Package 'ABCanalysis'

January 20, 2025

Type Package Title Computed ABC Analysis Version 1.2.1 Date 2017-03-13 Author Michael Thrun, Jorn Lotsch, Alfred Ultsch Maintainer Florian Lerch <lerch@mathematik.uni-marburg.de> Description For a given data set, the package provides a novel method of computing precise limits to acquire subsets which are easily interpreted. Closely related to the Lorenz curve, the ABC curve visualizes the data by graphically representing the cumulative distribution function. Based on an ABC analysis the algorithm calculates, with the help of the ABC curve, the optimal limits by exploiting the mathematical properties pertaining to distribution of analyzed items. The data containing positive values is divided into three disjoint subsets A, B and C, with subset A comprising very profitable values, i.e. largest data values (``the important few"), subset B comprising values where the yield equals to the effort required to obtain it, and the subset C comprising of nonprofitable values, i.e., the smallest data sets (``the trivial many"). Package is based on ``Computed ABC Analysis for rational Selection of most informative Variables in multivariate Data", PLoS One. Ultsch. A., Lotsch J. (2015) <DOI:10.1371/journal.pone.0129767>. Imports plotrix

Depends R (>= 2.10)

License GPL-3

LazyLoad yes

URL https://www.uni-marburg.de/fb12/datenbionik/software-en

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2017-03-13 14:31:38

Contents

ABCanalysis-package	2
ABCanalysis	3
ABCanalysis4curve	4
ABCanalysisPlot	5
ABCcleanData	7
ABCcurve	7
ABCplot	8
ABCRemoveSmallYields	9
calculatedABCanalysis	
Gini4ABC	12
GiniIndex	12
SwissInhabitants	13
1	14

ABCanalysis-package Computed ABC analysis

Description

Index

Computed ABC Analysis allows the optimal calculation of three disjoint subsets A,B,C in data sets containing positive values:

subset A containing few most profitable values, i.e. largest data values ("the important few"), subset B containing data, where the profit gain equals effort required to obtain this gain, and the subset C of non-profitable values, i.e. the smallest data sets ("the trivial many").

This package calculates the three subsets A, B and C by means of an algorithm based on statistically valid definitions of thresholds for the three sets A,B and C.

Note

Check out our new Umatrix package for visualisation and clustering of high-dimensional data on our Webpage.

Author(s)

Michael Thrun, Jorn Lotsch, Alfred Ultsch

http://www.uni-marburg.de/fb12/datenbionik

<mthrun@mathematik.uni-marburg.de>

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

ABCanalysis

Examples

```
data("SwissInhabitants")
abc=ABCanalysis(SwissInhabitants,PlotIt=TRUE)
SetA=SwissInhabitants[abc$Aind]
SetB=SwissInhabitants[abc$Bind]
SetC=SwissInhabitants[abc$Cind]
```

ABCanalysis	Computed ABC analysis: calculates a division of the data in 3 classes
	A, B and C

Description

divide the Data in 3 classes A, B and C such thatA=Data[Aind] : with low effort much yieldB=Data[Bind] : yield and effort are about equalC=Data[Cind] : with much effort low yield

Usage

ABCanalysis(Data, ABCcurvedata, PlotIt=FALSE)

Arguments

Data	vector(1:n) describes an array of data: n cases in rows of one variable, if matrix or dataframe then first column will be used.	
ABCcurvedata	only for internal usage, list from ABCcurve	
PlotIt	default(FALSE), if variable is used, a plot is made, set with arbitrary value	

Details

Pareto point: Minimum distance to (0,1) = minimal unrealized potential BreakEven Point: B_x is the x value of the point, where the slope of ABCcurve equals one. For further description to p in variable AlimitIndInInterpolation see ABCcurve

Value

Output is of type list which parts are described in the following

Aind	vector [1:j], A==Data(Aind) : with little effort much Yield
Bind	vector [1:1], B==Data(Bind) : effort and Yield are balanced
Cind	(vector [1:m], C==Data(Cind) : much effort for little Yield
ABexchanged	Boolean, TRUE if Point A is the Break Even and point B is the Pareto Point, FALSE otherwise

A	c(Ax,Ay), Pareto point or BreakEven Point indicated by ABexchanged	
В	c(Bx,By), Pareto point or BreakEven Point indicated by ABexchanged	
С	Submarginal point: minimum distance to [B_x,1]	
smallestAData Boundary AB, defined by point A or B with ABexchanged		
smallestBData	Boundary BC, defined by point C	
AlimitIndInInterpolation		
	index of AB Boundary in [p, ABC], the interpolation of the ABC plot	
BlimitIndInInterpolation		
	index of BC Boundary in [p, ABC], the interpolation of the ABC plot	

Author(s)

Michael Thrun

http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

See Also

ABCplot

Examples

```
data("SwissInhabitants")
abc=ABCanalysis(SwissInhabitants,PlotIt=TRUE)
A=abc$Aind
B=abc$Bind
C=abc$Cind
Agroup=SwissInhabitants[A]
Bgroup=SwissInhabitants[B]
Cgroup=SwissInhabitants[C]
```

ABCanalysis4curve calculate ABC Analysis from a given curve.

Description

calculate points A B C of the ABC Analysis from a given curve.

Arguments

p[1:m]	a vector of values specifying where interpolation took place
ABC[1:m]	given values of the curve at positions from p

Value

BreakEvenPunktIndex = BreakEvenPunktIndex, ParetoPunktIndex = ParetoPunktIndex, SubmarginalPunktIndex = SubmarginalPunktIndex, ABx = Effort[AB], ABy = Yield[AB], BCx = Effort[BC], BCy = Yield[BC], Bx = Effort[B], By = Yield[B]))

BreakEvenPunktIndex

Index of breakeven point

ParetoPunktIndex

Index of pareto point		
SubmarginalPunktIndex		
Index of submarginal point		
ABx	Position of AB point on x axis	
ABy	Position of AB point on y axis	
BCx	Position of BC point on x axis	
BCy Position of BC point on y axis		
Bx	Position of the unused point (breakeven or pareto) on the x axis	
Ву	Position of the unused point (breakeven or pareto) on the y axis	

Author(s)

Florian Lerch

ABCanalysisPlot Displays ABC plot with ABCanalysis

Description

Displays ABC Curve : cumulative percentage of largest Data (effort) vs cumlative percentage of sum of largest data (yield) with set limits generated by an calculated ABCanalysis.

Usage

```
ABCanalysisPlot(Data, LineType = 0, LineWidth = 3,
ShowUniform = TRUE,title, limits = TRUE, MarkPoints = TRUE,
ABCcurvedata,ResetPlotDefaults=TRUE)
```

Arguments

Data	vector[1:n] describes an array of data: n cases in rows of one variable	
LineType	integer, optional, for plot default: LineType=0 for solid line; for other line codes see documentation about pch	
LineWidth	integer, optional, width of Line, see lwd in par	
ShowUniform	boolean, optional, the ABC curve of the uniform distribution is shown in plot if TRUE (default)	

title	string, optional, see parameter main in plot	
limits	boolean, = TRUE, lines of division in A, B and C are drawn, default = FALSE	
MarkPoints	boolean, optional, default= TRUE, Mark the three points of interest	
ABCcurvedata	optional, see ABCcurve	
ResetPlotDefaults		
	optional, default =TRUE. If ResetPlotDefaults=FALSE, multiple plots in one window possible, but no resetting of plot to default parameters.	

Value

object is a list of items with

ABC	Output of ABCplot
ABCanalysis	Output of ABCanalysis

Note

The Break Even point is always marked with a green star.

The diagonal from (0,1) to (1,0) is the equilibrium, where effort equals yield.

Author(s)

Michael Thrun

http://www.uni-marburg.de/fb12/datenbionik

See Also

ABCanalysis

Examples

```
## Standard Example
data("SwissInhabitants")
abc=ABCanalysisPlot(SwissInhabitants)
## Multiple plots in one Window:
m=runif(4,100,200)
s=runif(4,1,10)
Data=sapply(1:4,FUN=function(x,m,s) rnorm(1000,m,s),m,s)
# windows() #screen devices should not be used in examples etc
par(mfrow=c(2,2))
for (i in 1:4)
{
ABCanalysisPlot(Data[,i],ResetPlotDefaults=FALSE)
}
```

ABCcleanData

Description

Only the first column of Data is used, anything not beeinh positive numerical value is set to zero

Usage

ABCcleanData(Data)

Arguments

Data

vector[1:n] describes an array of data: n cases in rows of one variable

Details

Data <0 are set to zero, non-numeric values (NA,NaN,etc.) in Data are set to zero strings and chars are set to zero infinitive numbers are set to max(Data)

Value

Output is of type list which's parts are described in the following

CleanedData	vector [1:m], columnvector containing Data>=0 and zeros for all NA, NaN and negative values in Data(1:n)	
Data2CleanInd	vector [1:k], Index such that CleanedData = nantozero(Data(Data2CleanInd))	
RemovedInd	vector [1:1], Index such that Data(RemovedInd) is the data that has been removed if RemoveSmallYields==1	

Author(s)

http://www.uni-marburg.de/fb12/datenbionik

Michael Thrun

ABCcurve	calculates ABC Curve	

Description

Calculates cumulative percentage of largest data (effort) and cumulative percentages of sum of largest Data (yield) with spline interpolation (second order, piecewise) of values in-between.

Usage

ABCcurve(Data, p)

ABCplot

Arguments

Data	vector[1:n] describes an array of data: n cases in rows of one variable
р	optional, an vector of values specifying where interpolation takes place, created by seq of package base

Value

Output is of type list which parts are described in the following

Curve	A list with
	Effort:vector [1:k], cumulative population in percent
	Yield: vector [1:k], cumulative high data in percent
CleanedData	vector [1:m], columnvector containing Data>=0 and zeros for all NA, NaN and negative values in Data(1:n)
Slope	A list with
	p: X-values for spline interpolation, defualt: $p = (0:0.01:1)$
	dABC: first deviation of the functio ABC(p)=Effort(Yield

Author(s)

Michael Thrun

http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

ABCplot

displays an ABC Curve as an alternative to an Lorenz curve

Description

Plots cumulative percentage of largest data (effort) vs. cumulative percentage of sum of largest data (yield)

Usage

```
ABCplot(Data, LineType = 0, LineWidth = 3, ShowUniform = TRUE,
title, ABCcurvedata, defaultAxes = TRUE)
```

Arguments

Data	vector[1:n], describes an array of data: n cases in rows of one variable
LineType	for plot default: LineType=0 for a line, other line codes see documentation about pch in par
LineWidth	integer, width of Line, see lwd in par
ShowUniform	bool, =TRUE: the ABC curve of the uniform distribution is shown in plot
title	string, optional, see parameter main in plot
ABCcurvedata	optional, see ABCcurve
defaultAxes	optional, boolean, see parameter axes in plot

Value

Output is of type list which parts are described in the following

ABCx	vector [1:k], cumulative population in percent
ABCy	vector [1:k], cumulative high Data in percent

Note

The diagonal from (1,0) to (0,1) is the Equilibrium, where effort equals yield

Author(s)

Michael Thrun

http://www.uni-marburg.de/fb12/datenbionik

Examples

```
data("SwissInhabitants")
vec=ABCplot(SwissInhabitants)
```

ABCRemoveSmallYields Extended Data cleaning for ABC analysis

Description

Only the first column of Data is used, anything not beeing positive numerical value is set to zero

Usage

ABCRemoveSmallYields(Data,CumSumSmallestPercentage)

Arguments

Data vector[1:n] describes an array of data: n cases in rows of one variable CumSumSmallestPercentage (default =0.5),the smallest data up to a cumulated sum of less than CumSumSmallestPercentage

Details

Data <0 are set to zero, non-numeric values (NA,NaN,etc.) in Data are set to zero strings and chars are set to zero infinitive numbers are set to max(Data) the smallest data up to a cumulated sum of less than CumSumSmallestPercentage of the total sum (yield) is removed

Value

Output is of type list which's parts are described in the following

SubstantialData

	columnvector containing Data>=0 and zeros for all NaN and negative values in Data(1:n)
Data2CleanInd	Index such that SubstantialData = nantozero(Data(Data2SubstantialInd))
RemovedInd	Data(RemovedInd) is the data that has been removed

Author(s)

http://www.uni-marburg.de/fb12/datenbionik

Michael Thrun

calculatedABCanalysis Computed ABC analysis: calculates a division of the data in 3 classes A, B and C

Description

divide the Data in 3 classes A, B and C such that A=Data[Aind] : with low effort much yield B=Data[Bind] : yield and effort are about equal C=Data[Cind] : with much effort low yield

Usage

```
calculatedABCanalysis(Data)
```

Arguments

Data

vector(1:n) describes an array of data: n cases in rows of one variable, if matrix or dataframe then first column will be used.

Details

Pareto point: Minimum distance to (0,1) = minimal unrealized potential BreakEven Point: B_x is the x value of the point, where the slope of ABCcurve equals one. For further description to p in variable AlimitIndInInterpolation see ABCcurve

Value

Output is of type list which parts are described in the following

Aind	vector [1:j], A==Data(Aind) : with little effort much Yield
Bind	vector [1:1], B==Data(Bind) : effort and Yield are balanced
Cind	(vector [1:m], C==Data(Cind) : much effort for little Yield
smallestAData	Boundary AB, defined by point A or B with ABexchanged
smallestBData	Boundary BC, defined by point C

Author(s)

Michael Thrun

http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

See Also

ABCanalysis

Examples

```
data("SwissInhabitants")
abc=calculatedABCanalysis(SwissInhabitants)
A=abc$Aind
B=abc$Bind
C=abc$Cind
Agroup=SwissInhabitants[A]
Bgroup=SwissInhabitants[B]
Cgroup=SwissInhabitants[C]
```

Gini4ABC

Description

Gini index for an ABC curve

Usage

Gini4ABC(p, ABC)

Arguments

р	vector [1:k], cumulative population in percent
ABC	vector [1:k], cumulative high data in percent

Value

Gini gini index i.e. the integral over ABC(p) / 0.5 *100 given in percent i.e in [0..100]

Author(s)

FL?MT?

GiniIndex Gini-Index

Description

calculation of the Gini-Index from Data

Usage

GiniIndex(Data,p)

Arguments

Data	vector[1:n] describes an array of data: n cases in rows of one variable
р	optional, an vector of values specifying where interpolation takes place, created by seq of package base

Details

uses ABCcurve and Gini4ABC

SwissInhabitants

Value

Gini	gini index i.e. the integral over Area *200 -100 given in percent i.e in [0100]
р	vector [1:k], cumulative population in percent
ABC	vector [1:k], cumulative high data in percent
CleanedData	vector [1:m], columnvector containing Data>=0 and zeros for all NA, NaN and negative values in Data(1:n)

Author(s)

Michael Thrun

SwissInhabitants SwissInhabitants in 1900

Description

Number of inhabitants in the 2896 villages of Switzerland in the year 1900.

Usage

data("SwissInhabitants")

Details

This data set consists of the number of inhabitants in the 2896 communes, i.e. cities and villages, in the year 1900. The individual count is the total number of persons living in the particular commune. The data set is unordered for anonymity reasons. The data set has been used as part of a larger data set to identify patterns of concentration in Switzerland (see reference).

Source

Schuler, M., Ullmann, D. Eidgenossische Volkszahlung:Bevoelkerungsentwicklung der Gemeinden, Bundesamt fur Statistik, Neuchatel, Switzerland, 2002

References

Behnisch, M., Ultsch, A.: Population Patterns in Switzerland 1850-2000, in: Gaul, W. et al (Eds), Advances in Data Analysis, Data Handling and Business Intelligence, Springer, Heidelberg, pp. 163-173, 2010.

Examples

```
data(SwissInhabitants)
## maybe str(SwissInhabitants) ; plot(SwissInhabitants) ...
```

Index

* ABC analysis ABCanalysis, 3 ABCanalysisPlot, 5 ABCplot, 8 calculatedABCanalysis, 10 * ABC curve ABCcurve, 7 * ABCanalysis ABCanalysis, 3 ABCanalysisPlot, 5 calculatedABCanalysis, 10 * ABCcurve ABCcurve, 7 * ABC ABCanalysis, 3 ABCplot, 8 calculatedABCanalysis, 10 * Computed ABC analysis calculatedABCanalysis, 10 * Lorenz curve ABCanalysis, 3 ABCcurve, 7 ABCplot, 8 calculatedABCanalysis, 10 * Lorenz ABCanalysis, 3 ABCcurve, 7 ABCplot, 8 calculatedABCanalysis, 10 * datasets,SwissInhabitants,SwissInhabitants1900 SwissInhabitants, 13 * package ABCanalysis-package, 2

```
ABCanalyse (ABCanalysis-package), 2
ABCanalysis, 3, 6, 11
ABCanalysis-package, 2
ABCanalysis4curve, 4
ABCanalysisPlot, 5
```

ABCcleanData, 7 ABCcurve, 3, 6, 7, 9, 11 ABCplot, *4*, *6*, 8 ABCRemoveSmallYields, 9 calculatedABCanalysis, 10 dbt.ABC (ABCanalysis-package), 2 dbt.ABCanalyse (ABCanalysis-package), 2 dbt.ABCanalysis(ABCanalysis-package), 2 Gini4ABC, 12 GiniIndex, 12 par, 5, 9 plot, <u>6</u>, <u>9</u> seq, 8, 12 SwissInhabitants, 13 SwissInhabitants1900 (SwissInhabitants), 13