Package 'AgroR'

July 2, 2025

Type Package

Title Experimental Statistics and Graphics for Agricultural Sciences

Version 1.3.7

Date 2025-06-10

Maintainer Gabriel Danilo Shimizu <gabrield.shimizu@gmail.com>

Description Performs the analysis of completely randomized experimental designs (CRD), randomized blocks (RBD) and Latin square (LSD), experiments in double and triple factorial scheme (in CRD and RBD), experiments in subdivided plot scheme (in CRD and RBD), subdivided and joint analysis of experiments in CRD and RBD, linear regression analysis, test for two samples. The package performs analysis of variance, ANOVA assumptions and multiple comparison test of means or regression, according to Pimentel-Gomes (2009, ISBN: 978-85-7133-055-9), nonparametric test (Conover, 1999, ISBN: 0471160687), test for two samples, joint analysis of experiments according to Ferreira (2018, ISBN: 978-85-7269-566-4) and generalized linear model (glm) for binomial and Poisson family in CRD and RBD (Carvalho, FJ (2019), <doi:10.14393/ufu.te.2019.1244>). It can also be used to obtain descriptive measures and graphics, in addition to correlations and creative graphics used in agricultural sciences (Agronomy, Zootechnics, Food Science and related areas). Shimizu, G. D., Marubayashi, R. Y. P., Goncalves, L. S. A. (2025) <doi:10.4025/actasciagron.v47i1.73889>.

Encoding UTF-8

RoxygenNote 7.3.2

Imports knitr, ggplot2, nortest, lme4, crayon, lmtest, emmeans, multcomp, ggrepel, MASS, cowplot, multcompView, RColorBrewer, drc, dunn.test, gtools, gridExtra

Suggests rmarkdown, roxygen2

Depends R (>= 3.6.0)

License GPL (≥ 2)

URL https://agronomiar.github.io/AgroR_package/index.html,

https://fisher.uel.br/AgroR_shiny,

https://fisher.uel.br/AgroR_shiny.pt

NeedsCompilation no

```
Author Gabriel Danilo Shimizu [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8524-508X>),
Rodrigo Yudi Palhaci Marubayashi [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-2778-8654>),
Leandro Simoes Azeredo Goncalves [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-9700-9375>)
```

Repository CRAN

Date/Publication 2025-07-02 08:50:05 UTC

Contents

aacp	 . 4
aristolochia	
barfacet	
bargraph_onefactor	
bargraph_twofactor	
barplot_positive	
bar_dunnett	
bar_graph	. 11
bar_graph2	
bean	
cloro	. 14
	. 15
confinterval	
conjdbc	. 17
conjdic	. 19
conjfat2dbc	. 22
corgraph	
corn	
cor_ic	
covercrops	
DBC	 . 27
dbc.ad	 . 31
DBC.glm	 . 33
DBCT	 . 35
desc	 . 37
desc2fat	 . 38
desc3fat	
desd_fat2_quant_ad	
DIC	
dic.ad	
DIC.glm	
DICT	
dispvar	
DQL	
DQLT	
dunn	. 60
	. 60
dunnett	 . 01

Contents

emerg	52
enxofre	53
eucalyptus	54
FAT2DBC	55
FAT2DBC.ad	58
FAT2DIC	72
FAT2DIC.ad	76
	79
	30
	34
	38
	91
	95
	96
r ···· r	97
J	98
	99
logistic)0
mirtilo	
orchard	
passiflora	
PCA_function	
pepper	
phao	
plot_cor	
plot_ecr	
plot_jitter	
plot_TH	
plot_TH1	
plot_tonetest	
polynomial	
polynomial2	
polynomial2_color	
pomegranate	
porco	
PSUBDBC	
PSUBDIC	
PSUBFAT2DBC	
PSUBSUBDBC	
quant.fat2.desd	
seg_graph	
seg_graph2	
sensorial	
simulate1	
simulate2	
simulate3	
sketch	
sk_graph	39

soybean									 											140
spider_graph					 				 											141
STRIPLOT					 				 											142
summarise_anova					 				 											144
summarise_conj									 											145
summarise_dunnett .									 											146
tabledesc					 				 											147
TBARPLOT.reverse .									 											148
test_two					 				 											149
tomate					 				 											150
tonetest					 				 											151
transf					 				 											152
weather		 •	•	•		•		•	 		•			•		•	•	•		153
																				155

Index

aacp

Utils: Area under the curve

Description

Performs the calculation of the area under the progress curve. Initially created for the plant disease area, whose name is "area under the disease progress curve", it can be adapted to various areas of agrarian science.

Usage

aacp(data)

Arguments

data Data.frame containing evaluations in columns. Column names must be numeric and not dates or characters

Value

Returns a vector with the area values under the curve

Note

Just enter the data. Exclude treatment columns. See example.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

References

Campbell, C. L., and Madden, L. V. (1990). Introduction to plant disease epidemiology. John Wiley and Sons.

aristolochia

See Also

transf, sketch

Examples

```
# Using the simulate1 dataset
data("simulate1")
# Converting to readable format for function
dados=cbind(simulate1[simulate1$tempo==1,3],
          simulate1[simulate1$tempo==2,3],
          simulate1[simulate1$tempo==3,3],
          simulate1[simulate1$tempo==4,3],
          simulate1[simulate1$tempo==5,3],
          simulate1[simulate1$tempo==6,3])
colnames(dados)=c(1,2,3,4,5,6)
dados
# Creating the treatment vector
resp=aacp(dados)
trat=simulate1$trat[simulate1$tempo==1]
# Analyzing by DIC function
DIC(trat, resp)
```

aristolochia

Dataset: Germination of seeds of Aristolochia sp. as a function of temperature.

Description

The data come from an experiment conducted at the Seed Analysis Laboratory of the Agricultural Sciences Center of the State University of Londrina, in which five temperatures (15, 20, 25, 30 and 35C) were evaluated in the germination of *Aristolochia elegans*. The experiment was conducted in a completely randomized design with four replications of 25 seeds each.

Usage

data("aristolochia")

Format

data.frame containing data set

trat numeric vector with factor 1

resp Numeric vector with response

See Also

cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(aristolochia)

barfacet

Graph: Bar graph for one factor with facets

Description

This is a function of the bar graph for one factor with facets

Usage

```
barfacet(
  model,
  facet = NULL,
  theme = theme_bw(),
  horiz = FALSE,
  geom = "bar",
  fill = "lightblue",
  pointsize = 4.5,
  facet.background = "gray80"
)
```

Arguments

model	DIC, DBC or DQL object
facet	vector with facets
theme	ggplot2 theme
horiz	horizontal bar or point (default is FALSE)
geom	graph type (columns or segments)
fill	fill bars
pointsize	Point size
facet.backgrour	nd

Color background in facet

Value

Returns a bar chart for one factor

bargraph_onefactor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
library(AgroR)
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,sup = 10,family = "serif",
    ylab = "Number of fruits/plants"))
barfacet(a,c("S1","S1","S1","S1","S1","S1",
                         "S2","S2","S3","S3"))
```

bargraph_onefactor Graph: Group DIC, DBC and DQL functions column charts

Description

Groups two or more column charts exported from DIC, DBC or DQL function

Usage

```
bargraph_onefactor(
    analysis,
    labels = NULL,
    ocult.facet = FALSE,
    ocult.box = FALSE,
    facet.size = 14,
    ylab = NULL,
    width.bar = 0.3,
    sup = NULL
)
```

Arguments

analysis	List with DIC, DBC or DQL object
labels	Vector with the name of the facets
ocult.facet	Hide facets
ocult.box	Hide box
facet.size	Font size facets
ylab	Y-axis name
width.bar	Width error bar
sup	Number of units above the standard deviation or average bar on the graph

Value

Returns a column chart grouped by facets

Examples

```
library(AgroR)
data("laranja")
a=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
b=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
c=with(laranja, DBC(trat, bloco, resp, ylab = "Number of fruits/plants"))
bargraph_onefactor(analysis = list(a,b,c), labels = c("One", "Two", "Three"),ocult.box = TRUE)
```

bargraph_twofactor	Graph: Group FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC func-
	tions column charts

Description

Groups two or more column charts exported from FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC function

Usage

```
bargraph_twofactor(
    analysis,
    labels = NULL,
    ocult.facet = FALSE,
    ocult.box = FALSE,
    facet.size = 14,
    ylab = NULL,
    width.bar = 0.3,
    sup = NULL
)
```

Arguments

analysis	List with DIC, DBC or DQL object
labels	Vector with the name of the facets
ocult.facet	Hide facets
ocult.box	Hide box
facet.size	Font size facets
ylab	Y-axis name
width.bar	Width bar
sup	Number of units above the standard deviation or average bar on the graph

barplot_positive

Value

Returns a column chart grouped by facets

Examples

```
library(AgroR)
data(corn)
a=with(corn, FAT2DIC(A, B, Resp, quali=c(TRUE, TRUE),ylab="Heigth (cm)"))
b=with(corn, FAT2DIC(A, B, Resp, mcomp="sk", quali=c(TRUE, TRUE),ylab="Heigth (cm)"))
bargraph_twofactor(analysis = list(a,b), labels = c("One","Two"),ocult.box = TRUE)
```

barplot_positive Graph: Positive barplot

Description

Column chart with two variables that assume a positive response and represented by opposite sides, such as dry mass of the area and dry mass of the root

Usage

```
barplot_positive(
    a,
    b,
    ylab = "Response",
    var_name = c("Var1", "Var2"),
    legend.title = "Variable",
    fill_color = c("darkgreen", "brown"),
    width.col = 0.9,
    width.bar = 0.2
)
```

Arguments

а	Object of DIC, DBC or DQL functions
b	Object of DIC, DBC or DQL functions
ylab	Y axis names (this argument uses the <i>parse</i> function)
var_name	Name of the variable
legend.title	Legend title
fill_color	Bar fill color
width.col	Width Column
width.bar	Width error bar

Value

The function returns a column chart with two positive sides

10

ole

When there is only an effect of the isolated factor in the case of factorial or subdivided plots, it is possible to use the barplot_positive function.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

See Also

sk_graph, plot_TH, corgraph, spider_graph, line_plot

Examples

```
data("passiflora")
attach(passiflora)
a=with(passiflora, DBC(trat, bloco, MSPA))
b=with(passiflora, DBC(trat, bloco, MSR))
barplot_positive(a, b, var_name = c("DMAP","DRM"), ylab = "Dry root (g)")
a=with(passiflora, DIC(trat, MSPA,test = "noparametric"))
b=with(passiflora, DIC(trat, MSR))
barplot_positive(a, b, var_name = c("DMAP","DRM"), ylab = "Dry root (g)")
```

bar_dunnett

Graph: Barplot for Dunnett test

Description

The function performs the construction of a column chart of Dunnett's test.

```
bar_dunnett(
   output.dunnett,
   ylab = "Response",
   xlab = "",
   fill = c("white", "#F8766D", "#00BFC4"),
   sup = NA,
   add.mean = TRUE,
   round = 2
)
```

bar_graph

Arguments

output.dunnett	Numerical or complex vector with treatments
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the parse function)
fill	Fill column. Use vector with two elements c(control, different treatment, no difference treatment)
sup	Number of units above the standard deviation or average bar on the graph
add.mean	Plot the average value on the graph (<i>default</i> is TRUE)
round	Number of cells

Value

Returns a column chart of Dunnett's test. The colors indicate difference from the control.

Examples

```
# randomized block design in factorial double
library(AgroR)
data(cloro)
attach(cloro)
respAd=c(268, 322, 275, 350, 320)
a=FAT2DBC.ad(f1, f2, bloco, resp, respAd,
          ylab="Number of nodules",mcomp="sk")
data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp),
         data.frame(trat=c("Test","Test","Test","Test","Test"),
                  bloco=unique(bloco),resp=respAd))
a= with(data,dunnett(trat = trat,
              resp = resp,
              control = "Test",
              block=bloco,model = "DBC"))
bar_dunnett(a)
```

bar_graph

Graph: Bar graph for one factor

Description

This is a function of the bar graph for one factor

```
bar_graph(model, fill = "lightblue", horiz = TRUE, axis.0 = FALSE)
```

bar_graph2

Arguments

DIC, DBC or DQL object
ill bars
Horizontal Column (default is TRUE)
f TRUE causes the columns or bars to start just above the axis line.
ì

Value

Returns a bar chart for one factor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

barplot_positive, plot_TH, plot_TH1, corgraph, spider_graph, line_plot, plot_cor, plot_interaction, plot_jitter, seg_graph, TBARPLOT.reverse

Examples

```
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,
    ylab = "Number of fruits/plants"))
bar_graph(a,horiz = FALSE)
```

bar_graph2

Graph: Bar graph for one factor model 2

Description

This is a function of the bar graph for one factor

```
bar_graph2(
  model,
  point.color = "black",
  point.size = 2,
  point.shape = 16,
  text.color = "black",
  label.color = "black",
  bar.color = "black",
```

bar_graph2

```
title.size = 14,
y.text = 0,
add.info = NA,
y.info = 0,
width.bar = 0,
color.info = "black",
fill = "lightblue"
```

Arguments

model	DIC, DBC or DQL object
point.color	Point color
point.size	Point size
point.shape	Format point
text.color	Text color
label.color	Label color
bar.color	Errorbar color
title.size	Title size
y.text	Y-axis height for x-axis legend
add.info	Add other information
y.info	Y-axis height for other information
width.bar	Width error bar
color.info	Color text information
fill	Fill bars

Value

Returns a bar chart for one factor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

barplot_positive, plot_TH, plot_TH1, corgraph, spider_graph, line_plot, plot_cor, plot_interaction, plot_jitter, seg_graph, TBARPLOT.reverse

Examples

```
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,sup = 10,
    family = "serif",
    ylab = "Number of fruits/plants"))
bar_graph2(a)
bar_graph2(a,fill="darkblue",point.color="orange",text.color='white')
```

bean

Dataset: Bean

Description

An experiment to evaluate the effect of different strains of Azospirillum on common bean cultivar IPR Sabia was carried out in a greenhouse. A completely randomized design with five strains was used. of Azospirillum (treatments) and five repetitions. The response variable analyzed was grain production per plant (g plant-1).

Usage

data("bean")

Format

data.frame containing data set

trat numeric vector with treatment

prod Numeric vector with grain production per plant

See Also

aristolochia, cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(bean)

cloro

Description

An experiment was conducted in a greenhouse in pots at the State University of Londrina. The work has the objective of evaluating the application of sodium dichloroisocyanurate (DUP) in soybean in 4 periods of application in soybean inoculated or not with Rhizobium and its influence on the number of nodules. The experiment was conducted in a completely randomized design with five replications.

Usage

data(cloro)

Format

data.frame containing data set

f1 Categorical vector with factor 1

f2 Categorical vector with factor 2

bloco Categorical vector with block

resp Numeric vector with number nodules

References

Rony Kauling Tonelli. Efeito do uso de dicloroisocianurato de sodio sobre a nodulacao em raizes de soja. 2016. Trabalho de Conclusao de Curso. (Graduacao em Agronomia) - Universidade Estadual de Londrina.

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(cloro)

confinterval

Description

Calculates confidence interval for groups

Usage

```
confinterval(resp, group, alpha = 0.95, type = "upper")
```

Arguments

resp	numeric vector with responses
group	vector with groups or list with two factors
alpha	confidence level of the interval
type	lower or upper range

Value

returns a numeric vector with confidence interval grouped by treatment.

Examples

```
#------
# One factor
#-----
```

```
dados=rnorm(100,10,1)
trat=rep(paste("T",1:10),10)
confinterval(dados,trat)
```

conjdbc

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized qualitative or quantitative single-block design with balanced data.

Usage

```
conjdbc(
  trat,
  block,
  local,
  response,
  transf = 1,
  constant = 0,
  norm = "sw",
  homog = "bt",
  homog.value = 7,
  theme = theme_classic(),
 mcomp = "tukey",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = NA,
 ylab = "response",
 title = "",
xlab = "",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
  dec = 3,
  family = "sans",
  errorbar = TRUE
)
```

Arguments

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
local	Numeric or complex vector with locations or times
response	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)

norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
homog.value	Reference value for homogeneity of experiments. By default, this ratio should not be greater than 7
theme	ggplot2 theme (<i>default</i> is theme_classic())
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
grau	Degree of polynomial in case of quantitative factor (default is 1)
ylab	Variable response name (this argument uses the <i>parse</i> function)
title	Graph title
xlab	Treatments name (this argument uses the <i>parse</i> function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angulo	x-axis scale text rotation
textsize	Font size
dec	Number of cells
family	Font family
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix, the analysis of variance, the multiple comparison test or regression.

Note

In this function there are three possible outcomes. When the ratio between the experiments is greater than 7, the separate analyzes are returned, without however using the square of the joint residue. When the ratio is less than 7, but with significant interaction, the effects are tested using the square of the joint residual. When there is no significant interaction and the ratio is less than 7, the joint analysis between the experiments is returned.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

conjdic

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

```
library(AgroR)
data(mirtilo)
```

```
#------
# Significant interaction
#------
data(eucalyptus)
with(eucalyptus, conjdbc(trati, bloc, exp, resp))
```

conjdic

Analysis: Joint analysis of experiments in completely randomized design

Description

Function of the AgroR package for joint analysis of experiments conducted in a completely randomized design with a qualitative or quantitative factor with balanced data.

```
conjdic(
   trat,
   repet,
   local,
   response,
   transf = 1,
   constant = 0,
```

conjdic

```
norm = "sw",
homog = "bt",
mcomp = "tukey",
homog.value = 7,
quali = TRUE,
alpha.f = 0.05,
alpha.t = 0.05,
grau = NA,
theme = theme_classic(),
ylab = "response",
title = "",
xlab = "",
color = "rainbow",
fill = "lightblue",
angulo = 0,
textsize = 12,
dec = 3,
family = "sans",
errorbar = TRUE
```

```
)
```

Arguments

trat	Numerical or complex vector with treatments
repet	Numerical or complex vector with repetitions
local	Numeric or complex vector with locations or times
response	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
homog.value	Reference value for homogeneity of experiments. By default, this ratio should not be greater than 7
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
grau	Degree of polynomial in case of quantitative factor (<i>default</i> is 1)
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
title	Graph title
xlab	Treatments name (this argument uses the parse function)
color	When the columns are different colors (Set fill-in argument as "trat")

conjdic

fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angulo	x-axis scale text rotation
textsize	Font size
dec	Number of cells
family	Font family
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix, the analysis of variance, the multiple comparison test or regression.

Note

In this function there are three possible outcomes. When the ratio between the experiments is greater than 7, the separate analyzes are returned, without however using the square of the joint residue. When the ratio is less than 7, but with significant interaction, the effects are tested using the square of the joint residual. When there is no significant interaction and the ratio is less than 7, the joint analysis between the experiments is returned.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

```
library(AgroR)
data(mirtilo)
with(mirtilo, conjdic(trat, bloco, exp, resp))
```

conjfat2dbc

Analysis: Joint analysis of experiments in randomized block design in scheme factorial double

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized factorial double in block design with balanced data. The function generates the joint analysis through two models. Model 1: F-test of the effects of Factor 1, Factor 2 and F1 x F2 interaction are used in reference to the mean square of the interaction with the year. Model 2: F-test of the Factor 1, Factor 2 and F1 x F2 interaction effects are used in reference to the mean square of the residual.

Usage

```
conjfat2dbc(
   f1,
   f2,
   block,
   experiment,
   response,
   transf = 1,
   constant = 0,
   model = 1,
   norm = "sw",
   homog = "bt",
   homog.value = 7,
   alpha.f = 0.05,
   alpha.t = 0.05
)
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
block	Numerical or complex vector with blocks
experiment	Numeric or complex vector with locations or times
response	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)
model	Define model of the analysis of variance

conjfat2dbc

norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
homog.value	Reference value for homogeneity of experiments. By default, this ratio should not be greater than 7
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix and analysis of variance

Note

The function is still limited to analysis of variance and assumptions only.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Examples

```
library(AgroR)
ano=factor(rep(c(2018,2019,2020),e=48))
f1=rep(rep(c("A","B","C"),e=16),3)
f2=rep(rep(rep(c("a1","a2","a3","a4"),e=4),3),3)
resp=rnorm(48*3,10,1)
bloco=rep(c("b1","b2","b3","b4"),36)
dados=data.frame(ano,f1,f2,resp,bloco)
with(dados,conjfat2dbc(f1,f2,bloco,ano,resp, model=1))
```

corgraph

Description

Correlation analysis function (Pearson or Spearman)

Usage

```
corgraph(
  data,
  axissize = 12,
  legendsize = 12,
  legendposition = c(0.9, 0.2),
  legendtitle = "Correlation",
  method = "pearson",
  pallete = "RdBu",
  color.marginal = "gray50",
  size.tile.lty = 1,
  size.label.cor = 1,
  fill.label.cor = "lightyellow",
  font.family = "sans"
)
```

Arguments

data	data.frame with responses
axissize	Axes font size (default is 12)
legendsize	Legend font size (default is 12)
legendposition	Legend position (<i>default</i> is $c(0.9, 0.2)$)
legendtitle	Legend title (<i>default</i> is "Correlation")
method	Method correlation (<i>default</i> is Pearson)
pallete	If a string, will use that named palette. See scale_fill_distiller in the ggplot2.
color.marginal	Box border color
size.tile.lty	Box margin line thickness
size.label.cor	Label font size
fill.label.cor	Label fill color
font.family	Font family (<i>default</i> is sans)

Value

The function returns a correlation matrix

corn

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
corgraph(pomegranate[,-1])
```

corn

Dataset: Corn

Description

A 3 x 2 factorial experiment was carried out to compare three new corn hybrids considering the change in sowing density, being 55 thousand or 65 thousand seeds per hectare. For this case, the researcher is not interested in estimating values for other densities, but only in verifying if one density differs from the other. The experiment was carried out according to a completely randomized design with 4 repetitions of each treatment.

Usage

data(corn)

Format

data.frame containing data set

A Categorical vector with hybrids

- B Categorical vector with density
- resp Numeric vector with response

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(corn)

cor_ic

Description

Plot Pearson correlation with interval of confidence

Usage

```
cor_ic(
   data,
   background = TRUE,
   axis.size = 12,
   ylab = "",
   xlab = "Correlation (r)",
   theme = theme_classic()
)
```

Arguments

data	data.frame with responses
background	background fill (default is TRUE)
axis.size	Axes font size (default is 12)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the <i>expression</i> () function)
theme	ggplot theme (<i>default</i> is theme_classic())

Value

The function returns a new graphical approach to correlation.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
cor_ic(pomegranate[,-1])
```

covercrops

Description

Consider a 3×3 factorial experiment in randomized blocks, with 4 replications, on the influence of three new soybean cultivars (A1, A2 and A3) and the use of three types of green manure (B1, B2 and B3) on yield in 100 m2 plots.

Usage

data(covercrops)

Format

data.frame containing data set

A Categorical vector with cultivars

B Categorical vector with green manure

Bloco Categorical vector with block

Resp Numeric vector with yield

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(covercrops)

DBC

Analysis: Randomized block design

Description

This is a function of the AgroR package for statistical analysis of experiments conducted in a randomized block and balanced design with a factor considering the fixed model. The function presents the option to use non-parametric method or transform the dataset.

Usage

```
DBC(
  trat,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = TRUE,
 mcomp = "tukey",
  grau = 1,
  transf = 1,
  constant = 0,
  test = "parametric",
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  CV = TRUE,
 ylab = "response",
  xlab = "",
  textsize = 12,
  labelsize = 4,
  fill = "lightblue",
  angle = 0,
  family = "sans",
  dec = 3,
 width.column = 0.9,
 width.bar = 0.3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
  point = "mean_sd",
  pointsize = 5,
  angle.label = 0,
 ylim = NA,
 print.on = TRUE,
 plot.on = TRUE
```

Arguments

)

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment
norm	Error normality test (<i>default</i> is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)

DBC

alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Degree of polynomial in case of quantitative factor (<i>default</i> is 1)
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
test	"parametric" - Parametric test or "noparametric" - non-parametric test
geom	graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_classic())
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
ylab	Variable response name (this argument uses the parse function)
xlab	Treatments name (this argument uses the parse function)
textsize	Font size
labelsize	Label size
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
posi	Legend position
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error ("mean_se"). For parametric test it is possible to plot the square root of QMres (mean_qmres).
pointsize	Point size
angle.label	label angle
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Friedman test. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

Enable ggplot2 package to change theme argument.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

DIC, DQL

dbc.ad

Examples

library(AgroR)

dbc.ad

Analysis: Randomized block design with an additional treatment for quantitative factor

Description

Statistical analysis of experiments conducted in a randomized block design with an additional treatment and balanced design with a factor considering the fixed model.

```
dbc.ad(
  trat,
 block,
  response,
  responsead,
  grau = 1,
  norm = "sw"
  homog = "bt",
  alpha.f = 0.05,
  theme = theme_classic(),
  ylab = "response",
  xlab = "independent",
  family = "sans",
  posi = "top",
  pointsize = 4.5,
  linesize = 0.8,
```

dbc.ad

```
width.bar = NA,
point = "mean_sd"
)
```

Arguments

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
responsead	Numerical vector with additional treatment responses
grau	Degree of polynomial in case of quantitative factor (default is 1)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the <i>parse</i> function)
family	Font family
posi	Legend position
pointsize	Point size
linesize	line size (Trendline and Error Bar)
width.bar	width of the error bars of a regression graph.
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error (<i>default</i> - "mean_se"). For quali=FALSE or quali=TRUE.

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, adjustment of regression models up to grade 3 polynomial. The function also returns a standardized residual plot.

Note

In some experiments, the researcher may study a quantitative factor, such as fertilizer doses, and present a control, such as a reference fertilizer, treated as a qualitative control. In these cases, there is a difference between considering only the residue in the unfolding of the polynomial, removing or not the qualitative treatment, or since a treatment is excluded from the analysis. In this approach, the residue used is also considering the qualitative treatment, a method similar to the factorial scheme with additional control.

DBC.glm

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
doses = c(rep(c(1:5),e=3))
resp = c(3, 4, 3, 5, 5, 6, 7, 7, 8, 4, 4, 5, 2, 2, 3)
bloco = rep(c("B1","B2","B3","B4","B5"),3)
dbc.ad(doses, bloco, resp, responsead=rnorm(3,6,0.1),grau=2)
```

DBC.glm

Analysis: Randomized block design by glm

Description

Statistical analysis of experiments conducted in a randomized block design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.

```
DBC.glm(
  trat,
 block,
  response,
  glm.family = "binomial",
  quali = TRUE,
  alpha.f = 0.05,
 alpha.t = 0.05,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
 ylab = "Response",
 xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  labelsize = 5,
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
 posi = "top",
 point = "mean_sd",
  angle.label = 0
)
```

Arguments

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment. Use cbind(resp, n-resp) for binomial or quasibinomial family.
glm.family	distribution family considered (default is binomial)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
geom	Graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_classic())
sup	Number of units above the standard deviation or average bar on the graph
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the <i>parse</i> function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family
textsize	Font size
labelsize	Label size
dec	Number of cells
addmean	Plot the average value on the graph (default is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
posi	Legend position
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error (<i>default</i> - "mean_se").
angle.label	label angle

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("aristolochia")
attach(aristolochia)
# Assuming the same aristolochia data set, but considering randomized blocks
bloco=rep(paste("B",1:16),5)
resp=resp/2
DBC.glm(trat,bloco, cbind(resp,50-resp), glm.family="binomial")
```

Description

Function of the AgroR package for analysis of experiments conducted in a balanced qualitative, single-factorial randomized block design with multiple assessments over time, however without considering time as a factor.

Usage

```
DBCT(
  trat,
 block,
  time,
  response,
  alpha.f = 0.05,
  alpha.t = 0.05,
 mcomp = "tukey",
  geom = "bar",
  theme = theme_classic(),
  fill = "gray",
  ylab = "Response",
  xlab = "Independent",
  textsize = 12,
  labelsize = 5,
  pointsize = 4.5,
  error = TRUE,
  family = "sans",
  \sup = 0,
  addmean = FALSE,
  posi = c(0.1, 0.8),
  legend = "Legend",
  ylim = NA,
  width.bar = 0.2,
  size.bar = 0.8,
  dec = 3,
  xnumeric = FALSE,
  all.letters = FALSE
```

Arguments

)

trat	Numerical or complex vector with treatments
block	Numerical or complex vector with blocks
time	Numerical or complex vector with times

DBCT

response	Numerical vector containing the response of the experiment.
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
mcomp	Multiple comparison test (Tukey (<i>default</i>), LSD ("lsd"), Scott-Knott ("sk"), Duncan ("duncan") and Friedman ("fd"))
geom	Graph type (columns - "bar" or segments "point")
theme	ggplot2 theme (<i>default</i> is theme_classic())
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the <i>parse</i> function)
textsize	Font size of the texts and titles of the axes
labelsize	Font size of the labels
pointsize	Point size
error	Add error bar (SD)
family	Font family
sup	Number of units above the standard deviation or average bar on the graph
addmean	Plot the average value on the graph (default is TRUE)
posi	Legend position
legend	Legend title
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.
width.bar	width error bar
size.bar	size error bar
dec	Number of cells
xnumeric	Declare x as numeric (<i>default</i> is FALSE)
all.letters	Adds all label letters regardless of whether it is significant or not.

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.
desc

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Gonçalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

DBC, DICT, DQLT

Examples

```
rm(list=ls())
data(simulate2)
attach(simulate2)
```

desc

Descriptive: Descriptive analysis

Description

Performs the descriptive analysis of an experiment with a factor of interest.

Usage

```
desc(trat, response, ylab = "Response", xlab = "Treatment", ylim = NA)
```

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment.
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	x name (this argument uses the <i>parse</i> function)
ylim	y-axis scale

Value

The function returns exploratory measures of position and dispersion, such as mean, median, maximum, minimum, coefficient of variation, etc ...

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

desc2fat, tabledesc, dispvar

Examples

```
library(AgroR)
data("pomegranate")
with(pomegranate, desc(trat,WL))
```

desc2fat

Descriptive: Descriptive analysis (Two factors)

Description

It performs the descriptive analysis of an experiment with two factors of interest.

desc2fat

Usage

```
desc2fat(
  f1,
  f2,
  response,
  ylab = "Response",
  xlab = c("F1", "F2"),
  theme = theme_classic()
)
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
response	Numerical vector containing the response of the experiment.
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	x name (this argument uses the <i>parse</i> function)
theme	ggplot2 theme (<i>default</i> is theme_classic())

Value

The function returns exploratory measures of position and dispersion, such as mean, median, maximum, minimum, coefficient of variation, etc ...

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
library(AgroR)
data(cloro)
output=with(cloro, desc2fat(f1,f2,resp))
output$plot_single
output$plot_interaction
```

desc3fat

Description

Performs the descriptive graphical analysis of an experiment with three factors of interest.

Usage

```
desc3fat(
   f1,
   f2,
   f3,
   response,
   legend.title = "Legend",
   xlab = c("F1", "F2", "F3"),
   ylab = "Response",
   theme = theme_classic(),
   plot = "interaction"
)
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
response	Numerical vector containing the response of the experiment.
legend.title	Legend title
xlab	x name (this argument uses the <i>parse</i> function)
ylab	Variable response name (this argument uses the <i>parse</i> function)
theme	ggplot theme
plot	"interaction" or "box"

Value

The function returns a triple interaction graph.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

desd_fat2_quant_ad

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, desc3fat(f1, f2, f3, resp))
```

desd_fat2_quant_ad Analysis: Regression analysis by orthogonal polynomials for double factorial scheme with additional control

Description

Regression analysis by orthogonal polynomials for double factorial scheme with additional control. Cases in which the additional belongs to the regression curve, being common to the qualitative levels. In these cases, the additional (usually dose 0/control treatment) is not part of the factor arrangement. One option addressed by this function is to analyze a priori as a double factorial scheme with an additional one and correct the information a posteriore using information from the initial analysis, such as the degree of freedom and the sum of squares of the residue.

Usage

```
desd_fat2_quant_ad(output, ad.value = 0, design = "FAT2DIC.ad", grau = 1)
```

Arguments

output	Output from a FAT2DIC.ad or FAT2DBC.ad function (Use quantity factor as f2).
ad.value	Additional treatment quantitative factor level
design	Type of experimental project (FAT2DIC.ad or FAT2DBC.ad)
grau	Degree of the polynomial (only for the isolated effect of the quantitative factor)

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
50,55,66, 70,75,76, 80,85,86)
repe=rep(c("R1","R2","R3"),12)
# Analysis FAT2DIC.ad
resu=FAT2DIC.ad(trat,dose,repe = repe,respo,responseAd = d0,quali = c(TRUE,FALSE),grau21 = c(1,2,1))
# Regression analysis
desd_fat2_quant_ad(resu,ad.value=0,design="FAT2DIC.ad")
# Data set
trat=rep(c("A", "B"), e=12)
dose=rep(rep(c(200,400,600,800),e=3),2)
d0=c(40, 45, 48)
respo=c(60,55,56,60,65,66,70,75,76,80,85,86,50,45,46,50,55,66,70,75,76,80,85,86)
repe=rep(c("R1","R2","R3"),8)
# Analysis FAT2DIC.ad
resu=FAT2DIC.ad(trat,dose,repe = repe,respo,responseAd = d0,quali = c(TRUE,FALSE))
# Regression analysis
desd_fat2_quant_ad(resu,ad.value=0,design="FAT2DIC.ad",grau=1)
```

DIC

Analysis: Completely randomized design

Description

Statistical analysis of experiments conducted in a completely randomized and balanced design with a factor considering the fixed model. The function presents the option to use non-parametric method or transform the dataset.

Usage

```
DIC(
   trat,
   response,
   norm = "sw",
   homog = "bt",
   alpha.f = 0.05,
   alpha.t = 0.05,
   quali = TRUE,
   mcomp = "tukey",
   grau = 1,
   transf = 1,
   constant = 0,
   test = "parametric",
   mcompNP = "LSD",
```

```
p.adj = "holm",
  geom = "bar",
  theme = theme_classic(),
 ylab = "Response",
  sup = NA,
 CV = TRUE,
 xlab = "",
 fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
 labelsize = 4,
 dec = 3,
 width.column = 0.9,
 width.bar = 0.3,
  addmean = TRUE,
 errorbar = TRUE,
 posi = "top",
 point = "mean_sd",
 pointsize = 5,
 angle.label = 0,
 ylim = NA,
 print.on = TRUE,
 plot.on = TRUE
)
```

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Degree of polynomial in case of quantitative factor (<i>default</i> is 1)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0, 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
test	"parametric" - Parametric test or "noparametric" - non-parametric test
mcompNP	Multiple comparison test (LSD (default) or dunn)
p.adj	Method for adjusting p values for Kruskal-Wallis ("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
geom	Graph type (columns, boxes or segments)

theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
xlab	Treatments name (this argument uses the parse function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family
textsize	Font size
labelsize	Label size
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
posi	Legend position
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error ("mean_se"). For quali=FALSE or quali=TRUE. For parametric test it is possible to plot the square root of QMres (mean_qmres)
pointsize	Point size
angle.label	label angle
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Kruskal-Wallis test. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

Enable ggplot2 package to change theme argument.

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

Post hoc test in nonparametric is using the criterium Fisher's least significant difference (p-adj="holm").

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

W.J. Conover, Practical Nonparametrics Statistics. 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Hothorn, T. et al. Package 'Imtest'. Testing linear regression models. https://cran. r-project. org/web/packages/Imtest/Imtest. pdf. Accessed, v. 6, 2015.

See Also

DBC DQL

Examples

Kruskal-Wallis

dic.ad

```
with(pomegranate, DIC(trat, WL, test = "noparametric", ylab = "Weight loss ('%')"))
# chart type
with(pomegranate, DIC(trat, WL, geom="point", ylab = "Weight loss ('%')"))
with(pomegranate, DIC(trat, WL, ylab = "Weight loss ('%')", xlab="Treatments"))
# quantitative factor
data("phao")
with(phao, DIC(dose,comp,quali=FALSE,grau=2,xlab = "Dose (g vase^-1)",ylab="Leaf length (cm)"))
# data transformation
data("pepper")
with(pepper, DIC(Acesso, VitC, transf = 0,ylab="Vitamin C"))
```

dic.ad

Analysis: Completely randomized design with an additional treatment for quantitative factor

Description

Statistical analysis of experiments conducted in a completely randomized with an additional treatment and balanced design with a factor considering the fixed model.

Usage

```
dic.ad(
  trat,
  response,
  responsead,
  grau = 1,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  theme = theme_classic(),
  ylab = "response",
  xlab = "independent",
  family = "sans",
  posi = "top",
  pointsize = 4.5,
  linesize = 0.8,
  width.bar = NA,
```

dic.ad

```
point = "mean_sd"
)
```

Arguments

trat	Numerical or complex vector with treatments
response	Numerical vector containing the response of the experiment.
responsead	Numerical vector with additional treatment responses
grau	Degree of polynomial in case of quantitative factor (default is 1)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the parse function)
family	Font family
posi	Legend position
pointsize	Point size
linesize	line size (Trendline and Error Bar)
width.bar	width of the error bars of a regression graph.
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error (<i>default</i> - "mean_se"). For quali=FALSE or quali=TRUE.

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, adjustment of regression models up to grade 3 polynomial. The function also returns a standardized residual plot.

Note

In some experiments, the researcher may study a quantitative factor, such as fertilizer doses, and present a control, such as a reference fertilizer, treated as a qualitative control. In these cases, there is a difference between considering only the residue in the unfolding of the polynomial, removing or not the qualitative treatment, or since a treatment is excluded from the analysis. In this approach, the residue used is also considering the qualitative treatment, a method similar to the factorial scheme with additional control.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

DIC.glm

Analysis: Completely randomized design by glm

Description

Statistical analysis of experiments conducted in a completely randomized design using a generalized linear model. It performs the deviance analysis and the effect is tested by a chi-square test. Multiple comparisons are adjusted by Tukey.

Usage

```
DIC.glm(
  trat,
  response,
  glm.family = "binomial",
  quali = TRUE,
  alpha.f = 0.05,
  alpha.t = 0.05,
  geom = "bar",
  theme = theme_classic(),
  sup = NA,
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  labelsize = 5,
  dec = 3,
  addmean = TRUE,
  errorbar = TRUE,
  posi = "top",
  point = "mean_sd",
  angle.label = 0
```

)

Arguments

trat	Numerical or complex vector with treatments	
response	Numerical vector containing the response of the experiment.	Use cbind(resp,
	n-resp) for binomial or quasibinomial family.	

DIC.glm

glm.family	distribution family considered (<i>default</i> is binomial)
quali	Defines whether the factor is quantitative or qualitative (<i>default</i> is qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
geom	Graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_classic())
sup	Number of units above the standard deviation or average bar on the graph
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the parse function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family
textsize	Font size
labelsize	Label size
dec	Number of cells
addmean	Plot the average value on the graph (default is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
posi	Legend position
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error (<i>default</i> - "mean_se").
angle.label	label angle

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

the value 25 is the total of seeds in the repetition DIC.glm(trat, cbind(resp,25-resp), glm.family="binomial")

DICT

Analysis: Completely randomized design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a completely randomized, qualitative, uniform qualitative design with multiple assessments over time, however without considering time as a factor.

Usage

```
DICT(
  trat,
  time,
  response,
  alpha.f = 0.05,
  alpha.t = 0.05,
 mcomp = "tukey",
  theme = theme_classic(),
  geom = "bar",
  xlab = "Independent",
  ylab = "Response",
  p.adj = "holm",
  dec = 3,
  fill = "gray",
  error = TRUE,
  textsize = 12,
  labelsize = 5,
  pointsize = 4.5,
  family = "sans",
  \sup = 0,
  addmean = FALSE,
  legend = "Legend",
  ylim = NA,
  width.bar = 0.2,
  size.bar = 0.8,
  posi = c(0.1, 0.8),
  xnumeric = FALSE,
```

DICT

all.letters = FALSE
)

Arguments

trat	Numerical or complex vector with treatments
time	Numerical or complex vector with times
response	Numerical vector containing the response of the experiment.
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
mcomp	Multiple comparison test (Tukey (<i>default</i>), LSD ("lsd"), Scott-Knott ("sk"), Duncan ("duncan") and Kruskal-Wallis ("kw"))
theme	ggplot2 theme (<i>default</i> is theme_classic())
geom	Graph type (columns - "bar" or segments "point")
xlab	treatments name (this argument uses the parse function)
ylab	Variable response name (this argument uses the <i>parse</i> function)
p.adj	Method for adjusting p values for Kruskal-Wallis ("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
dec	Number of cells
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
error	Add error bar
textsize	Font size of the texts and titles of the axes
labelsize	Font size of the labels
pointsize	Point size
family	Font family
sup	Number of units above the standard deviation or average bar on the graph
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
legend	Legend title
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.
width.bar	width error bar
size.bar	size error bar
posi	Legend position
xnumeric	Declare x as numeric (<i>default</i> is FALSE)
all.letters	Adds all label letters regardless of whether it is significant or not.

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

DIC, DBCT, DQLT

Examples

```
rm(list=ls())
data(simulate1)
attach(simulate1)
with(simulate1, DICT(trat, tempo, resp))
with(simulate1, DICT(trat, tempo, resp, fill="rainbow",family="serif"))
with(simulate1, DICT(trat, tempo, resp,geom="bar",sup=40))
with(simulate1, DICT(trat, tempo, resp,geom="point",sup=40))
```

dispvar

Descriptive: Boxplot with standardized data

Description

It makes a graph with the variables and/or treatments with the standardized data.

dispvar

Usage

```
dispvar(
   data,
   trat = NULL,
   theme = theme_bw(),
   ylab = "Standard mean",
   xlab = "Variable",
   family = "serif",
   textsize = 12,
   fill = "lightblue"
)
```

Arguments

data	data.frame containing the response of the experiment.
trat	Numerical or complex vector with treatments
theme	ggplot2 theme (<i>default</i> is theme_bw())
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the <i>expression</i> () function)
family	Font family
textsize	Font size
fill	Defines chart color

Value

Returns a chart of boxes with standardized data

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
library(AgroR)
data("pomegranate")
dispvar(pomegranate[,-1])
trat=pomegranate$trat
dispvar(pomegranate[,-1], trat)
```

Description

This is a function of the AgroR package for statistical analysis of experiments conducted in Latin Square and balanced design with a factor considering the fixed model.

Usage

DQL(trat, line, column, response, norm = "sw", homog = "bt", alpha.f = 0.05,alpha.t = 0.05,quali = TRUE, mcomp = "tukey", grau = 1, transf = 1, constant = 0, geom = "bar", theme = theme_classic(), sup = NA, CV = TRUE, ylab = "Response", xlab = "", textsize = 12, labelsize = 4, fill = "lightblue", angle = 0, family = "sans", dec = 3, width.column = 0.9, width.bar = 0.3, addmean = TRUE, errorbar = TRUE, posi = "top", point = "mean_sd", pointsize = 5, angle.label = 0, ylim = NA, print.on = TRUE, plot.on = TRUE

DQL

DQL

)

Arguments

trat	Numerical or complex vector with treatments
line	Numerical or complex vector with lines
column	Numerical or complex vector with columns
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (default is qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Degree of polynomial in case of quantitative factor (default is 1)
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_classic())
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the <i>expression</i> () function)
textsize	Font size
labelsize	Label size
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
posi	Legend position
point	Defines whether to plot mean ("mean"), mean with standard deviation ("mean_sd" - <i>default</i>) or mean with standard error ("mean_se"). For parametric test it is possible to plot the square root of QMres (mean_qmres).

pointsize	Point size
angle.label	label angle
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.

print.on Print output plot.on Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk ("sw"), Lilliefors ("li"), Anderson-Darling ("ad"), Cramer-von Mises ("cvm"), Pearson ("pearson") and Shapiro-Francia ("sf")), the test of homogeneity of variances (Bartlett ("bt") or Levene ("levene")), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey ("tukey"), LSD ("lsd"), Scott-Knott ("sk") or Duncan ("duncan")) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column, segment or box chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

CV and p-value of the graph indicate coefficient of variation and p-value of the F test of the analysis of variance.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

DQLT

See Also

DIC, DBC

Examples

```
library(AgroR)
data(porco)
with(porco, DQL(trat, linhas, colunas, resp, ylab="Weigth (kg)"))
```

DQLT

Analysis: Latin square design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a balanced qualitative single-square Latin design with multiple assessments over time, however without considering time as a factor.

Usage

```
DQLT(
  trat,
  line,
  column,
  time,
  response,
  alpha.f = 0.05,
  alpha.t = 0.05,
 mcomp = "tukey",
  error = TRUE,
  xlab = "Independent",
 ylab = "Response",
  textsize = 12,
  labelsize = 5,
  pointsize = 4.5,
  family = "sans",
  \sup = 0,
  addmean = FALSE,
  posi = c(0.1, 0.8),
  geom = "bar",
  fill = "gray",
  legend = "Legend",
  ylim = NA,
  width.bar = 0.2,
  size.bar = 0.8,
  dec = 3,
  theme = theme_classic(),
```

```
xnumeric = FALSE,
all.letters = FALSE
)
```

Arguments

trat	Numerical or complex vector with treatments
line	Numerical or complex vector with line
column	Numerical or complex vector with column
time	Numerical or complex vector with times
response	Numerical vector containing the response of the experiment.
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
mcomp	Multiple comparison test (Tukey (<i>default</i>), LSD, Scott-Knott and Duncan)
error	Add error bar (SD)
xlab	Treatments name (this argument uses the parse function)
ylab	Variable response name (this argument uses the <i>parse</i> function)
textsize	Font size of the texts and titles of the axes
labelsize	Font size of the labels
pointsize	Point size
family	Font family
sup	Number of units above the standard deviation or average bar on the graph
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
posi	Legend position
geom	Graph type (columns - "bar" or segments "point")
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
legend	Legend title
ylim	Define a numerical sequence referring to the y scale. You can use a vector or the 'seq' command.
width.bar	width error bar
size.bar	size error bar
dec	Number of cells
theme	ggplot2 theme (<i>default</i> is theme_classic())
xnumeric	Declare x as numeric (<i>default</i> is FALSE)
all.letters	Adds all label letters regardless of whether it is significant or not.

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

DQLT

Value

The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet. The bars of the column and segment graphs are standard deviation.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

DQL, DICT, DBCT

Examples

```
rm(list=ls())
data(simulate3)
attach(simulate3)
DQLT(trat, linhas, colunas, tempo, resp)
```

dunn

Description

Perform Kruskal wallis and dunn post-hoc test

Usage

```
dunn(trat, resp, method = "holm", alpha = 0.05, decreasing = TRUE)
```

Arguments

trat	Numerical or complex vector with treatments
resp	Vector with response
method	the p-value for multiple comparisons ("none", "bonferroni", "sidak", "holm", "hs", "hochberg", "bh", "by"). The default is no adjustment for multiple comparisons
alpha	Significance level of the post-hoc (default is 0.05)
decreasing	Should the order of the letters be increasing or decreasing.

Value

Kruskal-wallis and dunn's post-hoc test returns

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
library(AgroR)
data(pomegranate)
with(pomegranate, dunn(trat, WL))
```

dunnett

Description

The function performs the Dunnett test

Usage

```
dunnett(
  trat,
  resp,
  control,
  model = "DIC",
  block = NA,
  column = NA,
  line = NA,
  alpha.t = 0.05,
  pointsize = 5,
  pointshape = 21,
  linesize = 1,
  labelsize = 4,
  textsize = 12,
  errorsize = 1,
  widthsize = 0.2,
  label = "Response",
  family = "sans"
)
```

Arguments

trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.
control	Treatment considered control (write identical to the name in the vector)
model	Experimental design (DIC, DBC or DQL)
block	Numerical or complex vector with blocks
column	Numerical or complex vector with columns
line	Numerical or complex vector with lines
alpha.t	Significance level (default is 0.05)
pointsize	Point size
pointshape	Shape
linesize	Line size
labelsize	Label size

emerg

textsize	Font size
errorsize	Errorbar size
widthsize	Width errorbar
label	Variable label
family	font family

Value

I return the Dunnett test for experiments in a completely randomized design, randomized blocks or Latin square.

Note

Do not use the "-" symbol or space in treatment names

Examples

```
# complete randomized design
data("pomegranate")
with(pomegranate,dunnett(trat=trat,resp=WL,control="T1"))
#______
# randomized block design in factorial double
library(AgroR)
data(cloro)
attach(cloro)
respAd=c(268, 322, 275, 350, 320)
a=FAT2DBC.ad(f1, f2, bloco, resp, respAd,
         ylab="Number of nodules", mcomp="sk")
data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp),
        data.frame(trat=c("Test","Test","Test","Test","Test"),
                bloco=unique(bloco),resp=respAd))
with(data,dunnett(trat = trat,
             resp = resp,
             control = "Test",
             block=bloco,model = "DBC"))
```

emerg

Dataset: Emergence of passion fruit seeds over time .

Description

The data come from an experiment conducted at the State University of Londrina, aiming to study the emergence of yellow passion fruit seeds over time. Data are partial from one of the treatments studied. Four replicates with eight seeds each were used.

enxofre

Usage

data("emerg")

Format

data.frame containing data set

time numeric vector with time

resp Numeric vector with emergence

See Also

aristolochia, cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(emerg)

enxofre

Dataset: Sulfur data

Description

The experiment was carried out in a randomized block design in a 3 x 3 x 3 triple factorial scheme: syrup volume (75, 225 and 675 L), sulfur doses (150, 450, 1350) and time of application (vegetative, complete cycle and reproductive system) with four repetitions. Yield in kg / ha of soybean was evaluated.

Usage

data(enxofre)

Format

data.frame containing data set

- f1 Categorical vector with factor 1
- f2 Categorical vector with factor 2
- f2 Categorical vector with factor 3
- bloco Categorical vector with block
- resp Numeric vector

See Also

cloro, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(enxofre)

eucalyptus

Dataset: Eucaliptus grandis Barbin (2013)

Description

The data refer to the height in meters of *Eucalyptus grandis* plants, with 7 years of age, from three trials (Araraquara - Exp 1; Bento Quintino - Exp 2; Mogi-Guacu - Exp 3) in randomized blocks, under 6 progenies. The data were taken from the book by Decio Barbin (2013) and are from the Instituto Florestal de Tupi/SP.

Usage

data("eucalyptus")

Format

data.frame containing data set

trati Categorical vector with treatments

bloc Categorical vector with block

exp Categorical vector with experiment

resp Numeric vector

References

Planejamento e Analise Estatistica de Experimentos Agronomicos (2013) - Decio Barbin - pg. 177

See Also

cloro, enxofre, laranja, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

data(eucalyptus)

FAT2DBC

Description

Analysis of an experiment conducted in a randomized block design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DBC(
  f1,
  f2,
  block,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
  names.fat = c("F1", "F2"),
  mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  legend = "Legend",
  fill = "lightblue",
  angle = 0,
  textsize = 12,
  labelsize = 4,
  dec = 3,
  width.column = 0.9,
  width.bar = 0.3,
  family = "sans",
  point = "mean_sd",
  addmean = TRUE,
  errorbar = TRUE,
  CV = TRUE,
  sup = NA,
  color = "rainbow",
  posi = "right",
  ylim = NA,
```

```
angle.label = 0,
print.on = TRUE,
plot.on = TRUE
)
```

Arguments

Sumento	
f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the parse function)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with two elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular lar transformation)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
legend	Legend title name
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
textsize	font size
labelsize	label size
dec	number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar

FAT2DBC

family	font family
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
addmean	Plot the average value on the graph (default is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
sup	Number of units above the standard deviation or average bar on the graph
color	Column chart color (<i>default</i> is "rainbow")
posi	Legend position
ylim	y-axis scale
angle.label	label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DBC.ad

Examples

FAT	2DBC	.ad
-----	------	-----

Analysis: DBC experiment in double factorial design with an additional treatment

Description

Analysis of an experiment conducted in a randomized block design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DBC.ad(
  f1,
  f2,
  block,
  response,
  responseAd,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
  names.fat = c("F1", "F2"),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  ad.label = "Additional",
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  labelsize = 4,
  addmean = TRUE,
  errorbar = TRUE,
 CV = TRUE,
  dec = 3,
 width.column = 0.9,
 width.bar = 0.3,
  angle = 0,
  posi = "right",
  family = "sans",
  point = "mean_sd",
  sup = NA,
 ylim = NA,
  angle.label = 0,
  print.on = TRUE,
 plot.on = TRUE
```

Arguments

)

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels

block	Numeric or complex vector with repetitions
response	Numerical vector containing the response of the experiment.
responseAd	Numerical vector with additional treatment responses
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the <i>parse</i> function)
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with two elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular lar transformation)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
ad.label	Aditional label
color	Column chart color (<i>default</i> is "rainbow")
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
textsize	Font size
labelsize	Label Size
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
	widthenorbai
angle	x-axis scale text rotation

family	Font family
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
sup	Number of units above the standard deviation or average bar on the graph
ylim	y-axis scale
angle.label	label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

The assumptions of variance analysis disregard additional treatment

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DBC

dunnett

Examples

```
library(AgroR)
data(cloro)
respAd=c(268, 322, 275, 350, 320)
with(cloro, FAT2DBC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules"))
```

FAT2DIC

Analysis: DIC experiments in double factorial

Description

Analysis of an experiment conducted in a completely randomized design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DIC(
  f1,
  f2,
  response,
  norm = "sw",
  homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
  names.fat = c("F1", "F2"),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  lab.factor = c("F1", "F2"),
  color = "rainbow",
```
FAT2DIC

```
fill = "lightblue",
  textsize = 12,
 labelsize = 4,
 addmean = TRUE,
 errorbar = TRUE,
 CV = TRUE,
 dec = 3,
 width.column = 0.9,
 width.bar = 0.3,
 angle = 0,
 posi = "right",
 family = "sans",
 point = "mean_sd",
 sup = NA,
 ylim = NA,
 angle.label = 0,
 print.on = TRUE,
 plot.on = TRUE
)
```

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the parse function)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with two elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \ge f2$ and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))

theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
lab.factor	Provide a vector with two observations referring to the x-axis name of factors 1 and 2, respectively, when there is an isolated effect of the factors. This argument uses 'parse'.
color	Column chart color (<i>default</i> is "rainbow")
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
textsize	Font size
labelsize	Label Size
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
angle	x-axis scale text rotation
posi	Legend position
family	Font family
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
sup	Number of units above the standard deviation or average bar on the graph
ylim	y-axis scale
angle.label	Label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

FAT2DIC

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DIC.ad

Examples

FAT2DIC.ad

Description

Analysis of an experiment conducted in a completely randomized design in a double factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT2DIC.ad(
  f1,
  f2,
  repe,
  response,
  responseAd,
  norm = "sw",
  homog = "bt"
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
  names.fat = c("F1", "F2"),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
  geom = "bar",
  theme = theme_classic(),
  ylab = "Response",
  ad.label = "Additional",
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  labelsize = 4,
  addmean = TRUE,
  errorbar = TRUE,
  CV = TRUE,
  dec = 3,
  width.column = 0.9,
  width.bar = 0.3,
  angle = 0,
  posi = "right",
  family = "sans",
  point = "mean_sd",
```

FAT2DIC.ad

```
sup = NA,
ylim = NA,
angle.label = 0,
print.on = TRUE,
plot.on = TRUE
```

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
repe	Numeric or complex vector with repetitions
response	Numerical vector containing the response of the experiment.
responseAd	Numerical vector with additional treatment responses
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the parse function)
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with two elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f_1 \ge f_2$ and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
ad.label	Aditional label
color	Column chart color (<i>default</i> is "rainbow")
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
textsize	Font size
labelsize	Label Size

addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
dec	Number of cells
width.column	Width column if geom="bar"
width.bar	Width errorbar
angle	x-axis scale text rotation
posi	legend position
family	Font family
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
sup	Number of units above the standard deviation or average bar on the graph
ylim	y-axis scale
angle.label	label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the test of independence of Durbin-Watson errors, the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two quantitative factors.

The assumptions of variance analysis disregard additional treatment

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

fat2_table

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

See Also

FAT2DIC

dunnett

Examples

```
library(AgroR)
data(cloro)
respAd=c(268, 322, 275, 350, 320)
with(cloro, FAT2DIC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules"))
```

fat2_table	Utils: Summary of the analysis for factor arrangement with two qual-
	itative factors.

Description

Summarizes the output returned in the summarise_anova function in list form. The advantage is that the table, in the case of significant interaction, is returned in a format that facilitates assembly in terms of scientific publication.

Usage

```
fat2_table(output, nf1, nf2, column = 1)
```

output	Output of summarise_anova function for FAT2DIC, FAT2DIC.ad, FAT2DBC, FAT2DBC.ad, PSUBDIC and PSUBDBC design.
nf1	Number of levels of factor 1
nf2	Number of levels of factor 2
column	Variable column

Value

returns a list containing analysis output for experiments in FAT2DIC, FAT2DIC.ad, FAT2DBC, FAT2DBC.ad, PSUBDIC and PSUBDBC design.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

FAT3DBC	Analysis: DBC experiments in triple factorial
---------	---

Description

Analysis of an experiment conducted in a randomized block design in a triple factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT3DBC(
    f1,
    f2,
    f3,
    block,
    response,
    norm = "sw",
    alpha.f = 0.05,
    alpha.t = 0.05,
    quali = c(TRUE, TRUE, TRUE),
    mcomp = "tukey",
    transf = 1,
    constant = 0,
    names.fat = c("F1", "F2", "F3"),
```

```
ylab = "Response",
sup = NA,
grau = c(NA, NA, NA),
grau12 = NA,
grau13 = NA,
grau23 = NA,
grau21 = NA,
grau31 = NA,
grau32 = NA,
grau123 = NA,
grau213 = NA,
grau312 = NA,
fill = "lightblue",
theme = theme_classic(),
angulo = 0,
errorbar = TRUE,
addmean = TRUE,
family = "sans",
dec = 3,
geom = "bar",
textsize = 12,
labelsize = 4,
point = "mean_sd",
angle.label = 0
```

Arguments

)

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3 (this argument uses the <i>parse</i> function).
ylab	Variable response name (this argument uses the <i>parse</i> function)
sup	Number of units above the standard deviation or average bar on the graph

grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f1 \ge f3$ and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f2 \ge f3$ and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f2 x f3 and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 x f3 and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative factor 3.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (<i>default</i> is theme_classic())
angulo	x-axis scale text rotation
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
family	Font family
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label Size

FAT3DBC

point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
	formation win de displayed in the error dat.
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, FAT3DBC(f1, f2, f3, bloco, resp))
```

FAT3DBC.ad

Analysis: DBC experiments in triple factorial with aditional

Description

Analysis of an experiment conducted in a randomized block design in a triple factorial scheme with one aditional control using analysis of variance of fixed effects.

Usage

```
FAT3DBC.ad(
  f1,
  f2,
  f3,
  block,
  response,
  responseAd,
  norm = "sw",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE, TRUE),
  mcomp = "tukey",
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
  ylab = "Response",
  sup = NA,
  grau = c(NA, NA, NA),
  grau12 = NA,
  grau13 = NA,
  grau23 = NA,
  grau21 = NA,
  grau31 = NA,
  grau32 = NA,
  grau123 = NA,
  grau213 = NA,
  grau312 = NA,
  fill = "lightblue",
  theme = theme_classic(),
  ad.label = "Additional",
  angulo = 0,
  errorbar = TRUE,
```

FAT3DBC.ad

```
addmean = TRUE,
family = "sans",
dec = 3,
geom = "bar",
textsize = 12,
labelsize = 4,
point = "mean_sd",
angle.label = 0
)
```

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
block	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
responseAd	Numerical vector containing the aditional response
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3 (this argument uses the <i>parse</i> function).
ylab	Variable response name (this argument uses the <i>parse</i> function)
sup	Number of units above the standard deviation or average bar on the graph
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \ge f2$ and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f1 \ge f3$ and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f_2 \ge f_3$ and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.

grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f2 \ge f3$ and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 x f3 and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative factor 3.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (<i>default</i> is theme_classic())
ad.label	Aditional label
angulo	x-axis scale text rotation
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
family	Font family
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label size
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

FAT3DBC.ad

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
respAd=c(2000,2400,2530,2100)
attach(enxofre)
with(enxofre, FAT3DBC.ad(f1, f2, f3, bloco, resp, respAd))
```

FAT3DIC

Description

Analysis of an experiment conducted in a completely randomized design in a triple factorial scheme using analysis of variance of fixed effects.

Usage

```
FAT3DIC(
  f1,
  f2,
  f3,
  response,
  norm = "sw",
  alpha.t = 0.05,
  alpha.f = 0.05,
  quali = c(TRUE, TRUE, TRUE),
 mcomp = "tukey",
  grau = c(NA, NA, NA),
  grau12 = NA,
  grau13 = NA,
  grau23 = NA,
  grau21 = NA,
  grau31 = NA,
  grau32 = NA,
  grau123 = NA,
  grau213 = NA,
  grau312 = NA,
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
  ylab = "Response",
  sup = NA,
  fill = "lightblue",
  theme = theme_classic(),
  angulo = 0,
  family = "sans",
  addmean = TRUE,
  errorbar = TRUE,
  dec = 3,
  geom = "bar",
  textsize = 12,
  labelsize = 4,
  point = "mean_sd",
  angle.label = 0
```

FAT3DIC

)

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
response	Numerical vector containing the response of the experiment.
norm	Error normality test (default is Shapiro-Wilk)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
alpha.f	Level of significance of the F test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f3 and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f_2 \ge f_3$ and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f2 x f3 and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 x f3 and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative factor 3.

transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3 (this argument uses the <i>parse</i> function).
ylab	Variable response name (this argument uses the <i>parse</i> function)
sup	Number of units above the standard deviation or average bar on the graph
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (<i>default</i> is theme_classic())
angulo	x-axis scale text rotation
family	Font family
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label Size
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

FAT3DIC.ad

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

library(AgroR)
data(enxofre)
with(enxofre, FAT3DIC(f1, f2, f3, resp))

FAT3DIC.ad

Analysis: DIC experiments in triple factorial with aditional

Description

Analysis of an experiment conducted in a completely randomized design in a triple factorial scheme with one aditional control using analysis of variance of fixed effects.

Usage

```
FAT3DIC.ad(
  f1,
  f2,
  f3,
  repe,
  response,
  responseAd,
  norm = "sw",
```

```
alpha.f = 0.05,
  alpha.t = 0.05,
 quali = c(TRUE, TRUE, TRUE),
 mcomp = "tukey",
  transf = 1,
  constant = 0,
  names.fat = c("F1", "F2", "F3"),
 ylab = "Response",
  sup = NA,
  grau = c(NA, NA, NA),
 grau12 = NA,
 grau13 = NA,
 grau23 = NA,
  grau21 = NA,
 grau31 = NA,
 grau32 = NA,
 grau123 = NA,
 grau213 = NA,
 grau312 = NA,
 fill = "lightblue",
  theme = theme_classic(),
  ad.label = "Additional",
  angulo = 0,
  errorbar = TRUE,
  addmean = TRUE,
  family = "sans",
 dec = 3,
  geom = "bar",
  textsize = 12,
  labelsize = 4,
 point = "mean_sd",
 angle.label = 0
)
```

Arguments

f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
repe	Numerical or complex vector with blocks
response	Numerical vector containing the response of the experiment.
responseAd	Numerical vector containing the aditional response
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)

mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
transf	Applies data transformation (<i>default</i> is 1; for log consider 0; 'angular' for angular transformation)
constant	Add a constant for transformation (enter value)
names.fat	Allows labeling the factors 1, 2 and 3 (this argument uses the <i>parse</i> function).
ylab	Variable response name (this argument uses the <i>parse</i> function)
sup	Number of units above the standard deviation or average bar on the graph
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f1 \ge f2$ and qualitative factor 2 and quantitative factor 1.
grau13	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f1 \ge f3$ and qualitative factor 3 and quantitative factor 1.
grau23	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction $f_2 \ge f_3$ and qualitative factor 3 and quantitative factor 2.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
grau31	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f3 and qualitative factor 1 and quantitative factor 3.
grau32	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction $f_2 \ge f_3$ and qualitative factor 2 and quantitative factor 3.
grau123	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 x f3 and quantitative factor 1.
grau213	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 x f3 and quantitative factor 2.
grau312	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 3, in the case of interaction f1 x f2 x f3 and quantitative factor 3.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
theme	ggplot2 theme (<i>default</i> is theme_classic())
ad.label	Aditional label
angulo	x-axis scale text rotation
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE

FAT3DIC.ad

addmean	Plot the average value on the graph (<i>default</i> is TRUE)
family	Font family
dec	Number of cells
geom	Graph type (columns or segments)
textsize	Font size
labelsize	Label size
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
angle.label	label angle

Value

The analysis of variance table, the Shapiro-Wilk error normality test, the Bartlett homogeneity test of variances, the Durbin-Watson error independence test, multiple comparison test (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. For significant triple interaction only, no graph is returned.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

The function does not perform multiple regression in the case of two or more quantitative factors. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

grid.onefactor

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Ferreira, E. B., Cavalcanti, P. P., and Nogueira, D. A. (2014). ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952.

Mendiburu, F., and de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
library(AgroR)
data(enxofre)
respAd=c(2000,2400,2530,2100)
with(enxofre, FAT3DIC.ad(f1, f2, f3, bloco, resp, respAd))
```

grid.onefactor	utils: group graphs of the output of simple experiments in dic, dbc or
	dql

Description

group graphs of the output of simple experiments into dic, dbc or dql. It is possible to group up to 6 graphs in different arrangements (see model argument)

Usage

```
grid.onefactor(output, model = "type1")
```

Arguments

output	List with the outputs of the DIC, DBC or DQL functions
model	Graph arrangement model, see in detail.

Details

- 'type1': Two graphs next to each other - 'type2': Two graphs one below the other - 'type3': Three graphs, two top and one centered below - 'type4': Three graphs one below the other - 'type5': Four graphs, two at the top and two at the bottom - 'type6': Four graphs one below the other - 'type7': Five graphs, two at the top, two in the middle and one centered at the bottom - 'type8': Five graphs, three at the top, two centered at the bottom - 'type9': Six graphs, three at the top, three centered at the bottom - 'type9': Six graphs, three at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, three graphs, three graphs, three graphs, the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the middle and two at the bottom - 'type10': Six graphs, two at the top, two in the

Value

returns grouped graphs

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
attach(pomegranate)
a=DIC(trat, WL, geom = "point", ylab = "WL")
b=DIC(trat, SS, geom = "point", ylab="SS")
c=DIC(trat, AT, geom = "point", ylab = "AT")
grid.onefactor(list(a,b),model = "type1")
grid.onefactor(list(a,b,c),model = "type3")
grid.onefactor(list(a,b,c),model = "type4")
```

ibarplot.double Graph: Invert letters for two factor chart

Description

invert uppercase and lowercase letters in graph for factorial scheme the subdivided plot with significant interaction

Usage

ibarplot.double(analysis)

Arguments

analysis FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object

Value

Return column chart for two factors

Examples

```
data(covercrops)
attach(covercrops)
a=FAT2DBC(A, B, Bloco, Resp, ylab=expression("Yield"~(Kg~"100 m"^2)),
legend = "Cover crops",alpha.f = 0.3,family = "serif")
ibarplot.double(a)
```

jointcluster

Description

This function presents a method to evaluate similarity of experiments based on a matrix of QMres of all against all. This is used as a measure of similarity and applied in clustering.

Usage

```
jointcluster(qmres, information = "matrix", method.cluster = "ward.D")
```

Arguments

qmres	Vector containing mean squares of residuals or output from list DIC or DBC function
information	Option to choose the return type. 'matrix', 'bar' or 'cluster'
method.cluster	Grouping method

Value

Returns a residual mean square ratio matrix, bar graph with ratios sorted in ascending order, or cluster analysis.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
qmres=c(0.344429, 0.300542, 0.124833, 0.04531, 0.039571, 0.011812, 0.00519)
jointcluster(qmres,information = "cluster")
jointcluster(qmres,information = "matrix")
data(mirtilo)
m=lapply(unique(mirtilo$exp),function(x){
    m=with(mirtilo[mirtilo$exp==x,],DBC(trat,bloco,resp))})
jointcluster(m)
```

laranja

Description

An experiment was conducted with the objective of studying the behavior of nine rootstocks for the Valencia orange tree. The data set refers to the 1973 evaluation (12 years old). The rootstocks are: T1: Tangerine Sunki; T2: National rough lemon; T3: Florida rough lemon; T4: Cleopatra tangerine; T5: Citranger-troyer; T6: Trifoliata; T7: Clove Tangerine; T8: Country orange; T9: Clove Lemon. The number of fruits per plant was evaluated.

Usage

data(laranja)

Format

data.frame containing data set

f1 Categorical vector with treatments

bloco Categorical vector with block

resp Numeric vector with number of fruits per plant

References

Planejamento e Analise Estatistica de Experimentos Agronomicos (2013) - Decio Barbin - pg. 72

See Also

cloro, enxofre, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(laranja)

line_plot

Description

Performs a descriptive line graph with standard deviation bars

Usage

```
line_plot(
  time,
  response,
  factor = NA,
  errorbar = "sd",
  ylab = "Response",
  xlab = "Time",
  legend.position = "right",
  theme = theme_classic()
)
```

Arguments

time	Vector containing the x-axis values
response	Vector containing the y-axis values
factor	Vector containing a categorical factor
errorbar	Error bars (sd or se)
ylab	y axis title (this argument uses the <i>parse</i> function)
xlab	x axis title (this argument uses the <i>parse</i> function)
legend.position	l de la constante de
	Legend position
theme	ggplot2 theme (<i>default</i> is theme_classic())

Value

Returns a line chart with error bars

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

sk_graph, plot_TH, corgraph, spider_graph

logistic

Examples

```
dose=rep(c(0,2,4,6,8,10),e=3,2)
resp=c(seq(1,18,1),seq(2,19,1))
fator=rep(c("A","B"),e=18)
line_plot(dose,resp,fator)
```

logistic

Analysis: Logistic regression

Description

Logistic regression is a very popular analysis in agrarian sciences, such as in fruit growth curves, seed germination, etc...The logistic function performs the analysis using 3 or 4 parameters of the logistic model, being imported from the LL function .3 or LL.4 of the drc package (Ritz & Ritz, 2016).

Usage

```
logistic(
  trat,
  resp,
  npar = "LL.3",
  error = "SE",
  ylab = "Dependent",
  xlab = expression("Independent"),
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  font.family = "sans"
)
```

Arguments

trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.
npar	Number of model parameters
error	Error bar (It can be SE - <i>default</i> , SD or FALSE)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the <i>expression</i> () function)
theme	ggplot2 theme (<i>default</i> is theme_bw())
legend.positio	n
	Legend position (<i>default</i> is c(0.3,0.8))

r2	Coefficient of determination of the mean or all values (default is all)
width.bar	Bar width
scale	Sets x scale (<i>default</i> is none, can be "log")
textsize	Font size
font.family	Font family (<i>default</i> is sans)

Details

The three-parameter log-logistic function with lower limit 0 is

$$f(x) = 0 + \frac{d}{1 + \exp(b(\log(x) - \log(e)))}$$

The four-parameter log-logistic function is given by the expression

$$f(x) = c + \frac{d-c}{1 + \exp(b(\log(x) - \log(e)))}$$

The function is symmetric about the inflection point (e).

Value

The function allows the automatic graph and equation construction of the logistic model, provides important statistics, such as the Akaike (AIC) and Bayesian (BIC) inference criteria, coefficient of determination (r2), square root of the mean error (RMSE).

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

References

Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package 'drc'. Creative Commons: Mountain View, CA, USA, 2016.

Examples

```
data("emerg")
with(emerg, logistic(time, resp,xlab="Time (days)",ylab="Emergence (%)"))
with(emerg, logistic(time, resp,npar="LL.4",xlab="Time (days)",ylab="Emergence (%)"))
```

mirtilo

Description

An experiment was carried out in order to evaluate the rooting (resp1) of blueberry cuttings as a function of the cutting size (Treatment Colume). This experiment was repeated three times (Location column) and a randomized block design with four replications was adopted.

Usage

data(mirtilo)

Format

data.frame containing data set

trat Categorical vector with treatments

exp Categorical vector with experiment

bloco Categorical vector with block

resp Numeric vector

See Also

cloro, enxofre, laranja, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

```
data(mirtilo)
attach(mirtilo)
```

orchard

Dataset: Orchard

Description

An experiment was carried out to analyze the treatments in orchards applied in the rows and between the rows, in a split-plot scheme according to a randomized block design. For this case, the line and leading are considered the levels of the factor applied in the plots and the treatments are considered the levels of the factor applied in the subplots. Microbial biomass carbon was analyzed.

Usage

data(orchard)

passiflora

Format

data.frame containing data set

A Categorical vector with plot

B Categorical vector with split-plot

Bloco Categorical vector with block

Resp Numeric vector with microbial biomass carbon

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(orchard)

passiflora

Dataset: Substrate data in the production of passion fruit seedlings

Description

An experiment was carried out in order to evaluate the influence of the substrate on the dry mass of aerial part and root in yellow sour passion fruit. The experiment was conducted in a randomized block design with four replications. The treatments consisted of five substrates (Vermiculite, MC Normal, Carolina Soil, Mc organic and sand)

Usage

data(passiflora)

Format

data.frame containing data set

trat Categorical vector with substrate

bloco Categorical vector with block

MSPA Numeric vector with dry mass of aerial part

MSR Numeric vector with dry mass of root

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

data(passiflora)

PCA_function

Description

This function performs principal component analysis.

Usage

```
PCA_function(
  data,
  scale = TRUE,
  text = TRUE,
  pointsize = 5,
  textsize = 12,
  labelsize = 4,
  linesize = 0.6,
  repel = TRUE,
 ylab = NA,
  xlab = NA,
 groups = NA,
  sc = 1,
  font.family = "sans",
  theme = theme_bw(),
  label.legend = "Cluster",
  type.graph = "biplot"
)
```

data	Data.frame with data set. Line name must indicate the treatment
scale	Performs data standardization (default is TRUE)
text	Add label (<i>default</i> is TRUE)
pointsize	Point size (<i>default</i> is 5)
textsize	Text size (default is 12)
labelsize	Label size (default is 4)
linesize	Line size (default is 0.8)
repel	Avoid text overlay (default is TRUE)
ylab	Names y-axis (this argument uses the parse function)
xlab	Names x-axis (this argument uses the parse function)
groups	Define grouping
sc	Secondary axis scale ratio (default is 1)
font.family	Font family (<i>default</i> is sans)

pepper

theme	Theme ggplot2 (<i>default</i> is theme_bw())
label.legend	Legend title (when group is not NA)
type.graph	Type of chart (<i>default</i> is biplot)

Details

The type.graph argument defines the graph that will be returned, in the case of "biplot" the biplot graph is returned with the first two main components and with eigenvalues and eigenvectors. In the case of "scores" only the treatment scores are returned, while for "cor" the correlations are returned. For "corPCA" a correlation between the vectors with the components is returned.

Value

The eigenvalues and eigenvectors, the explanation percentages of each principal component, the correlations between the vectors with the principal components, as well as graphs are returned.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
data(pomegranate)
medias=tabledesc(pomegranate)
PCA_function(medias)
```

pepper

Dataset: Pepper

Description

A vegetable breeder is characterizing five mini pepper accessions from the State University of Londrina germplasm bank for agronomic and biochemical variables. The experiment was conducted in a completely randomized design with four replications

Usage

data(pepper)

Format

data.frame containing data set

Acesso Categorical vector with accessions

MS Numeric vector com dry mass

VitC Numeric vector with Vitamin C

See Also

enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(pepper)

phao

Dataset: Osmocote in Phalaenopsis sp.

Description

The objective of the work was to evaluate the effect of doses of osmocote (15-09-12-N-P2O5-K2O, respectively) on the initial development of the orchid *Phalaenopsis* sp. The osmocote fertilizer was added in the following doses: 0, 2, 4, 6 and 8 g vase-1. After twelve months, leaf length was evaluated.

Usage

data(phao)

Format

data.frame containing data set

dose Numeric vector with doses

comp Numeric vector with leaf length

References

de Paula, J. C. B., Junior, W. A. R., Shimizu, G. D., Men, G. B., & de Faria, R. T. (2020). Fertilizante de liberacao controlada no crescimento inicial da orquidea *Phalaenopsis* sp. Revista Cultura Agronomica, 29(2), 289-299.

See Also

pomegranate, passiflora, cloro, enxofre, laranja, mirtilo, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

data(phao)

plot_cor

Description

Correlation analysis function (Pearson or Spearman)

Usage

```
plot_cor(
  х,
  у,
  method = "pearson",
 ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  pointsize = 5,
  shape = 21,
  fill = "gray",
  color = "black",
  axis.size = 12,
  ic = TRUE,
  title = NA,
  family = "sans"
)
```

x	Numeric vector with independent variable
У	Numeric vector with dependent variable
method	Method correlation (default is Pearson)
ylab	Variable response name (Accepts the <i>expression</i> () function)
xlab	Treatments name (Accepts the <i>expression</i> () function)
theme	ggplot2 theme (<i>default</i> is theme_classic())
pointsize	Point size
shape	shape format
fill	Fill point
color	Color point
axis.size	Axis text size
ic	add interval of confidence
title	title
family	Font family

Value

The function returns a graph for correlation

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
with(pomegranate, plot_cor(WL, SS, xlab="WL", ylab="SS"))
```

plot_interaction Graph: Interaction plot

Description

Performs an interaction graph from an output of the FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC commands.

Usage

```
plot_interaction(
    a,
    box_label = TRUE,
    repel = FALSE,
    pointsize = 3,
    linesize = 0.8,
    width.bar = 0.05,
    add.errorbar = TRUE,
    family = "sans"
)
```

Arguments

а	FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object
box_label	Add box in label
repel	a boolean, whether to use ggrepel to avoid overplotting text labels or not.
pointsize	Point size
linesize	Line size (Trendline and Error Bar)
width.bar	width of the error bars.
add.errorbar	Add error bars.
family	Font family
plot_jitter

Value

Returns an interaction graph with averages and letters from the multiple comparison test

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

Examples

```
data(cloro)
a=with(cloro, FAT2DIC(f1, f2, resp))
plot_interaction(a)
```

plot_jitter

Graph: Column, box or segment chart with observations

Description

The function performs the construction of graphs of boxes, columns or segments with all the observations represented in the graph.

Usage

plot_jitter(model)

Arguments

model DIC, DBC or DQL object

Value

Returns with graph of boxes, columns or segments with all the observations represented in the graph.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data("pomegranate")
a=with(pomegranate,DIC(trat,WL,geom="point"))
plot_jitter(a)
```

plot_TH

Description

The plot_TH function allows the user to build a column/line graph with climatic parameters of temperature (maximum, minimum and average) and relative humidity (UR) or precipitation. This chart is widely used in scientific work in agrarian science

Usage

```
plot_TH(
  tempo,
  Tmed,
  Tmax,
  Tmin,
 UR,
  xlab = "Time",
 yname1 = expression("Humidity (%)"),
 yname2 = expression("Temperature ("^o * "C)"),
  legend.H = "Humidity",
  legend.tmed = "Tmed",
  legend.tmin = "Tmin",
  legend.tmax = "Tmax",
  colormax = "red",
  colormin = "blue",
  colormean = "darkgreen",
  fillbar = "gray80",
  limitsy1 = c(0, 100),
  x = "days",
 breaks = "1 months",
  textsize = 12,
  legendsize = 12,
  titlesize = 12,
  linesize = 1,
  date_format = "%m-%Y",
  sc = 2.5,
  angle = 0,
  legend.position = "bottom",
  theme = theme_classic()
)
```

Arguments

tempo	Vector with times
Tmed	Vector with mean temperature

Tmax	Vector with maximum temperature
Tmin	Vector with minimum temperature
UR	Vector with relative humidity or precipitation
xlab	x axis name
yname1	y axis name
yname2	Secondary y-axis name
legend.H	Legend column
legend.tmed	Legend mean temperature
legend.tmin	Legend minimum temperature
legend.tmax	Legend maximum temperature
colormax	Maximum line color (<i>default</i> is "red")
colormin	Minimum line color (<i>default</i> is "blue")
colormean	Midline color (<i>default</i> is "darkgreen")
fillbar	Column fill color (<i>default</i> is "gray80")
limitsy1	Primary y-axis scale (<i>default</i> is c(0,100))
x	x scale type (days or data, default is "days")
breaks	Range for x scale when $x = $ "date" (default is 1 months)
textsize	Axis text size
legendsize	Legend text size
titlesize	Axis title size
linesize	Line size
date_format	Date format for x="data"
sc	Scale for secondary y-axis in relation to primary y-axis (declare the number of times that y2 is less than or greater than y1, the default being 2.5)
angle	x-axis scale text rotation
legend.position	
	Legend position
theme	ggplot2 theme

Value

Returns row and column graphs for graphical representation of air temperature and relative humidity. Graph normally used in scientific articles

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

sk_graph, barplot_positive, corgraph, plot_TH1, spider_graph, line_plot

Examples

library(AgroR)
data(weather)
with(weather, plot_TH(tempo, Tmed, Tmax, Tmin, UR))

plot_TH1

Graph: Climate chart of temperature and humidity (Model 2)

Description

The plot_TH1 function allows the user to build a column/line graph with climatic parameters of temperature (maximum, minimum and average) and relative humidity (UR) or precipitation. This chart is widely used in scientific work in agrarian science

Usage

```
plot_TH1(
  tempo,
  Tmed,
  Tmax,
  Tmin,
  UR,
  xlab = "Time",
  yname1 = expression("Humidity (%)"),
  yname2 = expression("Temperature ("^o * "C)"),
  legend.T = "Temperature",
  legend.H = "Humidity",
  legend.tmed = "Tmed",
  legend.tmin = "Tmin",
  legend.tmax = "Tmax",
  colormax = "red",
  colormin = "blue",
  colormean = "darkgreen",
  fillarea = "darkblue",
  facet.fill = "#FF9933",
  panel.grid = FALSE,
  x = "days",
  breaks = "1 months",
  textsize = 12,
  legendsize = 12,
  titlesize = 12,
  linesize = 1,
  date_format = "%m-%Y",
```

```
angle = 0,
legend.position = c(0.1, 0.3)
)
```

Arguments

tempo	Vector with times
Tmed	Vector with mean temperature
Tmax	Vector with maximum temperature
Tmin	Vector with minimum temperature
UR	Vector with relative humidity or precipitation
xlab	x axis name
yname1	y axis name
yname2	Secondary y-axis name
legend.T	faceted title legend 1
legend.H	faceted title legend 2
legend.tmed	Legend mean temperature
legend.tmin	Legend minimum temperature
legend.tmax	Legend maximum temperature
colormax	Maximum line color (<i>default</i> is "red")
colormin	Minimum line color (<i>default</i> is "blue")
colormean	Midline color (<i>default</i> is "darkgreen")
fillarea	area fill color (<i>default</i> is "darkblue")
facet.fill	faceted title fill color (default is #FF9933)
panel.grid	remove grid line (<i>default</i> is FALSE)
х	x scale type (days or data, default is "days")
breaks	Range for x scale when x = "date" (default is 1 months)
textsize	Axis text size
legendsize	Legend text size
titlesize	Axis title size
linesize	Line size
date_format	Date format for x="data"
angle	x-axis scale text rotation
legend.positio	
	Legend position

Value

Returns row and column graphs for graphical representation of air temperature and relative humidity. Graph normally used in scientific articles

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

sk_graph, barplot_positive, corgraph, spider_graph, line_plot

Examples

```
library(AgroR)
data(weather)
with(weather, plot_TH1(tempo, Tmed, Tmax, Tmin, UR))
```

plot_tonetest Graphics: Graphic for t test to compare means with a reference value

Description

Sometimes the researcher wants to test whether the treatment mean is greater than/equal to or less than a reference value. For example, I want to know if the average productivity of my treatment is higher than the average productivity of a given country. For this, this function allows comparing the means with a reference value using the t test.

Usage

```
plot_tonetest(tonetest, alpha = 0.95)
```

Arguments

tonetest	t.one.test object
alpha	confidence level.

Value

returns a density plot and a column plot to compare a reference value with other treatments.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
library(AgroR)
data("pomegranate")
resu=tonetest(resp=pomegranate$WL, trat=pomegranate$trat, mu=2)
plot_tonetest(resu)
```

polynomial

Description

Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor

Usage

```
polynomial(
  trat,
  resp,
  ylab = "Response",
  xlab = "Independent",
 yname.poly = "y",
  xname.poly = "x",
  grau = NA,
  theme = theme_classic(),
  point = "mean_sd",
  color = "gray80",
  posi = "top",
  textsize = 12,
  se = FALSE,
  ylim = NA,
  family = "sans",
  pointsize = 4.5,
  linesize = 0.8,
 width.bar = NA,
  n = NA,
  SSq = NA,
 DFres = NA,
  print.on = TRUE,
 plot.on = TRUE
)
```

Arguments

trat	Numerical vector with treatments (Declare as numeric)
resp	Numerical vector containing the response of the experiment.
ylab	Dependent variable name (this argument uses the <i>parse</i> function)
xlab	Independent variable name (this argument uses the parse function)
yname.poly	Y name in equation
<pre>xname.poly</pre>	X name in equation
grau	Degree of the polynomial (1, 2 or 3)

theme	ggplot2 theme (<i>default</i> is theme_classic())
point	Defines whether to plot mean ("mean"), all repetitions ("all"),mean with stan- dard deviation ("mean_sd") or mean with standard error (<i>default</i> - "mean_se").
color	Graph color (<i>default</i> is gray80)
posi	Legend position
textsize	Font size
se	Adds confidence interval (default is FALSE)
ylim	y-axis scale
family	Font family
pointsize	Point size
linesize	line size (Trendline and Error Bar)
width.bar	width of the error bars of a regression graph.
n	Number of decimal places for regression equations
SSq	Sum of squares of the residue
DFres	Residue freedom degrees
print.on	Print output
plot.on	Plot output

Value

Returns linear, quadratic or cubic regression analysis.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

polynomial2, polynomial2_color

Examples

```
data("phao")
with(phao, polynomial(dose,comp, grau = 2))
```

polynomial2

Description

Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative

Usage

```
polynomial2(
  fator1,
  resp,
  fator2,
  color = NA,
  grau = NA,
 ylab = "Response",
  xlab = "Independent",
  theme = theme_classic(),
  se = FALSE,
  point = "mean_sd",
  legend.title = "Treatments",
  posi = "top",
  textsize = 12,
  ylim = NA,
  family = "sans",
 width.bar = NA,
  pointsize = 3,
  linesize = 0.8,
  separate = c("(\"", "\")"),
  n = NA,
 DFres = NA,
  SSq = NA,
 print.on = TRUE,
  plot.on = TRUE
)
```

Arguments

fator1	Numeric or complex vector with factor 1 levels
resp	Numerical vector containing the response of the experiment.
fator2	Numeric or complex vector with factor 2 levels
color	Graph color (<i>default</i> is NA)
grau	Degree of the polynomial (1,2 or 3)
ylab	Dependent variable name (this argument uses the <i>parse</i> function)

xlab	Independent variable name (this argument uses the parse function)
theme	ggplot2 theme (<i>default</i> is theme_classic())
se	Adds confidence interval (default is FALSE)
point	Defines whether to plot all points ("all"), mean ("mean"), mean with standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se").
legend.title	Title legend (this argument uses the <i>parse</i> function)
posi	Legend position
textsize	Font size (<i>default</i> is 12)
ylim	y-axis scale
family	Font family (<i>default</i> is sans)
width.bar	width of the error bars of a regression graph.
pointsize	Point size (default is 4)
linesize	line size (Trendline and Error Bar)
separate	Separation between treatment and equation (<i>default</i> is c("(\"","\")"))
n	Number of decimal places for regression equations
DFres	Residue freedom degrees
SSq	Sum of squares of the residue
print.on	Print output
plot.on	Plot output

Value

Returns two or more linear, quadratic or cubic regression analyzes.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

polynomial, polynomial2_color

Examples

```
dose=rep(c(0,0,0,2,2,2,4,4,4,6,6,6),3)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80,
12,14,15,23,24,25,50,54,56,80,90,40,
12,14,15,3,4,5,50,54,56,80,90,40)
trat=rep(c("A","B","C"),e=12)
polynomial2(dose, resp, trat, grau=c(1,2,3))
```

polynomial2_color Analysis: Linear regression graph in double factorial with color graph

Description

Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative

Usage

```
polynomial2_color(
  fator1,
  resp,
  fator2,
  color = NA,
  grau = NA,
 ylab = "Response",
  xlab = "independent",
  theme = theme_classic(),
  se = FALSE,
  point = "mean_se",
  legend.title = "Treatments",
  posi = "top",
  textsize = 12,
  ylim = NA,
  family = "sans",
 width.bar = NA,
  pointsize = 5,
  linesize = 0.8,
  separate = c("(\"", "\")"),
  n = NA,
 DFres = NA,
  SSq = NA,
 print.on = TRUE,
  plot.on = TRUE
)
```

Arguments

fator1	Numeric or complex vector with factor 1 levels
resp	Numerical vector containing the response of the experiment.
fator2	Numeric or complex vector with factor 2 levels
color	Graph color (<i>default</i> is NA)
grau	Degree of the polynomial (1,2 or 3)
ylab	Dependent variable name (this argument uses the <i>parse</i> function)

xlab	Independent variable name (this argument uses the parse function)
theme	ggplot2 theme (<i>default</i> is theme_classic())
se	Adds confidence interval (default is FALSE)
point	Defines whether to plot all points ("all"), mean ("mean"), mean with standard deviation ("mean_sd") or mean with standard error (<i>default</i> - "mean_se").
legend.title	Title legend (this argument uses the <i>parse</i> function)
posi	Legend position
textsize	Font size (default is 12)
ylim	y-axis scale
family	Font family (<i>default</i> is sans)
width.bar	width of the error bars of a regression graph.
pointsize	Point size (default is 4)
linesize	line size (Trendline and Error Bar)
separate	Separation between treatment and equation (<i>default</i> is c("(\"","\")"))
n	Number of decimal places for regression equations
DFres	Residue freedom degrees
SSq	Sum of squares of the residue
print.on	Print output
plot.on	Plot output

Value

Returns two or more linear, quadratic or cubic regression analyzes.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

polynomial, polynomial2

Examples

```
dose=rep(c(0,0,0,2,2,2,4,4,4,6,6,6),3)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80,
12,14,15,23,24,25,50,54,56,80,90,40,
12,14,15,3,4,5,50,54,56,80,90,40)
trat=rep(c("A","B","C"),e=12)
polynomial2_color(dose, resp, trat, grau=c(1,2,3))
```

pomegranate

Description

An experiment was conducted with the objective of studying different products to reduce the loss of mass in postharvest of pomegranate fruits. The experiment was conducted in a completely randomized design with four replications. Treatments are: T1: External Wax; T2: External + Internal Wax; T3: External Orange Oil; T4: Internal + External Orange Oil; T5: External sodium hypochlorite; T6: Internal + External sodium hypochlorite

Usage

data(pomegranate)

Format

data.frame containing data set

trat Categorical vector with treatments

- WL Numeric vector weights loss
- SS Numeric vector solid soluble
- AT Numeric vector titratable acidity
- ratio Numeric vector with ratio (SS/AT)

See Also

cloro, enxofre, laranja, mirtilo, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora

Examples

data(pomegranate)

porco

Dataset: Pig development and production

Description

An experiment whose objective was to study the effect of castration age on the development and production of pigs, evaluating the weight of the piglets. Four treatments were studied: A - castration at 56 days of age; B - castration at 7 days of age; C - castration at 36 days of age; D - whole (not castrated); E - castration at 21 days of age. The Latin square design was used in order to control the variation between litters (lines) and the variation in the initial weight of the piglets (columns), with the experimental portion consisting of a piglet.

PSUBDBC

Usage

data(porco)

Format

data.frame containing data set

trat Categorical vector with treatments

linhas Categorical vector with lines

colunas Categorical vector with columns

resp Numeric vector

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, sensorial, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(porco)

PSUBDBC

Analysis: DBC experiments in split-plot

Description

Analysis of an experiment conducted in a randomized block design in a split-plot scheme using fixed effects analysis of variance.

Usage

```
PSUBDBC(
  f1,
  f2,
  block,
  response,
  norm = "sw",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
  names.fat = c("F1", "F2"),
 mcomp = "tukey",
  grau = c(NA, NA),
  grau12 = NA,
  grau21 = NA,
  transf = 1,
  constant = 0,
```

PSUBDBC

```
geom = "bar",
  theme = theme_classic(),
 ylab = "Response",
 color = "rainbow",
 textsize = 12,
 labelsize = 4,
 dec = 3,
 errorbar = TRUE,
 addmean = TRUE,
 ylim = NA,
 point = "mean_se",
 fill = "lightblue",
  angle = 0,
 family = "sans",
 posi = "right",
 angle.label = 0,
 print.on = TRUE,
 plot.on = TRUE
)
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with subplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the parse function)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.
grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))
theme	ggplot2 theme (<i>default</i> is theme_classic())

ylab	Variable response name (this argument uses the <i>parse</i> function)
color	When the columns are different colors (Set fill-in argument as "trat")
textsize	Font size (default is 12)
labelsize	Font size (default is 4)
dec	Number of cells (<i>default</i> is 3)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
ylim	y-axis limit
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family (<i>default</i> is sans)
posi	Legend position
angle.label	Label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett), the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

Note

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

PSUBDIC

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

PSUBDIC

Analysis: DIC experiments in split-plot

Description

Analysis of an experiment conducted in a completely randomized design in a split-plot scheme using fixed effects analysis of variance.

Usage

```
PSUBDIC(
  f1,
  f2,
  block,
  response,
  norm = "sw",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(TRUE, TRUE),
```

```
names.fat = c("F1", "F2"),
mcomp = "tukey",
grau = c(NA, NA),
grau12 = NA,
grau21 = NA,
transf = 1,
constant = 0,
geom = "bar",
theme = theme_classic(),
ylab = "Response",
lab.factor = c("F1", "F2"),
fill = "lightblue",
angle = 0,
family = "sans",
color = "rainbow",
errorbar = TRUE,
addmean = TRUE,
textsize = 12,
labelsize = 4,
dec = 3,
ylim = NA,
posi = "right",
point = "mean_se",
angle.label = 0,
print.on = TRUE,
plot.on = TRUE
```

Arguments

)

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with subplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
names.fat	Name of factors (this argument uses the <i>parse</i> function)
mcomp	Multiple comparison test (Tukey (default), LSD, Scott-Knott and Duncan)
grau	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with three elements.
grau12	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 2, in the case of interaction f1 x f2 and qualitative factor 2 and quantitative factor 1.

PSUBDIC

grau21	Polynomial degree in case of quantitative factor (<i>default</i> is 1). Provide a vector with n levels of factor 1, in the case of interaction f1 x f2 and qualitative factor 1 and quantitative factor 2.
transf	Applies data transformation (default is 1; for log consider 0)
constant	Add a constant for transformation (enter value)
geom	Graph type (columns or segments (For simple effect only))
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
lab.factor	Provide a vector with two observations referring to the x-axis name of factors 1 and 2, respectively, when there is an isolated effect of the factors. This argument uses 'parse'.
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	Font family (<i>default</i> is sans)
color	When the columns are different colors (Set fill-in argument as "trat")
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - <i>default</i> is TRUE
addmean	Plot the average value on the graph (<i>default</i> is TRUE)
textsize	Font size (<i>default</i> is 12)
labelsize	Label size (<i>default</i> is 4)
dec	Number of cells (default is 3)
ylim	y-axis limit
posi	Legend position
point	This function defines whether the point must have all points ("all"), mean ("mean"), standard deviation (<i>default</i> - "mean_sd") or mean with standard error ("mean_se") if quali= FALSE. For quali=TRUE, 'mean_sd' and 'mean_se' change which information will be displayed in the error bar.
angle.label	Label angle
print.on	Print output
plot.on	Plot output

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett), the test of multiple comparisons (Tukey, LSD, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. The column chart for qualitative treatments is also returned. The function also returns a standardized residual plot.

The order of the chart follows the alphabetical pattern. Please use 'scale_x_discrete' from package ggplot2, 'limits' argument to reorder x-axis. The bars of the column and segment graphs are standard deviation.

In the final output when transformation (transf argument) is different from 1, the columns resp and respo in the mean test are returned, indicating transformed and non-transformed mean, respectively.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

PSUBFAT2DBC

Analysis: Plot subdivided into randomized blocks with a subplot in a double factorial scheme

Description

This function performs the analysis of a randomized block design in a split-plot with a subplot in a double factorial scheme.

Note

PSUBFAT2DBC

Usage

```
PSUBFAT2DBC(
    f1,
    f2,
    f3,
    block,
    resp,
    alpha.f = 0.05,
    alpha.t = 0.05,
    norm = "sw",
    homog = "bt",
    mcomp = "tukey"
)
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with splitplot levels
f3	Numeric or complex vector with splitsplitplot levels
block	Numeric or complex vector with blocks
resp	Numeric vector with responses
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
norm	Error normality test (default is Shapiro-Wilk)
homog	Homogeneity test of variances (default is Bartlett)
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)

Value

Analysis of variance of fixed effects and multiple comparison test of Tukey, Scott-Knott, LSD or Duncan.

Examples

```
f1=rep(c("PD","PDE","C"), e = 40);f1=factor(f1,unique(f1))
f2=rep(c(300,400), e = 20,3);f2=factor(f2,unique(f2))
f3=rep(c("c1", "c2", "c3", "c4"), e = 5,6);f3=factor(f3,unique(f3))
bloco=rep(paste("B",1:5),24); bloco=factor(bloco,unique(bloco))
set.seed(10)
resp=rnorm(120,50,5)
PSUBFAT2DBC(f1,f2,f3,bloco,resp,alpha.f = 0.5) # force triple interaction
PSUBFAT2DBC(f1,f2,f3,bloco,resp,alpha.f = 0.4) # force double interaction
```

PSUBSUBDBC

Description

Analysis of an experiment conducted in a randomized block design in a split-split-plot scheme using analysis of variance of fixed effects.

Usage

```
PSUBSUBDBC(
    f1,
    f2,
    f3,
    block,
    response,
    alpha.f = 0.05,
    alpha.t = 0.05,
    dec = 3,
    mcomp = "tukey"
)
```

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with splitplot levels
f3	Numeric or complex vector with splitsplitplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Significance level of the multiple comparison test (<i>default</i> is 0.05)
dec	Number of cells
mcomp	Multiple comparison test (Tukey (default), LSD and Duncan)

Value

Analysis of variance of fixed effects and multiple comparison test of Tukey, LSD or Duncan.

Note

The PSUBSUBDBC function does not present residual analysis, interaction breakdown, graphs and implementations of various multiple comparison or regression tests. The function only returns the analysis of variance and multiple comparison test of Tukey, LSD or Duncan.

quant.fat2.desd

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
library(AgroR)
data(enxofre)
with(enxofre, PSUBSUBDBC(f1, f2, f3, bloco, resp))
```

quant.fat2.desd Analysis: Polynomial splitting for double factorial in DIC and DBC

Description

Splitting in polynomials for double factorial in DIC and DBC. Note that f1 must always be qualitative and f2 must always be quantitative. This function is an easier way to visualize trends for dual factor schemes with a quantitative and a qualitative factor.

Usage

```
quant.fat2.desd(factors = list(f1, f2, block), response, dec = 3)
```

Arguments

factors	Define f1 and f2 and/or block factors in list form. Please note that in the list it is
	necessary to write 'f1', 'f2' and 'block'. See example.
response	response variable
dec	Number of cells

Value

Returns the coefficients of the linear, quadratic and cubic models, the p-values of the t test for each coefficient (p.value.test) and the p-values for the linear, quadratic, cubic model splits and the regression deviations.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

See Also

FAT2DIC, FAT2DBC

Examples

```
library(AgroR)
data(cloro)
quant.fat2.desd(factors = list(f1=cloro$f1,
f2=rep(c(1:4),e=5,2), block=cloro$bloco),
response=cloro$resp)
```

```
seg_graph
```

Graph: Point graph for one factor

Description

This is a function of the point graph for one factor

Usage

```
seg_graph(model, fill = "lightblue", horiz = TRUE, pointsize = 4.5)
```

Arguments

model	DIC, DBC or DQL object
fill	fill bars
horiz	Horizontal Column (default is TRUE)
pointsize	Point size

Value

Returns a point chart for one factor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

barplot_positive, plot_TH, corgraph, spider_graph, line_plot

Examples

seg_graph2

Description

This is a function of the point graph for one factor

Usage

```
seg_graph2(
  model,
  theme = theme_gray(),
  pointsize = 4,
  pointshape = 16,
  horiz = TRUE,
  vjust = -0.6
)
```

Arguments

model	DIC, DBC or DQL object
theme	ggplot2 theme
pointsize	Point size
pointshape	Format point (default is 16)
horiz	Horizontal Column (default is TRUE)
vjust	vertical adjusted

Value

Returns a point chart for one factor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

barplot_positive, plot_TH, corgraph, spider_graph, line_plot

sensorial

Examples

```
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
            mcomp = "sk",angle=45,
            ylab = "Number of fruits/plants"))
seg_graph2(a,horiz = FALSE)
```

sensorial

Dataset: Sensorial data

Description

Set of data from a sensory analysis with six participants in which different combinations (blend) of the grape cultivar bordo and niagara were evaluated. Color (CR), aroma (AR), flavor (SB), body (CP) and global (GB) were evaluated. The data.frame presents the averages of the evaluators.

Usage

data(sensorial)

Format

data.frame containing data set

Blend Categorical vector with treatment

variable Categorical vector with variables

resp Numeric vector

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, simulate1, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(sensorial)

simulate1

Description

Simulated data from a completely randomized experiment with multiple assessments over time

Usage

```
data(simulate1)
```

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

resp Categorical vector with response

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate2, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(simulate1)

simulate2

Dataset: Simulated data dbct

Description

Simulated data from a latin square experiment with multiple assessments over time

Usage

data(simulate2)

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

bloco Categorical vector with block

resp Categorical vector with response

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate3, tomate, weather, phao, passiflora, aristolochia

Examples

data(simulate2)

simulate3

Dataset: Simulated data dqlt

Description

Simulated data from a completely randomized experiment with multiple assessments over time

Usage

data(simulate3)

Format

data.frame containing data set

tempo Categorical vector with time

trat Categorical vector with treatment

linhas Categorical vector with line

colunas Categorical vector with column

resp Categorical vector with response

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, tomate, weather, phao, passiflora, aristolochia

Examples

data(simulate3)

sketch

Description

Experimental sketching function

Usage

```
sketch(
  trat,
  trat1 = NULL,
  trat2 = NULL,
  r,
 design = "DIC",
  pos = "line",
  color.sep = "all",
  ID = FALSE,
 print.ID = TRUE,
  add.streets.y = NA,
  add.streets.x = NA,
 label.x = "",
label.y = "",
  axissize = 12,
 legendsize = 12,
  labelsize = 4,
 export.csv = FALSE,
  comment.caption = NULL
)
```

Arguments

trat	Vector with factor A levels
trat1	Vector with levels of factor B (Set to NULL if not factorial or psub)
trat2	Vector with levels of factor C (Set to NULL if not factorial)
r	Number of repetitions
design	Experimental design (see note)
pos	Repeat position (line or column),
color.sep	Color box
ID	plot Add only identification in sketch
print.ID	Print table ID
add.streets.y	Adds streets by separating treatments in row or column. The user must supply a numeric vector grouping the rows or columns that must be together. See the example.

add.streets.x	Adds streets by separating treatments in row or column. The user must supply a numeric vector grouping the rows or columns that must be together. See the example.
label.x	text in x
label.y	text in y
axissize	Axis size
legendsize	Title legend size
labelsize	Label size
export.csv	Save table template based on sketch in csv
comment.caption	
	Add comment in caption

Value

Returns an experimental sketch according to the specified design.

Note

The sketches have only a rectangular shape, and the blocks (in the case of randomized blocks) can be in line or in a column.

For the design argument, you can choose from the following options:

design="DIC" Completely randomized design

```
design="DBC" Randomized block design
design="DQL" Latin square design
design="FAT2DIC" DIC experiments in double factorial
design="FAT2DBC" DBC experiments in double factorial
design="FAT3DIC" DIC experiments in triple factorial
design="FAT3DBC" DBC experiments in triple factorial
design="PSUBDIC" DIC experiments in split-plot
design="PSUBDBC" DBC experiments in split-plot
design="PSUBSUBDBC" DBC experiments in split-plot
design="STRIP-PLOT" Strip-plot DBC experiments
```

For the color.sep argument, you can choose from the following options:

```
design="DIC" use "all" or "none"
design="DBC" use "all","bloco" or "none"
design="DQL" use "all", "column", "line" or "none"
design="FAT2DIC" use "all", "f1", "f2" or "none"
design="FAT2DBC" use "all", "f1", "f2", "block" or "none"
design="FAT3DIC" use "all", "f1", "f2", "f3" or "none"
design="FAT3DBC" use "all", "f1", "f2", "f3", "block" or "none"
design="PSUBDIC" use "all", "f1", "f2", "f3", "block" or "none"
design="PSUBDBC" use "all", "f1", "f2", "f3", "block" or "none"
design="PSUBDBC" use "all", "f1", "f2", "f3", "block" or "none"
```

sk_graph

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Mendiburu, F., & de Mendiburu, M. F. (2019). Package 'agricolae'. R Package, Version, 1-2.

Examples

```
Trat=paste("Tr",1:6)
# Completely randomized design
sketch(Trat,r=3)
sketch(Trat,r=3,pos="column")
sketch(Trat,r=3,color.sep="none")
sketch(Trat,r=3,color.sep="none",ID=TRUE,print.ID=TRUE)
sketch(Trat,r=3,pos="column",add.streets.x=c(1,1,2,2,3,3))
# Randomized block design
sketch(Trat, r=3, design="DBC")
sketch(Trat, r=3, design="DBC",pos="column")
sketch(Trat, r=3, design="DBC",pos="column",add.streets.x=c(1,1,2))
sketch(Trat, r=3, design="DBC",pos="column",add.streets.x=c(1,2,3), add.streets.y=1:6)
sketch(Trat, r=3, design="DBC",pos="line",add.streets.y=c(1,2,3), add.streets.x=1:6)
# Completely randomized experiments in double factorial
```

```
design = "FAT2DIC",
r=3,
pos="column")
```

sk_graph

Graph: Scott-Knott graphics

soybean

Description

This is a function of the bar graph for the Scott-Knott test

Usage

sk_graph(model, horiz = TRUE, fill.label = "lightyellow")

Arguments

model	DIC, DBC or DQL object
horiz	Horizontal Column (default is TRUE)
fill.label	fill Label box fill color

Value

Returns a bar chart with columns separated by color according to the Scott-Knott test

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

barplot_positive, plot_TH, corgraph, spider_graph, line_plot

Examples

```
data("laranja")
a=with(laranja, DBC(trat, bloco, resp,
    mcomp = "sk",angle=45,
    ylab = "Number of fruits/plants"))
sk_graph(a,horiz = FALSE)
library(ggplot2)
sk_graph(a,horiz = TRUE)+scale_fill_grey(start=1,end=0.5)
```

soybean

Dataset: Soybean

Description

An experiment was carried out to evaluate the grain yield (kg ha-1) of ten different commercial soybean cultivars in the municipality of Londrina/Parana. The experiment was carried out in the design of randomized complete blocks with four replicates per treatment.

spider_graph

Usage

data("soybean")

Format

data.frame containing data set

- cult numeric vector with treatment
- bloc numeric vector with block
- prod Numeric vector with grain yield

See Also

cloro, laranja, enxofre, laranja, mirtilo, passiflora, phao, porco, pomegranate, simulate1, simulate2, simulate3, tomate, weather

Examples

data(soybean)

spider_graph Graph: Spider graph for sensorial analysis

Description

Spider chart or radar chart. Usually used for graphical representation of acceptability in sensory tests

Usage

```
spider_graph(
  resp,
  vari,
  blend,
  legend.title = "",
  xlab = "",
  ylab = "",
  ymin = 0
)
```

Arguments

resp	Vector containing notes
vari	Vector containing the variables
blend	Vector containing treatments
legend.title	Caption title

xlab	x axis title (this argument uses the <i>parse</i> function)
ylab	y axis title (this argument uses the <i>parse</i> function)
ymin	Minimum value of y

Value

Returns a spider or radar chart. This graph is commonly used in studies of sensory analysis.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com> Leandro Simoes Azeredo Goncalves Rodrigo Yudi Palhaci Marubayashi

See Also

sk_graph, plot_TH, corgraph, barplot_positive, line_plot

Examples

```
library(AgroR)
data(sensorial)
with(sensorial, spider_graph(resp, variable, Blend))
```

STRIPLOT

Analysis: DBC experiments in strip-plot

Description

Analysis of an experiment conducted in a block randomized design in a strit-plot scheme using fixed effects analysis of variance.

Usage

```
STRIPLOT(
   f1,
   f2,
   block,
   response,
   norm = "sw",
   alpha.f = 0.05,
   transf = 1,
   textsize = 12,
   labelsize = 4,
   constant = 0
)
```

STRIPLOT

Arguments

f1	Numeric or complex vector with plot levels
f2	Numeric or complex vector with subplot levels
block	Numeric or complex vector with blocks
response	Numeric vector with responses
norm	Error normality test (default is Shapiro-Wilk)
alpha.f	Level of significance of the F test (default is 0.05)
transf	Applies data transformation (default is 1; for log consider 0)
textsize	Font size (default is 12)
labelsize	Label size (<i>default</i> is 4)
constant	Add a constant for transformation (enter value)

Value

The table of analysis of variance, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett). The function also returns a standardized residual plot.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

Examples

summarise_anova

Description

Summarizes the output of the analysis of variance and the multiple comparisons test for completely randomized (DIC), randomized block (DBC) and Latin square (DQL) designs.

Usage

```
summarise_anova(
   analysis,
   inf = "p",
   design = "DIC",
   round = 3,
   divisor = FALSE
)
```

Arguments

analysis	List with the analysis outputs of the DIC, DBC, DQL, FAT2DIC, FAT2DBC, PSUBDIC and PSUBDBC functions
inf	Analysis of variance information (can be "p", "f", "QM" or "SQ")
design	Type of experimental project (DIC, DBC, DQL, FAT2DIC, FAT2DBC, PSUB-DIC or PSUBDBC)
round	Number of decimal places
divisor	Add divider between columns

Value

returns a data.frame or print with a summary of the analysis of several experimental projects.

Note

Adding table divider can help to build tables in microsoft word. Copy console output, paste into MS Word, Insert, Table, Convert text to table, Separated text into:, Other: l.

The column names in the final output are imported from the ylab argument within each function.

This function is only for declared qualitative factors. In the case of a quantitative factor and the other qualitative in projects with two factors, this function will not work.

Triple factorials and split-split-plot do not work in this function.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>
summarise_conj

Examples

library(AgroR)

```
# DIC
data(pomegranate)
attach(pomegranate)
a=DIC(trat, WL, geom = "point", ylab = "WL")
b=DIC(trat, SS, geom = "point", ylab="SS")
c=DIC(trat, AT, geom = "point", ylab = "AT")
summarise_anova(analysis = list(a,b,c), divisor = TRUE)
library(knitr)
kable(summarise_anova(analysis = list(a,b,c), divisor = FALSE))
vari=c("WL","SS","AT")
output=lapply(vari,function(x){
output=DIC(trat,response = unlist(pomegranate[,x]),ylab = parse(text=x),print.on=FALSE)})
summarise_anova(analysis = output, divisor = TRUE)
# DBC
data(soybean)
attach(soybean)
a=DBC(cult,bloc,prod,ylab = "Yield")
summarise_anova(list(a),design = "DBC")
# FAT2DIC
data(corn)
attach(corn)
a=FAT2DIC(A, B, Resp, quali=c(TRUE, TRUE))
summarise_anova(list(a),design="FAT2DIC")
```

summarise_conj	Utils: Summary of Analysis of Variance and Test of Means for Joint
	analysis

Description

Summarizes the output of the analysis of variance and the multiple comparisons test for completely randomized (DIC) and randomized block (DBC) designs for Joint analysis with qualitative factor.

Usage

```
summarise_conj(analysis, design = "DBC", info = "p")
```

Arguments

analysis	List with the analysis outputs of the conjdic and conjdbc functions
design	Type of experimental project (DIC or DBC)
info	Analysis of variance information (can be "p", "f", "QM" or "SQ")

Note

The column names in the final output are imported from the ylab argument within each function.

This function is only for declared qualitative factors. In the case of a quantitative factor and the other qualitative in projects with two factors, this function will not work.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
library(AgroR)
data(mirtilo)
set.seed(1); resp1=rnorm(36,10,4)
set.seed(4); resp2=rnorm(36,10,3)
set.seed(8); resp3=rnorm(36,100,40)
type1=with(mirtilo, conjdbc(trat, bloco, exp, resp, ylab = "var1"))
type2=with(mirtilo, conjdbc(trat, bloco, exp, resp1, ylab = "var2"))
type3=with(mirtilo, conjdbc(trat, bloco, exp, resp2, ylab = "var3"))
type4=with(mirtilo, conjdbc(trat, bloco, exp, resp3, ylab = "var4"))
summarise_conj(analysis = list(type1,type2,type3,type4))
```

summarise_dunnett Utils: Dunnett's Test Summary

Description

Performs a summary in table form from a list of Dunnett's test outputs

Usage

summarise_dunnett(variable, colnames = NA, info = "sig")

Arguments

variable	List object Dunnett test
colnames	Names of column
info	Information of table

tabledesc

Value

A summary table from Dunnett's test is returned

Examples

```
library(AgroR)
data("pomegranate")
a=with(pomegranate,dunnett(trat=trat,resp=WL,control="T1"))
b=with(pomegranate,dunnett(trat=trat,resp=SS,control="T1"))
c=with(pomegranate,dunnett(trat=trat,resp=AT,control="T1"))
d=with(pomegranate,dunnett(trat=trat,resp=ratio,control="T1"))
summarise_dunnett(list(a,b,c,d))
```

```
tabledesc
```

Descriptive: Table descritive analysis

Description

Function for generating a data.frame with averages or other descriptive measures grouped by a categorical variable

Usage

tabledesc(data, fun = mean)

Arguments

data	data.frame containing the first column with the categorical variable and the re-
	maining response columns
fun	Function of descriptive statistics (default is mean)

Value

Returns a data.frame with a measure of dispersion or position from a dataset and separated by a factor

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
data(pomegranate)
tabledesc(pomegranate)
library(knitr)
kable(tabledesc(pomegranate))
```

TBARPLOT.reverse

Description

The function performs the construction of a reverse graph on the output of DICT, DBCT and DQL when geom="bar".

Usage

TBARPLOT.reverse(plot.t)

Arguments

plot.t DICT, DBCT or DQLT output when geom="bar"

Value

Returns a reverse graph of the output of DICT, DBCT or DQLT when geom="bar".

Note

All layout and subtitles are imported from DICT, DBCT and DQLT functions

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

See Also

DICT, DBCT, DQLT

Examples

```
data(simulate1)
a=with(simulate1, DICT(trat, tempo, resp,geom="bar",sup=40))
TBARPLOT.reverse(a)
```

test_two

Description

Test for two samples (paired and unpaired t test, paired and unpaired Wilcoxon test)

Usage

```
test_two(
  trat,
 resp,
 paired = FALSE,
 correct = TRUE,
  test = "t",
 alternative = c("two.sided", "less", "greater"),
 conf.level = 0.95,
  theme = theme_classic(),
 ylab = "Response",
 xlab = "",
 var.equal = FALSE,
 pointsize = 2,
 yposition.p = NA,
 xposition.p = NA,
 fill = "white"
)
```

Arguments

trat	Categorical vector with the two treatments
resp	Numeric vector with the response
paired	A logical indicating whether you want a paired t-test.
correct	A logical indicating whether to apply continuity correction in the normal approximation for the p-value.
test	Test used (t for test t or w for Wilcoxon test)
alternative	A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
conf.level	Confidence level of the interval.
theme	ggplot2 theme (<i>default</i> is theme_classic())
ylab	Variable response name (this argument uses the <i>parse</i> function)
xlab	Treatments name (this argument uses the parse function)
var.equal	A logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.

tomate

pointsize	Point size
yposition.p	Position p-value in y
xposition.p	Position p-value in x
fill	fill box

Details

Alternative = "greater" is the alternative that x has a larger mean than y. For the one-sample case: that the mean is positive.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing values are silently removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is generated.

Value

Returns the test for two samples (paired or unpaired t test, paired or unpaired Wilcoxon test)

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

Examples

```
resp=rnorm(100,100,5)
trat=rep(c("A","B"),e=50)
test_two(trat,resp)
test_two(trat,resp,paired = TRUE)
```

tomate

Dataset: Tomato data

Description

An experiment conducted in a randomized block design in a split plot scheme was developed in order to evaluate the efficiency of bacterial isolates in the development of tomato cultivars. The experiment counted a total of 24 trays; each block (in a total of four blocks), composed of 6 trays, in which each tray contained a treatment (6 isolates). Each tray was seeded with 4 different genotypes, each genotype occupying 28 cells per tray. The trays were randomized inside each block and the genotypes were randomized inside each tray.

tonetest

Usage

data(tomate)

Format

data.frame containing data set

parc Categorical vector with plot

subp Categorical vector with split-plot

bloco Categorical vector with block

resp Numeric vector

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, weather, aristolochia, phao, passiflora

Examples

data(tomate)

tonetest

Analysis: t test to compare means with a reference value

Description

Sometimes the researcher wants to test whether the treatment mean is greater than/equal to or less than a reference value. For example, I want to know if the average productivity of my treatment is higher than the average productivity of a given country. For this, this function allows comparing the means with a reference value using the t test.

Usage

```
tonetest(response, trat, mu = 0, alternative = "two.sided", conf.level = 0.95)
```

Arguments

response	Numerical vector containing the response of the experiment.
trat	Numerical or complex vector with treatments
mu	A number indicating the true value of the mean
alternative	A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less"
conf.level	confidence level of the interval.

Value

returns a list with the mean per treatment, maximum, minimum, sample standard deviation, confidence interval, t-test statistic and its p-value.

Note

No treatment can have zero variability. Otherwise the function will result in an error.

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Examples

```
library(AgroR)
data("pomegranate")
tonetest(resp=pomegranate$WL,
trat=pomegranate$trat,
mu=2,
alternative = "greater")
```

transf

Utils: Data transformation (Box-Cox, 1964)

Description

Estimates the lambda value for data transformation

Usage

```
transf(response, f1, f2 = NA, f3 = NA, block = NA, line = NA, column = NA)
```

Arguments

response	Numerical vector containing the response of the experiment.
f1	Numeric or complex vector with factor 1 levels
f2	Numeric or complex vector with factor 2 levels
f3	Numeric or complex vector with factor 3 levels
block	Numerical or complex vector with blocks
line	Numerical or complex vector with lines
column	Numerical or complex vector with columns

Value

Returns the value of lambda and/or data transformation approximation, according to Box-Cox (1964)

152

weather

Author(s)

Gabriel Danilo Shimizu, <gabrield.shimizu@gmail.com>

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Box, G. E., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.

Examples

```
# Completely randomized design
data("pomegranate")
with(pomegranate, transf(WL,f1=trat))
#______
# Randomized block design
data(soybean)
with(soybean, transf(prod, f1=cult, block=bloc))
#______
# Completely randomized design in double factorial
data(cloro)
with(cloro, transf(resp, f1=f1, f2=f2))
#______
# Randomized block design in double factorial
data(cloro)
with(cloro, transf(resp, f1=f1, f2=f2, block=bloco))
```

weather

Dataset: Weather data

Description

Climatic data from 01 November 2019 to 30 June 2020 in the municipality of Londrina-PR, Brazil. Data from the Instituto de Desenvolvimento Rural do Parana (IDR-PR)

Usage

data(weather)

weather

Format

data.frame containing data set

Data POSIXct vector with dates

tempo Numeric vector with time

Tmax Numeric vector with maximum temperature

Tmed Numeric vector with mean temperature

Tmin Numeric vector with minimum temperature

UR Numeric vector with relative humidity

See Also

cloro, enxofre, laranja, mirtilo, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, aristolochia, phao, passiflora

Examples

data(weather)

154

Index

* Aditional FAT2DBC.ad, 68 FAT2DIC.ad, 76 * Analysis conjdbc, 17 conjdic, 19conjfat2dbc, 22 * DBC conjdbc, 17 DBC, 27 FAT2DBC, 65 FAT2DBC.ad, 68 PSUBDBC, 122 PSUBDIC, 125 PSUBSUBDBC, 130 STRIPLOT, 142 * DIC conjdic, 19 dbc.ad, 31DIC, 42 dic.ad, 46 FAT2DIC, 72 FAT2DIC.ad, 76 FAT3DBC, 80 FAT3DBC.ad, 84 FAT3DIC, 88 FAT3DIC.ad, 91 * DQL DQL, 54 * Descriptive desc, 37 desc2fat. 38 desc3fat, 40 dispvar, 52 * Double conjfat2dbc, 22 * Experimental DBC, 27 DBCT, 35

desc, 37 desc2fat, 38 desc3fat, 40DIC, 42 DICT, 50 dispvar, 52 DQL, 54 DQLT, 57 polynomial, 115 polynomial2, 117 polynomial2_color, 119 quant.fat2.desd, 131 TBARPLOT.reverse, 148 transf, 152 * Factorial FAT2DBC, 65 FAT2DBC.ad, 68 FAT2DIC, 72 FAT2DIC.ad, 76 FAT3DBC, 80 FAT3DBC.ad, 84 FAT3DIC, 88 FAT3DIC.ad, 91 * Joint conjdbc, 17 conjdic, 19 conjfat2dbc, 22 jointcluster, 97 * Regression polynomial, 115 * Transformation transf. 152 * additional dbc.ad, 31dic.ad,46 * analysis jointcluster, 97 * croqui sketch, 137

156

* datasets aristolochia, 5 bean. 14 cloro, 15 corn, 25 covercrops, 27 emerg, 62enxofre. 63 eucalyptus, 64 laranja, 98 mirtilo, 102 orchard, 102 passiflora, 103 pepper, 105phao, 106 pomegranate, 121 porco, 121 sensorial, 134 simulate1, 135 simulate2, 135 simulate3, 136 soybean, 140 tomate, 150 weather, 153 * dbct **DBCT**, 35 * descriptive tabledesc, 147 * dict DICT, 50 * dalt DQLT, 57 * experimental sketch, 137 * factorial conjfat2dbc, 22 * regression polynomial2, 117 polynomial2_color, 119 * split-plot PSUBDBC, 122 * treatment dbc.ad.31 dic.ad, 46 aacp, 4

aristolochia, 5, 14, 15, 25, 27, 63, 98, 103, 106, 122, 134–136, 151, 154

bar_dunnett, 10 bar_graph, 11 bar_graph2, 12 barfacet, 6 bargraph_onefactor, 7 bargraph_twofactor, 8 barplot_positive, 9, 12, 13, 112, 114, 132, 133, 140, 142 bean, 14 cloro, 6, 14, 15, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 141, 151, 154 confinterval, 16 conjdbc, 17 conjdic, 19 conjfat2dbc, 22 cor_ic, 26 corgraph, 10, 12, 13, 24, 99, 112, 114, 132, 133, 140, 142 corn, 25 covercrops, 27 DBC, 27, 37, 45, 57 dbc.ad, 31DBC.glm, 33 DBCT, 35, 52, 59, 148 desc, 37 desc2fat, 38, 38 desc3fat, 40 desd_fat2_quant_ad, 41 DIC, 30, 42, 52, 57 dic.ad.46 DIC.glm, 48 DICT, 37, 50, 59, 148 dispvar, 38, 52 DQL, 30, 45, 54, 59 DQLT, 37, 52, 57, 148 dunn, 60 dunnett, 61, 72, 79 emerg, 62enxofre, 6, 14, 15, 25, 27, 63, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 141, 151.154 eucalyptus, 64 fat2_table, 79 FAT2DBC, 65, 72, 131

FAT2DBC, 65, 72, 13 FAT2DBC.ad, 68, 68

INDEX

FAT2DIC, 72, 79, 131 FAT2DIC.ad, 75, 76 FAT3DBC, 80 FAT3DBC.ad, 84 FAT3DIC, 88 FAT3DIC.ad, 91 grid.onefactor, 95 ibarplot.double, 96 jointcluster, 97 laranja, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 141, 151, 154 line_plot, 10, 12, 13, 99, 112, 114, 132, 133, 140, 142 logistic, 100 mirtilo, 6, 14, 15, 25, 27, 63, 98, 102, 103, 106, 121, 122, 134–136, 141, 151, 154 orchard, 102 passiflora, 6, 14, 15, 25, 27, 63, 98, 103, 103, 106, 121, 122, 134–136, 141, 151.154 PCA_function, 104 pepper, 105 phao, 6, 14, 15, 25, 27, 63, 98, 103, 106, 106, 121, 122, 134–136, 141, 151, 154 plot_cor, *12*, *13*, 107 plot_interaction, 12, 13, 108 plot_jitter, *12*, *13*, 109 plot_TH, 10, 12, 13, 99, 110, 132, 133, 140, 142 plot_TH1, *12*, *13*, *112*, 112 plot_tonetest, 114 polynomial, 115, 118, 120 polynomial2, 116, 117, 120 polynomial2_color, 116, 118, 119 pomegranate, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 141, 151, 154 porco, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 121, 134–136, 141, 151, 154 PSUBDBC, 122

PSUBDIC, 125 PSUBFAT2DBC, 128 PSUBSUBDBC, 130 quant.fat2.desd, 131 seg_graph, 12, 13, 132 seg_graph2, 133 sensorial, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134, 135, 136, 151, 154 simulate1, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134, 135, 136, 141, 151, 154 simulate2, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134, 135, 135, 136, 141, 151, 154 simulate3, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 136, 141, 151, 154 sk_graph, 10, 99, 112, 114, 139, 142 sketch, 5, 137 soybean, 140 spider_graph, 10, 12, 13, 99, 112, 114, 132, 133.140.141 STRIPLOT, 142 summarise_anova, 144 summarise_conj, 145 summarise_dunnett, 146 tabledesc, 38, 147 TBARPLOT. reverse, 12, 13, 148 test_two, 149 tomate, 6, 14, 15, 25, 27, 63, 64, 98, 102, 103, 106, 121, 122, 134–136, 141, 150, 154 tonetest, 151 transf, 5, 152 weather, 6, 14, 15, 25, 27, 63, 64, 98, 102,

103, 106, 121, 122, 134–136, 141, 151, 153