageQueue R6 class representing an Azure storage queue

Description

A storage queue holds messages. A queue can contain an unlimited number of messages, each
of which can be up to 64KB in size. Messages are generally added to the end of the queue and
retrieved from the front of the queue, although first in, first out (FIFO) behavior is not guaranteed.

To generate a queue object, use one of the storage_queue, list_storage_queues or create_storage_queue
functions rather than calling the new() method directly.

Public fields

endpoint A queue endpoint object. This contains the account and authentication information for
the queue.

name The name of the queue.

Methods

Public methods:
• StorageQueue$new()

• StorageQueue$create()

• StorageQueue$delete()

• StorageQueue$clear()

• StorageQueue$get_metadata()

• StorageQueue$set_metadata()

• StorageQueue$get_message()

• StorageQueue$get_messages()

• StorageQueue$peek_message()

6 StorageQueue

• StorageQueue$peek_messages()

• StorageQueue$pop_message()

• StorageQueue$pop_messages()

• StorageQueue$put_message()

• StorageQueue$update_message()

• StorageQueue$delete_message()

• StorageQueue$print()

• StorageQueue$clone()

Method new(): Initialize the queue object. Rather than calling this directly, you should use one
of the storage_queue, list_storage_queues or create_storage_queue functions.
Note that initializing this object is a local operation only. If a queue of the given name does not
already exist in the storage account, it has to be created remotely by calling the create method.

Usage:
StorageQueue$new(endpoint, name)

Arguments:

endpoint An endpoint object.
name The name of the queue.

Method create(): Creates a storage queue in Azure, using the storage endpoint and name from
this R6 object.

Usage:
StorageQueue$create()

Returns: The queue object, invisibly.

Method delete(): Deletes this storage queue in Azure.

Usage:
StorageQueue$delete(confirm = TRUE)

Arguments:

confirm Whether to ask for confirmation before deleting.

Returns: The queue object, invisibly.

Method clear(): Clears (deletes) all messages in this storage queue.

Usage:
StorageQueue$clear()

Returns: The queue object, invisibly.

Method get_metadata(): Retrieves user-defined metadata for the queue.

Usage:
StorageQueue$get_metadata()

Returns: A named list of metadata properties.

Method set_metadata(): Sets user-defined metadata for the queue.

StorageQueue 7

Usage:
StorageQueue$set_metadata(..., keep_existing = TRUE)

Arguments:

... Name-value pairs to set as metadata.
keep_existing Whether to retain existing metadata information.

Returns: A named list of metadata properties, invisibly.

Method get_message(): Reads a message from the front of the storage queue.
When a message is read, the consumer is expected to process the message and then delete it. After
the message is read, it is made invisible to other consumers for a specified interval. If the message
has not yet been deleted at the time the interval expires, its visibility is restored, so that another
consumer may process it.

Usage:
StorageQueue$get_message()

Returns: A new object of class QueueMessage.

Method get_messages(): Reads several messages at once from the front of the storage queue.
When a message is read, the consumer is expected to process the message and then delete it. After
the message is read, it is made invisible to other consumers for a specified interval. If the message
has not yet been deleted at the time the interval expires, its visibility is restored, so that another
consumer may process it.

Usage:
StorageQueue$get_messages(n = 1)

Arguments:

n How many messages to read. The maximum is 32.

Returns: A list of objects of class QueueMessage.

Method peek_message(): Reads a message from the storage queue, but does not alter its visi-
bility.
Note that a message obtained via the peek_message or peek_messages method will not include
a pop receipt, which is required to delete or update it.

Usage:
StorageQueue$peek_message()

Returns: A new object of class QueueMessage.

Method peek_messages(): Reads several messages at once from the storage queue, without
altering their visibility.
Note that a message obtained via the peek_message or peek_messages method will not include
a pop receipt, which is required to delete or update it.

Usage:
StorageQueue$peek_messages(n = 1)

Arguments:

n How many messages to read. The maximum is 32.

8 StorageQueue

Returns: A list of objects of class QueueMessage.

Method pop_message(): Reads a message from the storage queue, removing it at the same
time. This is equivalent to calling get_message and delete_message successively.

Usage:
StorageQueue$pop_message()

Returns: A new object of class QueueMessage.

Method pop_messages(): Reads several messages at once from the storage queue, and then
removes them.

Usage:
StorageQueue$pop_messages(n = 1)

Arguments:
n How many messages to read. The maximum is 32.

Returns: A list of objects of class QueueMessage.

Method put_message(): Writes a message to the back of the message queue.

Usage:
StorageQueue$put_message(text, visibility_timeout = NULL, time_to_live = NULL)

Arguments:
text The message text, either a raw or character vector. If a raw vector, it is base64-encoded,

and if a character vector, it is collapsed into a single string before being sent to the queue.
visibility_timeout Optional visibility timeout after being read, in seconds. The default is

30 seconds.
time_to_live Optional message time-to-live, in seconds. The default is 7 days.

Returns: The message text, invisibly.

Method update_message(): Updates a message in the queue. This requires that the message
object must include a pop receipt, which is present if it was obtained by means other than peeking.
This operation can be used to continually extend the invisibility of a queue message. This func-
tionality can be useful if you want a worker role to "lease" a message. For example, if a worker
role calls get_messages and recognizes that it needs more time to process a message, it can
continually extend the message’s invisibility until it is processed. If the worker role were to fail
during processing, eventually the message would become visible again and another worker role
could process it.

Usage:
StorageQueue$update_message(msg, visibility_timeout, text = msg$text)

Arguments:
msg A message object, of class QueueMessage.
visibility_timeout The new visibility timeout (time to when the message will again be vis-

ible).
text Optionally, new message text, either a raw or character vector. If a raw vector, it is base64-

encoded, and if a character vector, it is collapsed into a single string before being sent to the
queue.

StorageQueue 9

Returns: The message object, invisibly.

Method delete_message(): Deletes a message from the queue. This requires that the message
object must include a pop receipt, which is present if it was obtained by means other than peeking.

Usage:
StorageQueue$delete_message(msg)

Arguments:

msg A message object, of class QueueMessage.

Method print(): Print method for this class.

Usage:
StorageQueue$print(...)

Arguments:

... Not currently used.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StorageQueue$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

QueueMessage

Examples

Not run:

endp <- storage_endpoint("https://mystorage.queue.core.windows.net", key="key")

to talk to an existing queue
queue <- storage_queue(endp, "queue1")

to create a new queue
queue2 <- create_storage_queue(endp, "queue2")

various ways to delete a queue (will ask for confirmation first)
queue2$delete()
delete_storage_queue(queue2)
delete_storage_queue(endp, "queue2")

to get all queues in this storage account
queue_lst <- list_storage_queues(endp)

working with a queue: put, get, update and delete messages
queue$put_message("new message")
msg <- queue$get_message()

10 storage_queue

msg$update(visibility_timeout=60, text="updated message")
queue$delete_message(msg)

delete_message simply calls the message's delete() method, so this is equivalent
msg$delete()

retrieving multiple messages at a time (up to 32)
msgs <- queue$get_messages(30)

deleting is still per-message
lapply(msgs, function(m) m$delete())

you can use the process pool from AzureRMR to do this in parallel
AzureRMR::init_pool()
AzureRMR::pool_lapply(msgs, function(m) m$delete())
AzureRMR::delete_pool()

End(Not run)

storage_queue Message queues

Description

Get, list, create, or delete queues.

Usage

storage_queue(endpoint, ...)

S3 method for class 'character'
storage_queue(
endpoint,
key = NULL,
token = NULL,
sas = NULL,
api_version = getOption("azure_storage_api_version"),
...

)

S3 method for class 'queue_endpoint'
storage_queue(endpoint, name, ...)

list_storage_queues(endpoint, ...)

S3 method for class 'character'
list_storage_queues(
endpoint,

storage_queue 11

key = NULL,
token = NULL,
sas = NULL,
api_version = getOption("azure_storage_api_version"),
...

)

S3 method for class 'queue_endpoint'
list_storage_queues(endpoint, ...)

S3 method for class 'queue_endpoint'
list_storage_containers(endpoint, ...)

create_storage_queue(endpoint, ...)

S3 method for class 'character'
create_storage_queue(
endpoint,
key = NULL,
token = NULL,
sas = NULL,
api_version = getOption("azure_storage_api_version"),
...

)

S3 method for class 'queue_endpoint'
create_storage_queue(endpoint, name, ...)

S3 method for class 'StorageQueue'
create_storage_queue(endpoint, ...)

delete_storage_queue(endpoint, ...)

S3 method for class 'character'
delete_storage_queue(
endpoint,
key = NULL,
token = NULL,
sas = NULL,
api_version = getOption("azure_storage_api_version"),
...

)

S3 method for class 'queue_endpoint'
delete_storage_queue(endpoint, name, ...)

S3 method for class 'StorageQueue'
delete_storage_queue(endpoint, confirm = TRUE, ...)

12 storage_queue

Arguments

endpoint Either a queue endpoint object as created by AzureStor::storage_endpoint, or a
character string giving the URL of the endpoint.

... Further arguments passed to lower-level functions.

key, token, sas If an endpoint object is not supplied, authentication credentials: either an access
key, an Azure Active Directory (AAD) token, or a SAS, in that order of priority.

api_version If an endpoint object is not supplied, the storage API version to use when inter-
acting with the host. Currently defaults to "2019-07-07".

name The name of the queue to get, create, or delete.

confirm For deleting a queue, whether to ask for confirmation.

Details

You can call these functions in a couple of ways: by passing the full URL of the storage queue, or
by passing the endpoint object and the name of the share as a string.

Value

For storage_queue and create_storage_queue, an object of class StorageQueue. For list_storage_queues,
a list of such objects.

See Also

StorageQueue, queue_endpoint

Examples

Not run:

endp <- storage_endpoint("https://mystorage.queue.core.windows.net", key="key")

to talk to an existing queue
queue <- storage_queue(endp, "queue1")

to create a new queue
queue2 <- create_storage_queue(endp, "queue2")

various ways to delete a queue (will ask for confirmation first)
queue2$delete()
delete_storage_queue(queue2)
delete_storage_queue(endp, "queue2")

End(Not run)

Index

AzureRMR::get_azure_token, 4
AzureStor::blob_endpoint, 4
AzureStor::storage_endpoint, 4, 12

create_storage_queue, 5, 6
create_storage_queue (storage_queue), 10

delete_storage_queue (storage_queue), 10

get_messages, 3

list_storage_containers.queue_endpoint
(storage_queue), 10

list_storage_queues, 5, 6
list_storage_queues (storage_queue), 10

message (QueueMessage), 2

peeking, 2

queue (StorageQueue), 5
queue_endpoint, 4, 12
QueueMessage, 2, 7–9

storage_queue, 4–6, 10
StorageQueue, 2, 5, 12

13

	QueueMessage
	queue_endpoint
	StorageQueue
	storage_queue
	Index

