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CCTable11.1a Cochran and Cox design

Description

A blocked experimental design from Cochran and Cox (1957).

A Partially balanced incomplete block in 3 reps, and 27 blocks.

Usage

data(CCTable11.1a)

Source

Cochran, W.G. and Cox, G.M. (1957). Experimental designs. Wiley, N.Y.

efficient.rounding Efficient Rounding

Description

A vector of proportions is efficiently rounded to integers.

Usage

efficient.rounding(proportions,n,random=TRUE)

Arguments

proportions A vector of proportions.

n The sum of the resulting integers.

random If TRUE, ties will be broken at random, otherwise the first of the tied values will
be used.

Details

This function implements an efficient rounding procedure to round approximate theory designs into
replicated integer approximations.

Value

A vector of replications summing to n.
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Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). efficient.rounding. AlgDesign. The R project for statistical computing
https://www.r-project.org/

References

Pulkesheim, F. and Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika. 79-4.
763-770.

eval.blockdesign Evaluates a blocked design.

Description

A blocked design is evaluated.

Usage

eval.blockdesign(frml,design,blocksizes,rho=1,confounding=FALSE,center=FALSE)

Arguments

frml The formula used to create the blocked design.

design The blocked design, which may be the design output by optBlock().

blocksizes A vector of blocksizes for the design.

rho A vector, giving the ratios of whole to within variance components.

confounding If confounding=TRUE, the confounding matrix will be output.

center If TRUE, numeric variables will be centered before frml is applied.

Value

confounding A matrix based on the design matrix in which the within block variables have
been centered about their block means. The columns of this matrix which give
the regression coefficients of each variable regressed on the others. If C is the
confounding matrix, then −XC is a matrix of residuals of the variables re-
gressed on the other variables.

determinant.all.terms.within.terms.centered

|M |1/k, where M = XTX/N and X is the model expanded N × k design
matrix in which the within block variables have been centered about the grand
mean.

https://www.r-project.org/
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within.block.efficiencies

The determinant criterion blocking efficiencies for the range of rho’s input. A
high efficiency indicates that there is little intrablock information to be recovered
in the analysis.

block.centered.properties

A matrix with four rows. The columns correspond to constant, whole block
terms and within block terms:

1. The degrees of freedom for terms in the expanded model.
2. The determinant of the block centered within block terms.
3. The geometric mean of the block centered variances.
4. The geometric mean of the ratio of centered to block centered variances.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). eval.blockdesign. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

eval.design Evaluates a design.

Description

A design is evaluated.

Usage

eval.design(frml,design,confounding=FALSE,variances=TRUE,center=FALSE,X=NULL)

Arguments

frml The formula used to create the design.

design The design, which may be the design part of the output of optFederov().

confounding If confounding=TRUE, the confounding patterns will be shown.

variances If TRUE, the variances each term will be output.

center If TRUE, numeric variables will be centered before frml is applied.

X X is either the matrix describing the prediction space for I or for G, the the
candidate set from which the design was chosen. They are often the same.

https://www.r-project.org/
https://www.r-project.org/
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Value

confounding A matrix. The columns of which give the regression coefficients of each variable
regressed on the others. If C is the confounding matrix, then −ZC is a matrix
of residuals of the variables regressed on the other variables.

determinant |M |1/k, where M = Z ′Z/N , and Z is the model expanded N×k design matrix.

A The average coefficient variance: trace(Mi)/k, where Mi is the inverse of M .

I The average prediction variance over X, which can be shown to be trace((X ′X∗
Mi)/N).

Ge The minimax normalized variance over X, expressed as an efficiency with re-
spect to the optimal approximate theory design. It is defined as k/max(d),
where max(d) is the maximum normalized variance over X – i.e. the max of
x′(Mi)x, over all rows x′ of X .

Dea A lower bound on D efficiency for approximate theory designs. It is equal to
exp(1− 1/Ge).

diagonality The diagonality of the design, excluding the constant, if any. Diagonality is
defined as (|M1|/

∏
diag(M1))

1/k, where M1 is M with first column and row
deleted when there is a constant.

gmean.variances

The geometric mean of the coefficient variances.

Note

I, Ge and Dea are calculated only when X is input.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). eval.design. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

expand.formula Expanding a formula

Description

Formulas are expanded to accommodate special functions for continuous and mixture variables.

Usage

expand.formula(frml,varNames,const=TRUE,numerics=NULL)

https://www.r-project.org/
https://www.r-project.org/
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Arguments

frml A formula starting with ~ in the usual way.

varNames A list of variable names to be used when a dot is used as shorthand for “all
variables.”

const If FALSE, the constant will be suppressed.

numerics A vector the same length as varNames, with TRUE for corresponding numeric
variables. If missing, all variables will be assumed to be numeric.

Details

This function expands formulas to accommodate polynomial models for which R has minimal sup-
port. Assuming for illustration that there are three variables, A, B, and C, the following expressions
may be used. In addition, a dot may be used to indicate that all variables in varNames are to be
used.

All agruments to quad(), cubic(), and cubicS() must be numeric.

• . makes A+B + C

• .p makes (A+B + C)p, where p is an integer

• quad(A,B,C) makes (A+B + C)2 + I(A2) + I(B2) + I(C2)

• cubic(A,B,C) makes (A+B + C)3 + I(A2) + I(B2) + I(C2) + I(A3) + I(B3) + I(C3)

• cubicS(A,B,C) makes (A+B +C)3 + I(A ∗B ∗ (A−B)) + I(A ∗C ∗ (A−C)) + I(B ∗
C ∗ (B − C))

The cubicS() function produces a non-singular representation of a cubic model, when the variables
are mixture variables, that is when the rows of data sum to a constant value, usually 1.0. Because
of the mixture constraint, models containing mixture variables should not have a constant term. The
linear and quadratic models for mixture variables A, B, and C are given by −1+ (A+B +C) and
−1 + (A+B + C)2 respectively. See Gorman and Hinman [1962] for details.

Value

An expanded formula is returned.

Note

expand.formula() is called by model.matrix() through the method call model.matix.formula(), thus
one may use the above special functions with model.matrix().

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). expand.formula. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

https://www.r-project.org/
https://www.r-project.org/
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References

Gorman, J.W. and Hinman, J.E. (1962). Simplex lattice designs for multicomponent systems. Tech-
nometrics. 4-4. 463-487.

gen.factorial Generates a full factorial design

Description

A full factorial design is generated.

Usage

gen.factorial(levels, nVars=0, center=TRUE, factors="none",varNames=NULL)

Arguments

levels A vector of levels for the variables. May be an integer if nVars is specified.

nVars The number of variables.

center If TRUE, all non-factors will be centered.

factors If "all", all variables are factors, otherwise a vector of the variable numbers of
the variables that are to be factors.

varNames The names of the variables.

Value

A factorial design in a data.frame.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). gen.factorial. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

Examples

dat<-gen.factorial(3,3)
dat<-gen.factorial(c(3,2,3))
dat<-gen.factorial(3,3,factors="all")
dat<-gen.factorial(3,3,varNames=c("A","B","C"))

https://www.r-project.org/
https://www.r-project.org/
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gen.mixture Generate mixture

Description

Creates a candidate list of mixture variables.

Usage

gen.mixture(levels,vars)

Arguments

levels An integer greater than 1. The number of levels of the mixture variables.

vars Either the number of variables, or a character vector of variable names.

Details

Similar in function to gen.factorial(), but for mixture variables such that the rows sum to unity. For
levels=2, the identity matrix is produced, so that each variable is either 0 or 1. For levels=3, rows
are added to the identity containing two variables at 1/2 and the others at 0. etc.

In general, a mixture model of degree d will have the same number of terms as the candidate list
generated by gen.mixture for levels=d+1, and this will be optimal.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). gen.mixture. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

GVTable1 Goos Vandebroek Table 1

Description

A blocked experimental design from Goos and Vandebroek (2003).

A matrix giving one whole plot and four within plot variables, in 21 blocks of 2. The same as
TGTable5, but produced by Goos Vandoebroek algorithm.

Usage

data(GVTable1)

https://www.r-project.org/
https://www.r-project.org/
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Source

Goos, P. and Vandebroek, M. (2003). D-optimal split-plot designs with given numbers and sizes of
whole plots. Technometrics. 45-3. 235-245.

GVTable3 Goos Vandebroek Table 3

Description

A blocked experimental design from Goos and Vandebroek (2003).

A matrix giving one whole and two within plot variables, 9 blocks of 21.

Usage

data(GVTable3)

Source

Goos, P. and Vandebroek, M. (2003). D-optimal split-plot designs with given numbers and sizes of
whole plots. Technometrics. 45-3. 235-245.

model.matrix.formula Builds a model matrix

Description

Produces a model matrix using expand.formula()

Usage

## S3 method for class 'formula'
model.matrix(frml,data,...)

Arguments

frml A formula.

data A data.frame

... Additional arguments passed to model.matrix.default()

Details

This is a method function signaled by a formula as the first argument. It causes the formula to be
translated by expand.formula() before calling model.matrix.default().
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Value

A matix.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). model.matrix.formula. AlgDesign. The R project for statistical computing
https://www.r-project.org/

optBlock Optimal design blocking

Description

Blocking of experimental designs using various criteria.

Usage

optBlock(frml,withinData,blocksizes,rows=NULL,wholeBlockData=NULL,center=FALSE,
nRepeats=5,criterion="D",args=FALSE)

Arguments

frml This may be omitted if data is the fully model expanded candidate list. If
present it should be a formula starting with ~ which describes the model us-
ing variable names from data. It may be ~. if all variables from data are to be
used linearly. It may also be .p, where p is an integer. In addition to the usual
operators, quad(), cubic() and cubicS() may be used to expand variables from
data into polynomial models.

withinData A matrix or data.frame describing the variables. If the columns are not named,
they will be assumed to have the names X1,X2, etc. Although data may be input
as global variables used in frml, it is preferable to input it here. The number of
rows in withinData must be at least as large as the sum of the number of terms
plus the number of blocks.

blocksizes A vector giving the block sizes for each block. The length of blocksizes spec-
ifies the number of blocks.

rows Row numbers (not rownames) of withinData rows to be used as a starting blocked
design.

wholeBlockData A matrix or data.frame describing the whole block variables. The number of
rows should equal the length of blocksizes. Each row should correspond to the
settings of the whole block variable in a block.

center If TRUE, the withinData and wholeBlockData will be centered.

https://www.r-project.org/
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nRepeats The number of times the entire process is repeated.

criterion "D":D-criterion: "OB","OBS": orthogonal blocks, unscaled and scaled; "Dp","Dpc":
Product of block determinants, uncentered and centered.

args If TRUE, the actual arguments to the function including the starting random
number seed should be output.

Details

Cook and Nachtsheim (1989) developed a blocking algorithm using the D criterion, which not
only finds blocks, but attempts to optimize the design itself. The package Dopt, converted by V.N.
Venables, implements this technology – unfortunately there seem to be bugs in the FORTRAN code.

This function uses various criteria to block either pre-existing designs or to creates a new blocked
design from a candidate list. There may be interactions between whole plot and within plot factors,
and it may be used to produce multistratum blocked designs.

The algebraic expressions used here for the D criterion are quite different than those used by either
Cook and Nachtshim or Goos and Vandebroek. They are described in Comments on algorithmic
design, a paper accompanying this package.

Although the D criterion produces good designs for all blocks, the allocation for individual blocks
can often be improved upon by the use of either the Dp or Dpc criterion, which optimize the product
of the determinants of the individual blocks. The Dp criterion uses uncentered blocks, the Dpc uses
centered blocks.

Blocking may also be done using the orthogonal blocking procedure of Nguyen. This comes in two
flavors OB and OBS which differ in that for OBS, the columns of S are scaled by division with the
sample variance of the data, thus deemphasizing squared and other large terms.

Blocking may be done when whole plot factors interact with within plot factors. Split plot exper-
iments are sometimes of this nature. Goos and Vandebroek (2003) developed a procedure for this
problem which algorithmically blocks using a candidate list and the ratio between the whole and
within variances. Trinca and Gilmour (2001) give an algorithm which does not depend on the ra-
tio of the variances. The present procedure assumes that the whole blocks and their factors, have
been decided upon in advance. It makes no assumptions about the ratio between whole and within
variances.

A vignette giving further details is availble. To access it, type

vignette("AlgDesign")

Value

D det(M)1/k, where det(M) is the determinant of the normalized dispersion ma-
trix M – i.e. M = X ′X/N , where each row of X has had the appropriate block
mean subtracted.

Dp (Dpc)
(∏b

1(det(Mi))
1/k

)1/b

, where det(Mi) is the determinant of the normalized
dispersion matrix for the uncentered (centered) block submatrix of X , and b
is the number of blocks. The normalization is with respect to the number of
observations in each block.

diagonality or SS

The diagonality is (|M |/P )1/k, where P is the product of the diagonal elements
of M. The SS is the sum of squares of S when the OB criterion is used.
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Blocks A list of the blocks, labeled B1, B2, etc.

design A data.frame. The design with blocks stacked in order.

rows Numeric row numbers of the design rows corresponding to the withinData rows.

args A list of the actual arguments used in this call.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). optBlock. AlgDesign. The R project for statistical computing https://www.
r-project.org/

References

Atkinson, A.C. and Donev, A.N. (1989). The construction of exact D-optimum experimental de-
signs with application to blocking response surface designs. Biometrika. 76. 515-526.

Cook, R.D. and Nachtsheim, C.J. (1989). Computer-aided blocking of factorial and response-
surface designs. Technometrics. 31-3. 339-346.

Goos, P. and Vandebroek, M. (2003). D-optimal split-plot designs with given numbers and sizes of
whole plots. Technometrics. 45-3. 235-245.

Nguyen, Nam-Ky. (2001). Cutting experimental designs into blocks. AusNZJSt. 43-3. 367-374.

Trinca, L.A. and Gilmour, S.G. (2000). An algorithm for arranging response surface designs in
small blocks. Computational Statistics and Data Analysis. 33. 25-43.

Trinca, L.A. and Gilmour, S.G. (2001). Multistratum response surface designs. Technometrics.
43-1. 25-33.

Examples

# Blocking the design for a quadratic polynomial in three variables into two
# seven trial blocks:

dat<-gen.factorial(3,3,varNames=c("A","B","C"))
desD<-optFederov(~quad(.),dat,nTrials=14,eval=TRUE) # Choose an optimum 14 trail design.
optBlock(~quad(.),desD$design,c(7,7))

# Letting optBlock() search the dat candidate list instead of first choosing a
# 14 trial design.
optBlock(~quad(.),dat,c(7,7))

# A block design for 7 treatments in 7 blocks of size 3. Note how withinData
# is recycled to fill out the blocksize requirements.

BIB<-optBlock(~.,withinData=factor(1:7),blocksizes=rep(3,7))

# This is a balanced incomplete block design as may be seen from:

crossprod(table(BIB$rows,c(rep(1:7, rep(3,7)))))

https://www.r-project.org/
https://www.r-project.org/
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# A partially balanced incomplete block design with two associate classes:

tr<-factor(1:9)
PBIB<-optBlock(~.,withinData=tr,blocksizes=rep(3,9))

crossprod(table(PBIB$rows,c(rep(1:9, rep(3,9)))))

# Two fractions of a 2^(4-1).

dat<-gen.factorial(2,4)
od<-optBlock(~.,dat,c(8,8))

# The blocks are not themselves orthogonal even though the entire design is optimal.

bk<-data.matrix(od$Blocks$B1)
t(bk)%*%bk

# Better blocks may be obtained as follows, but note that they are not generally
# the fractions that would be obtained by confounding the third order interaction.

od<-optBlock(~.,dat,c(8,8),criterion="Dpc",nR=10)
bk<-data.matrix(od$Blocks$B1)
t(bk)%*%bk

# Blocking with whole plot factors. Note that the 27 rows of within are recycled
# to make the 54 trial blocked design.

within<-expand.grid(A=c(-1,0,1),B=c(-1,0,1),C=c(-1,0,1))
whole<-expand.grid(D=factor(1:3),E=factor(1:3))
od<-optBlock(~D+E*(quad(A,B,C)),withinData=within,blocksizes=rep(6,9),wholeBlockData=whole)

# Either withinData, or wholeBlockData may be an approximate theory optimial design
# produced by optFederov() for nTrials. The first column in the optFederov() output
# design, named "Rep..", is used to replicate the trials.

within<-optFederov(~quad(A,B,C),within,nT=54,approx=TRUE)
od<-optBlock(~D+E*(quad(A,B,C)),withinData=within$design,blocksizes=rep(6,9),wholeBlockData=whole)

optFederov Optimal design

Description

Calculates an exact or approximate algorithmic design for one of three criteria, using Federov’s
exchange algorithm.
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Usage

optFederov(frml,data,nTrials,center=FALSE,approximate=FALSE,criterion="D",
evaluateI=FALSE,space=NULL,augment=FALSE,rows,nullify=0,
maxIteration=100,nRepeats=5,DFrac=1,CFrac=1,args=FALSE)

Arguments

frml This may be omitted if data is the fully model expanded candidate list. If
present it should be a formula starting with ~ which describes the model us-
ing variable names from data. It may be ~. if all variables from data are to
be used linearly. In addition to the usual operators, quad(), cubic() and cubicS()
may be used to expand variables from data into polynomial models.

data The candidate list. A matrix or data.frame describing the variables. If a matrix
is input and the columns are not named, they will be assigned names X1,X2, etc.
If a data.frame is input without column names, they will be named Var1, Var2,
etc. Although data may be input as global variables used in frml, it is preferable
to input it here.

nTrials If approximate=FALSE, it is the number of trials in the final design and if miss-
ing, it will be taken as the greater of length(rows) or 5 plus the number of
terms in the model. If approximate=TRUE, nTrials will be used to round the
optimal proportions so that the replications of the points add to nTrials.

approximate When FALSE, an exact design in nTrails will be calculated. When TRUE the
proportions for an approximate theory design will be calculated. If nTrials is
set, any proportion less than 1/(2*maxIteration) will be discarded before the
proportions are efficiently rounded, otherwise all non-zero proportions will be
shown: these are the support points.

center When TRUE, the numeric variables will be centered.

criterion "D", "A", or "I"

evaluateI TRUE to evaluate and report I in addition to other criteria. This parameter is
included, because evaluating I requires extra effort.

space If the criterion is "I" or evaluate I is true, the space over which the I criterion is
to be evaluated may be input. It should be a matrix with the same column types
and names as in data. If space is not input the evaluation will be done over the
space described by data.

augment If TRUE, the row numbers in rows will never be exchanged.

rows Either a vector of row numbers (not row names) from data to be used as the
starting design or a vector of row numbers for the design to be augmented. Note,
replicate row numbers will be discarded and the length of rows cannot exceed
the number of rows in data.

nullify When non-zero, the initial design is obtained by nullification. If nullify=1,
nTrials will be calculated (In this case nRepeats is set to 1). If nullify=2,
number-of-terms trials will be calculated, and the remainder, up to nTrials,
will be filled out at random.
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maxIteration maximum number of times points are exchanged, within each repeat, in seeking
an optimum design.

nRepeats Number of times the entire process is repeated. Has no effect when approxi-
mate=TRUE, or when nullify=1.

DFrac Design fraction: the fraction of design used in search: 1 uses all of them, 0 uses
only the one with the smallest variance.

CFrac Candidate fraction: the fraction of candidate set searched : 1 uses all of them, 0
uses only the one with the largest variance.

args If TRUE, the actual arguments to the function including the starting random
number seed will be output.

Details

Let E(y) = Zb, where y is a vector of n observations, Z is an n × k matrix, and b is a vector of
k parameters. The “exact” design problem is to find a matrix Z, with rows selected from a N × k
matrix X , that is “best” in some sense. The matrix X can be a discretization of a continuous space
or it can represent categories. In either case, the algorithmic design calculation is with respect to
X , and not to some larger space containing the points.

Approximate designs weight the candidate points with a probability measure, which for practical
purposes amounts to allowing unequal replication.

The Federov(1972) algorithm starts with n points chosen from X . They may be chosen randomly
or by nullification, a procedure which iteratively adds points from the null space of X , until a non-
singular n point design is found. The Federov algorithm exchanges points in the n point design
Z with points in X − Z, i.e. points not in Z, in order to optimize a criterion, and quits when no
profitable exchanges are possible, or the input parameter maxIteration is reached. The quality
of the result depends on the starting design and the result may represent a local optimum. The
procedure is repeated nRepeats times in order to come nearer to a global optimum. The parameters
DFrac and CFrac control the portions of Z and X − Z that are used.

The goal of algorithmic design is to maximize the information about the parameters. The informa-
tion matrix is a matrix proportional to M = Z ′Z/n, and various functions of M are chosen for
optimization. The most popular of these is the D criterion, |M |1/k, which is thus a scaling of the
“generalized variance.” Other criteria of interest involve the variance of predicted values, such as
the G criterion, which is the minimax value of d(x) = x′(Mi)x, over X , where Mi is the inverse of
M , and x′ is a row of X; and the I criterion, which is the average value of d(x) in the experimental
region. These criteria are invariant under linear transformations of the parameter vector, which frees
them from a dependency on units of scale. Other criteria are not invariant, such as the largest eigen-
value of M or the A criterion, which is trace(Mi)/k: it is of course proportional to the average
variance of the parameter estimates. The criteria D, A, and I are supported by optFederov(), and
G, which is intimately connected to D, is reported.

The theoretical optimum value of G is known for approximate theory designs, and so Ge, the G
efficiency of G is available as a standard of design quality. It is especially useful, because Ge

provides a lower bound on De, the D efficiency for approximate theory, to wit:

De ≥ exp(1− 1/Ge)

.

A vignette giving further details is availble. To access it, type

vignette("AlgDesign")
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Value

D The kth root of the generalized variance: det(M)1/k, where det(M) is the de-
terminant of the normalized dispersion matrix M – i.e. M = Z ′Z/n, where
Z = X[rows, ]

A The average coefficient variance: trace(Mi)/k, where Mi is the inverse of M .

I The average prediction variance over X, which can be shown to be trace((X ′X∗
Mi)/N), where N is the number of rows in X. This is calculated only when I is
the criterion or when evaluateI is TRUE.

Ge The minimax normalized variance over X, expressed as an efficiency with re-
spect to the optimal approximate theory design. It is defined as k/max(d),
where max(d) is the maximum normalized variance over X – i.e. the max of
x′(Mi)x, over all rows x′ of X .

Dea A lower bound on D efficiency for approximate theory designs. It is equal to
exp(1− 1/Ge).

design The design.

rows A numerical vector of the design row numbers.

args A list of the actual arguments used in this call.

Note

Algorithmic design is often used with continuous and mixture variables for which R has minimal
support, thus the functions quad(), cubic(), and cubicS() may be used in frml. The translation is
done with expand.formula.

Mixture variables are variables such that the rows of data sum to a constant value, usually unity.
Because of the mixture constraint, models containing mixture variables should not have a constant
term. The linear and quadratic models for mixture variables A, B, and C are given by −1 + (A +
B + C) and −1 + (A+B + C)2 respectively. See Gorman and Hinman [1962] for details.

The function gen.mixture() generates a list of candidate points whose rows sum to unity.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). optFederov. AlgDesign. The R project for statistical computing https:
//www.r-project.org/
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Examples

# EXAMPLE 1
# A quadratic polynomial in three variables. The resulting D will be about 0.46.
# This may be compared with a standard central composite design obtained from
# rows 1,3,5,7,9,11,13,15,17,19,21,23,25,27 of dat, which has a D value of 0.46.
# The central composite design seems to be the optimal design for all three criteria.

dat<-gen.factorial(levels=3,nVars=3,varNames=c("A","B","C"))

desD<-optFederov(~quad(A,B,C),dat,nTrials=14,eval=TRUE)
desA<-optFederov(~quad(.),dat,nTrials=14,eval=TRUE,crit="A")
desI<-optFederov(~quad(.),dat,nTrials=14,eval=TRUE,crit="I")

rows<-c(1,3,5,7,9,11,13,15,17,19,21,23,25,27)
desO<-optFederov(~quad(.),dat,nTrials=14,eval=TRUE,rows=rows)

# The I criterion may be seen to decrease as the space is expanded.

levels<-seq(-1,1,by=.1)
dat<-expand.grid(list(A=levels,B=levels,C=levels))

desL<-optFederov(~quad(.),dat,nTrials=14,eval=TRUE)

# This is not the case for A or D. For A and D, the support points are the points
# of the grid with the three levels above. Points not on this grid move
# the criteria in a non-optimal direction; hence, the enlarging space has no effect.

# EXAMPLES 2
# Standard designs are usually optimal designs. If nTrials is set to that for
# a standard design, and if nRepeats is large enough, the standard design will
# often be found For example, a half replicate of a 2^4 will be obtained by the
# following.

dat<-gen.factorial(levels=2,nVars=3,varNames=c("A","B","C"))
desH<-optFederov(~.,dat,8)

# A third replicate of a 3^3 will be obtained by the following:

dat<-gen.factorial(levels=3,nVars=3,factor=1:3)
desT<-optFederov(~.,dat,9)

# An orthogonal design similar to a 12 run Plackett-Burman design can be
# created by the following.

dat<-gen.factorial(levels=2,nVars=11,varNames=c("A","B","C","D","E","F","G","H","J","K","L"))
desPB<-optFederov(~.,dat,12,nRepeats=20)

# The above calculation is numerically difficult for the A and I criteria,
# and nRepeats=100 or more may be needed.

# It is instructive to examine a case in which the standard design is not found.
# The following is an attempt to create a Latin square design. It is not always successful.
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lv<-factor(1:5)
dat<-expand.grid(A=lv,B=lv,C=lv)
desL<-optFederov(~.,dat,nTrials=25,nRep=100)

# It may be summarized as follows.

cs<-xtabs(~.,desL$design)
{xx<-matrix(0,5,5); for (i in 1:5) xx=xx+cs[1:5,1:5,i]*i;xx}

# EXAMPLE 3
# Mixture variables have a constant sum, usually 1. This causes a linear dependency
# among terms of polynomial models. In particular the constant term is dependent.
# Squared terms in a quadratic model are confounded with interaction terms, so that
# a quadratic model for three mixture variables is ~0+(A+B+C)^2. The following
# calculation generates a set of candidate varibles using gen.mixture() with
# four values on each axis, and then creates a 15 run design. The design is optimal.
# Indeed, the candidate set produced by gen.mixture(2,5) is optimal. Note:
# nullify=TRUE is used to ensure that this example will run withough error. The
# default value of 5 for nRepeats is sometimes not enought to find a starting
# design with a mixture problem.

dat<-gen.mixture(4,5)
desM<-optFederov(~(X1+X2+X3+X4+X5)^2-1,dat,15,nullify=TRUE)

# EXAMPLES 4
# Design augmenation can be obtained by setting augment=TRUE, and placing the row numbers
# of the design to be agmented in rows. Augmentation is often used to (1) add a new variable
# to an existing design or (2) to increase the complexity of the model. The following illustrates
# adding a variable to an existing design using desD above. It is assumed that all runs of the
# existing design have been made at the -1 level of the new variable:

dat<-gen.factorial(levels=3,nVars=3,varNames=c("A","B","C"))
desA<-optFederov(~quad(.),dat,nTrials=25,augment=TRUE,rows=desD$rows)

# The half fraction in desH, can be augmented to support an additional term:

dat<-gen.factorial(levels=2,nVars=4,varNames=c("A","B","C","D"))
desH<-optFederov(~.,dat,8)
desH2<-optFederov(~A+B+C+D+I(A*B),dat,10,aug=TRUE,rows=desH$rows)

# EXAMPLES 5
# Optimal approximate theory designs have non-zero probabilities only on support points.
# For the first example above the approximate theory design is as follows. It shows
# that all points in the cubic lattice are support points. The D for this
# design is 0.474 which may be compared with the D of 0.463 of the first example to
# indicate that that exact design had a D-efficiency of 97%. The lower bound Dea
# was 82%.

dat<-gen.factorial(levels=3,nVars=3,varNames=c("A","B","C"))



optMonteCarlo 19

desDA<-optFederov(~quad(A,B,C),dat,eval=TRUE,approx=TRUE)

# The largest proportions will be rounded if nTrials is specified.

desDAN<-optFederov(~quad(A,B,C),dat,eval=TRUE,approx=TRUE,nTrials=15)

optMonteCarlo Optimal design via Monte Carlo

Description

Finds a design using the specified criterion via Federov’s algorithm applied to a random subset of
all possible candidate points.

Usage

optMonteCarlo(frml,data,nTrials,approximate=FALSE,criterion="D",evaluateI=FALSE,
space=NULL,mixtureSum=1,constraints=NULL,RandomStart=TRUE,nRepeats=5,nCand,
nCandNull,DFrac=1,CFrac=1,args=FALSE)

Arguments

frml Required: A formula starting with ~ which will be used with model.matrix()
to create a model matrix. If there are mixture variables, the constant term is
suppressed.

data Required: A data frame with 7 or 8 columns. See details below for specifics

nTrials number trials in design – must be greater than the number of terms in the model,
if missing will be set to the number of model terms in the model plus five.

approximate When FALSE, an exact design in nTrails will be calculated. When TRUE the
proportions for an approximate theory design will be calculated. If nTrials is
set, any proportion less than 1/(2*maxIteration) will be discarded before the
proportions are efficiently rounded, otherwise all non-zero proportions will be
shown: these are the support points.

criterion "D", "A", or "I"

evaluateI TRUE if I is to be evaluated in addition to the other criteria – slower because of
calculations for I

space If the criterion is "I" or evaluate I is true, the space over which the I criterion is
to be evaluated may be input. It should be a matrix with the same column types
and names as in data. If space is not input the evaluation will be done over the
space described by data.

constraints A function taking a vector argument with length equal to the number of vari-
ables, and returning TRUE if the vector is inside the constrained region

mixtureSum The mixture variables, if any, will sum to this value.
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RandomStart When TRUE, the starting design will be chosen at random, otherwise nullifica-
tion will be used. Note: the nullifcation used here is different and much slower
than that in optFederov().

nRepeats number of times to retry the entire process

nCand number of candidate points to generate, if missing, it will be 10 times the number
of terms

nCandNull Number of candidate points to use for nullification. If missing it will be set to
nCand

DFrac Fraction of design used in search: 1 uses all of them, 0 only the one with the
smallest variance

CFrac Fraction of candidate set searched : 1 uses all of them, 0 only the one with the
largest variance

args If TRUE, the actual arguments to the function including the starting random
number seed will be output.

Details

The columns of the input data frame are as follows. The columns need not be named. It is probably
best to avoid naming the variables with single letters, especially "I" – use paste(), as in the exam-
ples. For each variable nLevels are randomly generated between low and high, inclusive, and then
rounded with round. For integer levels, round should be set to 0.

var: The names of the variables.

low: The lower limit of the range for each variable. Ignored for mixtures.

high: The upper limit of the range for each variable. Ignored for mixtures.

center: The centering value for each variable. Ignored for mixtures.

nLevels: The number of levels for each variable. Ignored for mixture variables.

round: The number of decimal digits for the levels. The levels are randomly and uniformly chosen
between low and high, and this parameter controls the number of trailing digits. The max
value for mixture variables in this vector is used to round all mixture variables.

factor: TRUE, FALSE depending on whether or not the variable is a factor. Note: other columns
will be reset to conform to a nLevels factor.

mix: TRUE if the variable is a mixture variable. This column may be omitted if there are no
mixture variables.

Candidate lists required by optFederov() increase with the number of variables, and can easily
exceed storage capacity and can require excessive amounts of time to process. To overcome this
problem, optMonteCarlo(), generates at random nCand points from a putative candidate list.

For non-mixture variables, optMonteCarlo() samples from the putative candidate list by choosing
random levels inside the limits given by low and high in data. These are rounded to the number of
levels given by nLevels in data and to the number of decimal digits given by round in data.

For mixture variables, optMonteCarlo() samples from the putative candidate list by choosing ran-
dom levels between 0 and 1, rounded to the maximum in the round column of data, and such that
the sum over all variables is equal to mixtureSum.
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If a constraint function is supplied in Constraints, it is applied, and results which do not meet the
constraint are discarded. The constraint function should be written to process uncentered variables.

The above procedures are repeated until nCand candidate points are found.

Nullification, successively adds points to a design until n points are found. This is the same pro-
cedure that is in optFederov except that each new point is selected from a new sampling of the
putative candidate points. In general, this will produce better designs that those from a random
start.

The entire process is repeated nRepeats times, and the best result is reported. The methodol-
ogy compares favorably with an exhaustive search where the entire candidate list is searched by
optFederov().

The random numbers used in these calculations are controlled by the usual R random number mech-
anism.

A vignette giving further details is availble. To access it, type

vignette("AlgDesign")

Value

The output is the same list as from optFederov, but the criteria values are relative to the randomly
chosen subsets of the putative candidate space. In general, they should not differ greatly from those
obtained by an exhaustive search.

D The kth root of the generalized variance: det(M)1/k, where det(M) is the de-
terminant of the normalized dispersion matrix M – i.e. M = Z ′Z/n, where
Z = X[rows, ]

A The average coefficient variance: trace(Mi)/k, where Mi is the inverse of M .

I The average prediction variance over X, which can be shown to be trace((X ′X∗
Mi)/N). This is calculated only when I is the criterion or when evaluateI is
TRUE.

Ge The minimax normalized variance over X, expressed as an efficiency with re-
spect to the optimal approximate theory design. It is defined as k/max(d),
where max(d) is the maximum normalized variance over X – i.e. the max of
x′(Mi)x, over all rows x′ of X .

Dea A lower bound on D efficiency for approximate theory designs. It is equal to
exp(1− 1/Ge).

Design The design.

args A list of the actual arguments used in this call.

Author(s)

Bob Wheeler <bwheelerg@gmail.com>

Please cite this program as follows:

Wheeler, R.E. (2004). optMonteCarlo. AlgDesign. The R project for statistical computing https:
//www.r-project.org/

https://www.r-project.org/
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Examples

# EXAMPLE 1
# The data.frame in data might look like the following:
data<-data.frame(var=paste("X",1:6,sep=""),low=c(1,1,1,0,0,0),
high=c(3,3,3,1,1,1),center=c(2,2,2,0,0,0),nLevels=3,
round=1,factor=0,mix=c(FALSE,FALSE,FALSE,TRUE,TRUE,TRUE))
data

# and the design:

optMonteCarlo(~(X1+X2+X3)^2+X4+X5+X6,data)

# Example 2
# Standard designs will often be produced, just as
# they will with optFederov(). For example,
# a half fraction of a 2^4:
data<-data.frame(paste("X",1:4,sep=""),-1,1,0,2,0,0)
data
optMonteCarlo(~.,data,nTrials=8)

# Example 3
# optMonteCarlo() can treat much larger problems than can
# optFederov(). For example, optFederov()
# requires a candidate list of 3^20 points for
# a 20 variable, 3 level candidate list -- about
# 25 gigabytes. If the model is quadratic, this must
# be multiplied by about 12. There are other storage
# requirements internal to optFederov() which easily
# double this value. optMonteCarlo() since it only samples
# from the putative candidate list, has no difficulty
# with a problem of this size. The criterion values
# appearing in the output of optMonteCarlo() are based on
# these samples, but their values seem to be reasonable
# correct, as the following shows: (These are commented
# out for those who have a slow machine.)

dat<-gen.factorial(levels=3,nVar=8)
#desF<-optFederov(~quad(.),dat,eval=TRUE)
#desF[1:5]

data<-data.frame(paste("X",1:8,sep=""),-1,1,0,3,0,0)
#desH<-optMonteCarlo(~quad(.),data,Rand=FALSE,eval=TRUE)
#desH[1:5]

# The following is a 20 variable quadratic. Uncomment
# and wait a while, even if you have a fast machine.
# Note: nRepeats has been changed from its default.
# Note: criterion values for exact designs are often
# far from approximate theory optima; hence, Ge and De
# will be small.

data<-data.frame(paste("X",1:20,sep=""),-1,1,0,3,0,0)
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#desBig<-optMonteCarlo(~quad(.),data,nRepeats=1)

# The following will produce improved criterion values

#desNBig<-optMonteCarlo(~quad(.),data,Rand=FALSE,nRepeats=1)

# EXAMPLE 4
# Practically infeasible combinations of variable are
# common. Designs may be produced which avoid such
# combinations by using a constraint function. Suppose,
# for example that one corner of a cubic box is not
# feasible, then the following will produce a design
# that makes no use of this corner.

Constraints<-function(x){!(x[1]>0.75 && x[2]>0.75)}
data<-data.frame(paste("X",1:4,sep=""),-1,1,0,3,0,0)
desC<-optMonteCarlo(~.,data,con=Constraints)

# The above just removes a corner. Increasing the
# number of levels will remove points along the
# boundary.

data<-data.frame(paste("X",1:4,sep=""),-1,1,0,11,3,0)
desC2<-optMonteCarlo(~.,data,con=Constraints)

TGTable3 Trinca Gilmour Table 3

Description

A blocked experimental design from Trinca and Gilmour (2001).

A data.frame giving four three level variable in five blocks. There are 45 trials in all.

Usage

data(TGTable3)

Source

Trinca, L.A. and Gilmour, S.G. (2001). Multistratum response surface designs. Technometrics.
43-1. 25-33.
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TGTable5 Trinca Gilmour Table 5

Description

A blocked experimental design from Trinca and Gilmour (2001).

A matrix giving one whole plot and four within plot variables, in 21 blocks of 2.

Usage

data(TGTable5)

Source

Trinca, L.A. and Gilmour, S.G. (2001). Multistratum response surface designs. Technometrics.
43-1. 25-33.
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