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1 Introduction

The ggPMX package generates standard diagnostic plots and tables for mixed effect models used in Phar-
macometric (PMX) activities. The tool is built upon the ggplot2 package and supports models developped
either with Monolix, NONMEM or nlmixr software. The current release (1.2) supports models fitted with
Monolix versions 2016 and later, NONMEM version 7.2 and later and nlmixr.

The package aims to provide a workflow that is consistent, efficient and which results in high quality graphics
ready to use in official documents and reports. The package allows a high degree of flexibility and customiza-
tion, yet providing an acceptable default setting. The package also allows to fully automate plots and report
generation.

The general context is the analysis of mixed effect models fitted to data. ggPMX was developed in the
framework of Pharmacometric activities, in which case the model is a population pharmacokinetic (PK)
and/or pharmacodynamic (PD) model and the data is clinical or pre-clinical PK and/or PD data.

In the context of model building, evaluation and qualification, it is good practice to assess the goodness-of-fit
of models by inspecting (qualitatively and quantitatively) a set of graphs that indicate how well the model
describes the data. Several types of diagnostic plots allow to evaluate a mixed effects model fit, the most
common being:

a. residual-based plots

b. prediction-based plots

c. empirical Bayes estimates (EBE)-based plots
d. simulation-based plots.

The following figures are examples of diagnotic plots using data from Monolix.
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Model parameters

This document introduces the ggPMX functionalities and syntax.

1.1 Architecture

The high level architecture is represented in the figure below. The key components of the package are the
following:



Reader - reads model outputs from different sources (i.e. text files containing population parameters,
model predictions, individual random effects, simulations and data-related inputs like covariates) and
restructures these outputs into standard formats for internal processing.

Generator 77?7 processes outputs from Reader. It contains R language code to produce the plots and
is factorized into a small set of flexible key functions. A set of default plots is defined in a configuration
file. The configuration file can be adapted, e.g., to have different configurations for different types of
modeling activities.

Controller - serves as user interface. The user will call Generator functions via wrapper functions in
the Controller to produce either all the default plots or selected plots of interest. In addition to editing
the configuration, the user has different options to adapt aspects of the plots to specific requirements.
Plots may be adapted by setting parameters of the wrapper functions that generate the plots; there
exist additional wrapper functions to change aspects of the existing default plots. The plots are, in
general, returned as ggplot objects that can be further customized using ggplot functionalities.
Reporter - generates sets of graphs and tables and integrates them into an output file (Word or PDF)
with annotations.

Templates -predictions. xt

Input template Modelling -estimations.txt

Data template inputs -finegrid.txt
Report template -indiv_eta.txt
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The package is coded using object-oriented programming meaning that information is encoded in objects.
The user can change or print the content of objets via functions. Such an implementation allows to have
code that is modular and easily customizable.

1.2

Workflow overview

The typical workflow of ggPMX is as follows:

1.

The user creates the Controller using pre-defined configurations (yaml templates) for plot settings.



2. The Controller implicitly calls the Reader that reads and stores modelling outputs into a standard
format. As a result, the Controller contains all available plots with their default values according to
the configuration used.

3. The Generator allows to print the available plots by calling the corresponding functions. Plots can be
modified by using optional arguments.

4. A call to the Reporter allows to create a pdf or docx report. The report Rmarkdown template can
also be personalized.

The most important task for the user is the Controller creation. This step requires careful consideration
because it involves different options according to the type of model (PK or PKPD) and software (Monolix,
NONMEM or nlmixr) used for model fitting. The next section describes the Controller creation for the
different possible cases.

Once the Controller is created, it implicitly calls the Reader and creates the diagnostic plots. The user can
then generate the graphs by calling pre-defined functions. The same syntax is used independent of the model
structure (PK or PKPD model) and of the fitting software (Monolix, NONMEM or nlmixr).

The Reporter creates one report per endpoint, i.e., one report for PK and one for each PD endpoint.

1.3 Modeling datasets

For the sake of this document, three types of datasets are defined.

o The input modeling dataset is the one used for model fitting (the actual data). There are no particular
requirements regarding this dataset. (Only in Monolix)

o The output modeling datasets are those output from the fitting tool (Monolix, NONMEM or nlmixr).
See the appendix for more details on software requirements.

o The ggPMX datasets are the ones created within (internal to) ggPMX.

2 Controller

A diagnostic session starts with the creation of a Controller. The Controller is the “user interface” of the
package and allows to conrol all possible options. It is a container that stores configuration fields (model- and
input data-related information), datasets and plots. It can be used as a reference object in which the user
can see the names of the exisitng plots, the names of the ggPMX datasets, etc. The syntax of the Controller
creation differs depending on the software used for model fitting and on the number of model endpoints (or
outputs). This section presents different cases of Controller creation. For simplicity, the case of models with
one single output is presented first, then generalized to several outputs. Other Controller creation functions
can be used with the different fitting softwares. Note that all these functions can also be used with models
with several outputs.

2.1 Single-endpoint models
In general, models with only one endpoint (or output) are mostly PK models, but these could also be k-PD
models.

To illustrate ggPMX functionalities, the single-endpoint built-in model called theophylline is used hereafter.
The theophylline population PK example has the following characteristics:

e The input modeling data contains PK samples of 2 studies, each with 25 individuals who recieved a
unique dose of 2000 mg theophylline.



e The model is a simple one-compartmental PK model with first-order absorption.

o The following covariates are used: weight (WTO0) on volume (V) and clearance (Cl), age (AGEO), sex
(SEX) and study (STUD) on clearance.

o Random effects on all three parameters (ka, Cl, V) are included.

e The residual error is proportional.

The input modeling dataset has the following columns:

## ID TIME AMT Y EVID WTO AGEO SEX STUD

## 1 1 0.0 2000 O 1 87 73 1 1
## 2 1 0.5 0 130 o 87 73 1 1
## 3 1 1.0 0 228 0o 87 73 1 1
## 4 1 2.0 0 495 0 87 73 1 1
## 5 1 3.0 0 484 0 87 73 1 1
## 6 1 5.0 0 479 0 87 73 1 1

Note that the DVID (or CMT/YTYPE) column is missing, but since this is a single-endpoint model, it is
not necessary in that case.

2.2 Controller creation

An example of Contoller creation is wrapped in a function called “theophylline()” for quick reference:

ctr <- theophylline()

2.2.1 Models fitted with Monolix (versions 2016 and later)

####pmx_nlx ()

The controller initialization using the Monolix controller pmx_mlx (), which is a wrapper function for pmx ()
with sys="mlx" (See Appendix A).

theophylline_path <- file.path(system.file(package = "ggPMX"), "testdata", "theophylline")
work_dir <- file.path(theophylline_path, "Monolix")
input_data_path <- file.path(theophylline_path, "data_pk.csv")

ctr <- pmx_mlx(

directory = work_dir,
input = input_data_path,
dv = nyn

#H###pmx_mlxtran()

The controller initialization can be simplified by using the Monolix controller pmx_mlxtran(). This function
parses the mlxtran file of a Monolix project and assigns automatically the different fields necessary to the
Controller creation. The only mandatory argument is file_name, the path to the mlxtran file.

mlxtran_path <- file.path(system.file(package = "ggPMX"),
"testdata", "1_popPK_model", "project.mlxtran")

ctr <- pmx_mlxtran(file_name = mlxtran_path)

The user can verify the content of the Controller and how parameters are assigned by printing it.



2.2.2 Models fitted with NONMEM (versions 7.2 and later)

###+pmx_nm ()

The controller initialization using the NONMEM controller pmx_nm() is based on reading functions of the
xpose package. It is highly recommended (but not required) to use the “sdtab, patab, cotab, catab” table
naming convention followed by a run number (e.g. sdtab001,cotab001) This will enable automatic recognition
of covariates. It is also recommended to name the model files accordingly (e.g. run001.1st). In order to
generate a VPC a simulation dataset is required (see section about VPC)

For controller generation it is recommended to use the model file:

nonmem_dir <- file.path(system.file(package = "ggPMX"), "testdata",'"extdata")
ctr <- pmx_nm(

directory = nonmem_dir,

file = "run001.1st"

or the run number. The standard prefix is “run”, however can be specified using prefix

nonmem_dir <- file.path(system.file(package = "ggPMX"), "testdata",'"extdata")
ctr <- pmx_nm(

directory = nonmem_dir,

runno = "001" #can be a string or a number

2.2.3 Models fitted with nlmixr

H#H##Hpmx_nlmixr ()

It is simple to create a ggPMX controller for a nlmixr object using pmx_nlmixr (). Using the theophylline
example with a nlmixr model we have:

one.cmt <- function() {

ini({
## You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl
## This works with interactive models
## You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
## the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

b

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt () ~ add(add.sd)

b

}



fit <- nlmixr(one.cmt, theo_sd, est="saem", control=list(print=0))

The fit object is a nlmixr fit; You can read it into the nlmixr controller by:

ctr <- pmx_nlmixr(fit,
vpc = FALSE ## VPC is turned on by default, can turn off
)

2.2.4 Optional arguments for controller creation

The following are some optional arguments to the controller function (for details of each option, see the
corresponding section or use 7pmx_mlx, ?pmx_nm, 7pmx_nlmixr):

e cats: character vector of categorical covariates

e conts: character vector of continuous covariates

o occ: character occasinal covariate variable name (currently not available for NONMEM or nlmixr)

e strats: character extra stratification variables

o settings: global pmxSettingsClass (pmx_settings()) shared between all plots

o endpoint: pmxEndpointClass (pmx_endpoint ()) or integer or charcater of the endpoint code (depends
on the fitting software)

o sim: pmxSimClass object for VPC generation. (syntax for VPC generation is depending on the fitting
software)

2.3 Multiple-endpoint models

Models with more than one endpoint (or output) are mostly PKPD models, but these could also be, for
example, PK binding models in which there are measurements and predictions of both PK and its target.

ggPMX produces one diagnostics report per endpoint. As a consequence, the endpoint (if more than one)
should be set at the time of the Controller creation in order to filter the observations dataset and to keep
only the values corresponding to the endpoint of interest. There are two ways of dealing with endpoints,
using pmx__endpoint() (only for Monolix), or a simplified syntax for endpoints which is supported by all
software outputs.

2.3.1 Using pmx__endpoint() (only for Monolix)

To handle this, the user creates an “endpoint” object using the function pmx_endpoint () having the following
attributes:

o code (charcater): how the endpoint is coded in the input (modeling) dataset

e label: can be used in the title of some plots or for the report file name

e unit: used in the axis label for some plots

o files (list): list(predictions="predictions1",finegrid ="finegridl")

e trans: whether the value must be transformed before being displayed and which transformation to
use.

To illustrate the Controller creation with multiple-endpoint models, a built-in PKPD example is used. The
input dataset is called pk_ pd.csv and has the following columns.



## id time amt dv dvid wt sex age

## 1 100 0.0 100 . 3 66.7 1 50
## 2 100 0.5 . 0 3 66.7 1 50
## 3 100 1.0 . 1.9 3 66.7 1 50
## 4 100 2.0 . 3.3 3 66.7 1 50
## 5 100 3.0 . 6.6 3 66.7 1 50
## 6 100 6.0 . 9.1 3 66.7 1 50

The dvid column contains values=3 for PK (first endpoint) and dose and =4 for PD (second endpoint).
Monolix2016 outputs are found in folder RESULTS/ which contains predictionsl.txt and finegridl.txt for
PK predictions, and predictions2.txt and finegrid2.txt for PD predictions. The Endpoint and Controller
objects are created as follows:

pkpd_path <- file.path(system.file(package = "ggPMX"), "testdata", "pk_pd")
pkpd_work_dir <- file.path(pkpd_path, "RESULTS")
pkpd_input_file <- file.path(pkpd_path, "pk_pd.csv'")

ep <- pmx_endpoint(

code = "4",
label = "some_label",
unit = "some_unit",

file.code = "2", # will use predictions2.txt and finegrig2.txt
trans = "loglO"

ctr <- pmx_mlx(
directory = pkpd_work_dir,

input = pkpd_input_file,
dv = '"dv",

dvid = "dvid",

endpoint = ep

## use predictions2.txt as model predictions file .
## use finegrid2.txt as finegrid file .
## convergence of SAEM parameter estimates file does not exist.

2.3.2 A simplified syntax for endpoints (for Monolix, NONMEM and nlmixr)

For NONMEM and nlmixr users, endpoint can be simply specified in the controller creation by e.g. endpoint
=1
NONMEM

ctr <- pmx_nm(
directory = nonmem_dir,

file = "run0O01l.1lst",

endpoint = 1 ## select the first endpoint

dvid = "DVID" ## use this column as observation id
)
nlmixr



ctr <- pmx_nlmixr(fit,
endpoint = 1 ## select the first endpoint
dvid = "DVID" ## use this column as observation id

Also for Monolix users, a simplified syntax for the Endpoint creation exists in the case where the endpoint
code matches the files post-fixes (code=1 corresponds to predictionsl.txt, code=2 corresponds to predic-
tions2.txt). Instead of passing a pmxEndpoint object as argument of the Controller, the user can specify
the numerical value corresponding to the YI'YPE/CMT/DVID column.

prx_mlx(
dvid = "YTYPE", ## use this column as observation id
endpoint = 1, ## select the first endpoint
D) ## other pmx parameters , config, input,etc..

Internally, a pmxEndpoint object will be created, and observations having YTYPE=x will be filtered.

2.4 Controller with covariates

Besides the mandatory fields to initialize a Controller, the user can set optional parameters related to
covariates. This feature is illustrated below with the Theophylline example.

theophylline_path <- file.path(system.file(package = "ggPMX"), "testdata", "theophylline")
work_dir <- file.path(theophylline_path, "Monolix")
input_data_path <- file.path(theophylline_path, "data_pk.csv'")

ctr <- pmx_mlx(
directory = work_dir,

input = input_data_path,
dv = nyn,

cats = c("SEX"),

conts = c("WTO", "AGEQO"),
strats = c("STUD", "SEX")

Conts are the continuous covariates. Cats are categorical covariates used in the model, whereas strats are
categorical variables that can be used for plot stratification, but are not used as covariates in the model.

The covariates can be accessed using helper functions:

ctr %>} get_cats()

## [1] "SEX"

ctr %>% get_conts()

## [1] "wTO" "AGEO"

ctr %>% get_strats()

## [1] "STUD" "SEX"
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ctr %>} get_covariates()

## [1] "SEX" "WTO" "AGEO"

2.5 Controller content

The content of the Controller can be seen by printing it:

ctr

##

## pmx object:

##

##

## |PARAM | VALUE |

## | [ == |

## |working directory |theophylline |

## |Modelling input file |data_pk.csv |

## |dv lY I

## |dvid |DVID I

## |cats | SEX |

## |conts |WTO,AGEO |

## |strats | STUD, SEX |

##

##

## |data_name |data_file |data_label

## | i—————————— [ == |-
## |predictions |predictions.txt Imodel predictions file

## |estimates  |estimates.txt |parameter estimates file

## |eta |indiv_eta.txt |invidual estimates of random effects file
## |finegrid |[finegrid.txt [finegrid file

## |saem | /ChartsData/Saem/CvParam.txt |convergence of SAEM parameter estimates
## |input |data_pk.csv Imodelling input

##

##

## |plot_name [plot_type |

I B [ == |

## |abs_iwres_ipred |SCATTER
## |abs_iwres_time | SCATTER

|

|
## |iwres_ipred | SCATTER |
## |iwres_time | SCATTER |
## |iwres_dens | PMX_DENS |
## |iwres_qq |PMX_QQ |
## |npde_time | SCATTER |
## |npde_pred | SCATTER |
## |npde_qq |PMX_QQ I
## |dv_pred | SCATTER
## |dv_ipred | SCATTER
## |individual | IND |
## |eta_hist IDIS |
## |eta_box IDIS |
## |eta_matrix |ETA_PAIRS |
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## |eta_cats |[ETA_COV |
## |eta_conts |[ETA_COV |
## leta_qq [PMX_QQ |
## |saem_convergence |PARAM_HISTORY |

It contains three tables:

e The first table is the Controller configuration. The user can see the working directory, the input
modeling dataset name, the dependent variable (DV) name and other fields related to the model (e.g.,
continuous and discrete covariates).

o The second table lists the ggPMX datasets. The first column (data_name) of this table contains the
ggPMX name of the dataset; the second column (data_ file) contains the names of the output modeling
datasets (for example estimates.txt); in the third column (data_label) contains the dataset description.

e The third table provides the list of available plots in the Generator. It corresponds to Table 3.

2.5.1 Plot names

The Controller is a container that stores all plots. To get the list of plots, the function plot_names() is
used:

ctr %>% plot_names()

## [1] "abs_iwres_ipred" ‘"abs_iwres_time" "iwres_ipred" "iwres_time"
## [5] "iwres_dens" "iwres_qq" "npde_time" "npde_pred"
## [9] "npde_qq" "dv_pred" "dv_ipred" "individual"
## [13] "eta_hist" "eta_box" "eta_matrix" "eta_cats"
## [17] "eta_conts" "eta_qq" "saem_convergence"

An alternative way to display the names of the existing plots is by printing the content of the Controller as
done above.

ggPVMX provides a specialized function to create and update each plot pmx_plot_xx() where xx is the plot
name from the list above.

2.5.2 Plot types

Each plot type is a class of similar plots. ggPMX defines the following plot types:

e SCATTER: residual plots

o IND: individual plots display longitudinal (time course) predictions and data (one panel per individual)
o DIS: distribution of empirical Bayes estimates (EBE) histogram or boxplot

o ETA_PAIRS: random effects (ETA) distributions and correlations structure

o ETA_ COV: relationships between random effects (ETA) and continuous or categorical covariates

o PMX__QQ: quantile-quantile plot (qq-plot)

The following syntax allows to see which type of plot corresponds to which plot name:

ctr %>% plots()

12



## plot_name plot_type plot_function

## <char> <char> <char>
## 1: abs_iwres_ipred SCATTER pmx_plot_abs_iwres_ipred
## 2 abs_iwres_time SCATTER  pmx_plot_abs_iwres_time
## 3: iwres_ipred SCATTER pmx_plot_iwres_ipred
## 4: iwres_time SCATTER pmx_plot_iwres_time
## b5: iwres_dens PMX_DENS pmx_plot_iwres_dens
# 6: iwres_qq PMX_QQ pmx_plot_iwres_qq
## 7: npde_time SCATTER pmx_plot_npde_time
## 8: npde_pred SCATTER pmx_plot_npde_pred
## 9: npde_qq PMX_QQ pmx_plot_npde_qq
## 10: dv_pred SCATTER pmx_plot_dv_pred
## 11: dv_ipred SCATTER pmx_plot_dv_ipred
## 12: individual IND pmx_plot_individual
## 13: eta_hist DIS pmx_plot_eta_hist
## 14: eta_box DIS pmx_plot_eta_box
## 15: eta_matrix ETA_PAIRS pmx_plot_eta_matrix
## 16: eta_cats ETA_COV pmx_plot_eta_cats
## 17: eta_conts ETA_COV pmx_plot_eta_conts
## 18: eta_qq PMX_QQ pmx_plot_eta_qq
## 19: saem_convergence PARAM_HISTORY pmx_plot_saem_convergence

We create a helper function that outputs the xtable output.

# head table
head_table <- function(out, label, caption, head=TRUE) {

if (head) {

hout <- head(out)
} else {

hout <- out
+

if (requireNamespace('"xtable", quietly = TRUE)) {
xt <- xtable::xtable(hout, label = label,
caption = caption)
print(xt, comment = F)

} else {
print (hout)
}
}
ggPMX dataset Description
1 input Input modeling dataset
2 estimates Estimated population parameters
3 eta Random effects, their standard deviation and residual errors (to calculate shrinkage)
4  predictions Observations and predictions at times of observations dataset
5 finegrid Additional predictions (at times without observations)

Table 1: ggPMX datasets
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3 Default diagnostic plots

The diagnostic plots of ggPMX are generated by calling the functions pmx_plot_xx() where xx is a place-
holder for the plot name. The list of names of all available plots can be seen via:

ctr %>% plot_names()

## [1] "abs_iwres_ipred" '"abs_iwres_time" "iwres_ipred" "iwres_time"

## [5] "iwres_dens" "iwres_qq" "npde_time" "npde_pred"

## [9] "npde_qq" "dv_pred" "dv_ipred" "individual"

## [13] "eta_hist" "eta_box" "eta_matrix" "eta_cats"

## [17] "eta_conts" "eta_qq" "pmx_vpc" "saem_convergence"

As a convention, when plots are described as 777Y vs. X777, it is meant that Y is plotted on the vertical
axis and X on the horizontal axis.

As an example, a plot of individual weighted residuals (IWRES) versus time (with default settings) can be
generated using a single-line code:

ctr %>/ pmx_plot_iwres_time
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The complete list of available plots per plot type (given in parenthesis) is given below:

o Residual plots (SCATTER)
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ctr %>% pmx_plot_dv_pred
ctr %>% pmx_plot_dv_ipred

ctr %>/ pmx_plot_iwres_time
ctr 7>% pmx_plot_npde_time

ctr %>% pmx_plot_iwres_ipred
ctr %>/, pmx_plot_abs_iwres_ipred

ctr 7>% pmx_plot_npde_pred

o Empirical Bayes Estimates (EBE), also called “eta”, histogram and boxplot (DIS)

ctr 7%>% pmx_plot_eta_hist
ctr %>/, pmx_plot_eta_box

o Individual plots (IND)
For individual plot which pages parameter is used. which_pages parameter can either be:

o “all” for all pages;

« page number (for example 1) for single page;

« set of page numbers (for example ¢(1, 2)) for multiple pages (where numbers are representing corre-
sponding pages).

ctr %>} pmx_plot_individual (which_pages=1)

o QQ-plots (PMX_ QQ)

ctr 7>% pmx_plot_npde_qq
ctr 7>, pmx_plot_iwres_qq

« Distribution and correlation structure of random effects (ETA__ PAIRS)

ctr %>% pmx_plot_eta_matrix

4 Visual Predictive Checks (VPC)

4.1 Initialization

In order to generate VPCs a simulation dataset is requried. Creation of VPC is slightly different dependening
on the fitting software used (Monolix, NONMEM or nlmixr).

4.1.1 Models fitted with Monolix (versions 2016 and later)

Monolix users, need to run a simulation with simulx. Here’s an example code
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## Create simulated object using simulx

mysim <- simulx(project=project_dir, nrep=100) #
## Retrieve simulated dataset (assumed to be in y1)
simdata <- mysim$LIDV

For use with ggPMX, it is required that the IDs are reverted to the original IDs as in the modelling dataset
for ggPMX.

## Need to revert the original IDs as in modeling dataset for ggPMX
## Rename IDs column to same name as in modeling dataset, e.g.
## 7?77id?77 in the example below
simdata <- simdata %>%
mutate(newId = as.numeric(as.character(id))) %>%
left_join(., mysim$originalld) 7%>7%
mutate(id = as.numeric(as.character(orild))) %>%
select(-orild, -newId) 7>%
data.table: :data.table()

## It's highly recommended to store your simulation as .csv
vpc_file <- write.csv(simdata, file = "my_VPC.csv", quote=FALSE, row.names = FALSE)

pmx_sim creates a simulation object. It takes the following arguments:

Argumentss

file character path to the simulation file
irun character name of the simulation column
idv character name of the ind. variable
dv character name of the observation variable

Ll

Within pmx vpc controller, it is called like :

theoph_path <- file.path(
system.file(package = "ggPMX"), "testdata",
"theophylline"
)
WORK_DIR <- file.path(theoph_path, "Monolix")
input_file <- file.path(theoph_path, '"data_pk.csv'")
vpc_file <- file.path(theoph_path, "sim.csv")

ctr <- pmx_mlx(

directory = WORK_DIR,

input = input_file,

dv = "Y",

cats = c("SEX"),

conts = c("WTO", "AGEO"),

strats = "STUD",

settings = pmx_settings(
use.labels=TRUE,
cats.labels=1list(

SEX=c("0"="Male","1"="Female")

)

):
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sim = pmx_sim(
file = vpc_file,
irun ="rep",
idv="TIME"

4.1.2 Models fitted with NONMEM (versions 7.2 and later)

It is required to provide simulation tables to generate VPCs. Furthermore, it is highly recommended that
simulation tables have a “sim”-suffix and are kept with the same naming convetion as for the prediction
tables (e.g sdtab00lsim, catab00lsim)). In this case they’re automatically recognized by the runnumber
(runno) or by the model file if specified there. For post-hoc simulation it is possible to include an additional
simfile:

ctr <- pmx_nm(
directory = model_dir,
file = "modelfile.ctl" #or .lst
simfile

"simulation_modelfile.ctl" #or .lst

Important: When simulations are performed post-hoc and the controller is generated by run number, the
reader might load the wrong .ext file (used for parameters). A warning message is displayed.

4.1.3 Models fitted with nlmixr

For nlmixr users, the VPC is generated automatically with the controller creation and turned on by default
vpc = TRUE.

ctr <- pmx_nlmixr(fit) ## VPC will be generated automatically, vpc = TRUE

ctr <- pmx_nlmixr(fit,
vpc = FALSE ## But can be turned off
)

4.2 VPC plot

The plot options are described in ?pmx_plot_vpc function.

4.2.1 Default

ctr %>J% pmx_plot_vpc
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(with observations)
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The areas represent the 95% confidence intervals for the percentiles.
The dots are the observations. The rugs represent the limits of the bins.
The percentiles are plotted at the median independent variables in the bins.

4.2.2 Scatter/Percentile

By default the vpc plot is percentile ; , but we can plot the scatter type:

ctr %>/ pmx_plot_vpc(type ="scatter")
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(with observations)
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The area represents the 90% prediction interval.
are the observations. The rugs represent the limits of the bins.
es are plotted at the median independent variables in the bins.

4.2.3 Binning

ctr %>% pmx_plot_vpc(bin=pmx_vpc_bin(style = "kmeans",n=5))
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The areas represent the 95% confidence intervals for the percentiles.
The dots are the observations. The rugs represent the limits of the bins.
2 percentiles are plotted at the median independent variables in the bins.

4.2.4 Stratification

ctr %>} pmx_plot_vpc(strat.facet=~SEX,facets=1list(nrow=2))
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(with observations)
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The areas represent the 95% confidence intervals for the percentiles.
The dots are the observations. The rugs represent the limits of the bins.
The percentiles are plotted at the median independent variables in the bins.

4.2.5 Monolix-like customisation
User can customize the options to get a Monolix-like display.
ctr %>% pmx_plot_vpc(

strat.facet=~SEX,
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facets=list(nrow=2),

type="percentile",

is.draft = FALSE,

pi = pmx_vpc_pi(interval = ¢(0.1,0.9),
median=list(color="green"),
extreme= list(color="green")),

obs = pmx_vpc_obs(color="blue",shape=18,size=2),

ci = pmx_vpc_ci(interval = ¢(0.1,0.9),
median=list(fill="red"))
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(with observations)
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The areas represent the 80% confidence intervals for the percentiles.
The dots are the observations. The rugs represent the limits of the bins.
The percentiles are plotted at the median independent variables in the bins.

5 Diagnostics report

A report (in pdf and docx format) containing all default diagnostic plots can be created using the pma_report
function. The format can take three different values:

o report: produces a pdf and a docx file (named name . pdf and name.png specified in argument name,

23



located in save_dir) with default diagnostic plots

e plots: produces a folder named ggpmx_GOF located in save__dir that contains all default diagnotic plots,
each in a pdf and png file. The different plots are numerated in order to have an unique identifier for
each plot (ex: ebe_box-1.pdf). This is necessary for having correct footnotes that indicated the path
to the source file (for submission reports).

e both: is a combination of both options above.

Example:

ctr %>% pmx_report(name='Diagnostic_plots2',
save_dir = work_dir,
format='all")

9

Note that running the same command first with the option “format=‘plots’” and then with the option

“format="‘report’ ” will remove the ggpma__GOF folder.

Note also that by default, the report will have the DRAFT label on all plots. The label can be removed by
using the settings argument in the Controller creation.

The user can customize the default report by creating a “template”. To create a template, the user should
create first a default report with the following command:

ctr %>% pmx_report(name='Diagnostic_plotsl',

save_dir = work_dir,
output='report')

The Rmarkdown (.Rmd) file is the “template”. The user can modify the Rmarkdown file as desired (ex:
changing the size of some figures) and save the modified file. The new template can be used with the following
command:

ctr %>} pmx_report(name='Diagnostic_plots3',
save_dir = work_dir,
output '='report',
template=file.path(work_dir, 'Diagnostic_plotsl.Rmd'))

6 Customizing plots

Any particular plot can be customized in two ways:

« Specifying options in each call of a plot (on the fly, recommended):
ctr %>/ pmx_plot_xx(list of options)

o Customizing a type of plot for all subsequent calls in the session by modifying the Controller:
ctr %>/, pmx_update(??77xx??7, list of options)

Help(pmx__gpar) lists some options.
Help(pmx_ plot_ xx) lists some possible parameters to update a particular plot.

To obtain an exhaustive list of possible options for a particular plot, use the following:
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ctr %>} get_plot_config('"xx"

6.1 Visualization of BLQs (Monolix and NONMEM)

It is possible to visualize BLQ (below the limit of quantification) values in the individual plots. For this, bloq
needs to be specified using the pmx_ bloq function (see example below with the pmx_mlxtran() function).

ctr %>/ pmx_mlxtran(file_name = mlx_file, blog=pmx_bloq(cens = ?77BLQ??7, limit = ?77LIMIT??77))
ctr %>} pmx_plot_individual()

6.2 Simulated BLOQ (Monolix 2018 and later)

Monolix users may want to plot simulated BLQs. This is possible for outputs with Monolix 2018 and later.
An additional dataset is loaded (sim_ blq), which will be used for plotting insted the regular “predictions”-
dataset.

The sim_blq statment can be specified within the plot (locally) ...

ctr %>/ pmx_mlxtran(file_name = mlx_file))
ctr %>/ pmx_plot_iwres_ipred(sim_blq = TRUE)

. or within the controller (globally). If this statment is used within the controller, all corresponding plots
will plot simulated BLOQs by default.

ctr %>/ pmx_mlxtran(file_name = mlx_file, sim_blq = TRUE))
ctr %>% pmx_plot_iwres_ipred()

6.3 Customizing global settings - pmx_settings()

The user can define a Controller with global settings that will be applied to all plots. For example remove
draft annoataion, use abbreviation defintions to define axis labels, etc.

A settings object is defined by using the function pmx_settings(). The created object is passed as the
parameter “settings” to pmx(). By doing so, the settings are defined globally and apply to all plots. For
a complete list of global settings with their corresponding default values, please consult the ggPMX Help
(7pmx_settings).

## set one or more settings
my_settings <- pmx_settings(

is.draft = FALSE,

use.abbrev TRUE,

...) ### set other settings parameters here
ctr <-

pmx_mlx(

., ## put here other pmx parametes
settings = my_settings

)
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6.3.1 Remove DRAFT label globally

By default in the “standing” configuration, a DRAFT label is printed on all plots. In order to switch this
label off, the user sets the is.draft option of pmx_settings() to FALSE.

ctr <- theophylline(settings = pmx_settings(is.draft = FALSE))

6.3.2 TUse abbreviation definitions

The standing configuration initializes all plots using abbreviations for axis labels. Each abbreviation has its
corresponding definition. To get the list of abbreviation :

ctr %>/ get_abbrev

## NULL

You can update one abbreviation to set a custom label

ctr %>% set_abbrev(TIME="TIME after the first dose")

Using use.abbrev flag you can use abbreviation definition to set axis labels:

ctr <- theophylline(settings=pmx_settings(use.abbrev = TRUE))
ctr %>% set_abbrev(TIME="Custom TIME axis")
ctr %>% pmx_plot_npde_time
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6.3.3 Use finegrid.txt file for individual plots
within Monolix, user can choose to not use finegrid file even if it is present.

ctr <- theophylline()
ctr %>% pmx_plot_individual(which_pages="all", use.finegrid =FALSE)

## USE predictions data set

# [[1]]
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O accepted === individual predictions == == population predictions

O -

400+
3004
200 1
100+

400 A

200 1

TIME

##
## [[2]]
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O accepted === individual predictions == == population predictions

ID: 13 ID: 14
DRAF
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500
400 4 400 -
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04 04
##
## [[3]1]
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O accepted === individual predictions == == population predictions

ID: 25
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O accepted === individual predictions == == population predictions
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##
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6.3.4 Set stratification color legend
In case of color startfication user can customize the legend. For example here using the ggplot2: :scale_color_manual

ctr <- theophylline()
ctr %>% pmx_plot_npde_time(strat.color="STUD")+
ggplot2: :scale_color_manual(
"Study",
labels=c("Study 1","Study 2"),
values=c("1"="green","2"="blue"))
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Another way to do it is to define a global scales.color parameter that will applied to all plots with
strat.color

ctr <- theophylline(
settings=
pmx_settings(
color.scales=list(
"Study",
labels=c("Study 1","Study 2"),
values=c("1"="orange","2"="magenta"))

ctr %>, pmx_plot_npde_time(strat.color="STUD")
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ctr %>} pmx_plot_eta_box(strat.color="STUD")
var shrinkage=&0%hrinkage=—11% var shrinkage=9#shrinkage=93% var shrinkage=8146 shrinkage=67%
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Model parameters

6.3.5 Define labels of categorical variables

In case of faceting by stratification user can redfine categorical labels to have more human readables strips.
Lables are defined within cats.labels argument and user can use them by setting use.lables to TRUE.
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ctr <- theophylline(
settings=
pmx_settings(

cats.labels=1list(
SEX=c("Q"="M","1"="F"),
STUD=c("1"="Study 1","2"="Study 2")

e

use.labels = TRUE

ctr %>/ pmx_plot_npde_time(strat.facet=~SEX)
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ctr <- theophylline(
settings=
pmx_settings(

cats.labels=list(
SEX=c ("0"="M","1"="F"),
STUD=c("1"="Study 1","2"="Study 2")

D¢

use.labels = TRUE

ctr %>/, pmx_plot_npde_time(strat.facet=~SEX)
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ctr %>% pmx_plot_eta_box(strat.facet =~SEX)
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Model parameters

7.1 Generic Controller creation with pmx ()
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The function pmx() is the generic function for greating a Controller, currently only works with Monolix.
The user needs to specify a set of arguments such as the path to the model directory, the software used for
model fitting (Monolix), the name of a configuration. A list of all existing configurations is provided in the
Appendix. All mandatory arguments of pmx () are listed in Table 2.

The example below defines a Controller with the standing (standard) configuration.
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Argument Description Values

1 sys Software used for model fittng (Monolix or nlmixr) mlx, mlx2018, nm

2 config A pre-defined configuration is a set of default settings standing

3 directory  Path to the directory containing model output files

4 input Path to input modeling dataset (dataset used for model fitting)

5 dv Measurable variable name, as defined in the input modeling dataset DV, LIDV, LNDV, Y, etc.
6 dvid Endpoint (output) name, as defined in the input modeling dataset ~ DVID, YTYPE, CMT, etc.

Table 2: Mandatory arguments of pmx() function

theophylline_path <- file.path(system.file(package = "ggPMX"), "testdata", "theophylline")
work_dir <- file.path(theophylline_path, "Monolix")
input_data_path <- file.path(theophylline_path, "data_pk.csv'")

ctr <- pmx(

sys = "mlx",

directory = work_dir,

input = input_data_path,
dv = "Y",

Note that the column “DVID” of data_ pk.csv does not exist; however it is not needed here because there

is only one single output of the model. As dvid is a mandatory argument, which is automatically set to
“DVID” if dvid is missing.

The input dataset can be provided to ggPMX via its location (as in the example above) or as a data frame
(maybe give an example). The modeling output datasets have to be in the location that is indicated as
working directory (work_dir in the example above).

7.2 Software requirements

ggPMX is compatible with Monolix versions 2016 and later, NONMEM version 7.2 and later, and nlmixr.

7.2.1 Monolix

In order to be able to produce all available diagnostic plots, the following tasks should be executed in Monolix
during the model fitting procedure:

o Population parameters;

o Individual parameters (EBEs);
e Standard errors;

o Plots.

In addition, make sure to export charts data (In Monolix 2018: Settings -> Preferences -> Export -> switch
on the Export charts data button). Select at least the following plots to be displayed and saved: individual
fits and scatter plot of the residuals.

7.2.2 NONMEM

NONMEM Version 7.2/7.3/7.4 Preferred output tables according ??7sdtab, patab, cotab, catab??? conven-
tion Simulation are required for creation of VPC (e.g. sdtablsim)

38



7.2.3 nlmixr
Fit objects need to be generated by nlmixr and have data attached. Standard errors are required (a suc-

cessful covariance plot) for full diagnostic checks. Can use boostrapFit() to get standard error estimates
if necessary

7.3 Plots table

The main target of ggPMX is to create a report containing the following plots (see abbreviation list below):

Plot Name ggPMX type ggPMX name

1 Scatter plot of NPDE vs population predictions SCATTER npde_ pred

2 Scatter plot of NPDE vs time SCATTER npde_ time

3 Scatter plot of IWRES vs time SCATTER iwres_ time

4 Scatter plot of observations vs population predictions SCATTER dv_ pred

5  Scatter plot of observations vs individual predictions SCATTER dv__ipred

6 Scatter plot of absolute value of IWRES vs individual predictions SCATTER abs_iwres_ ipred

Table 3: List of all diagnostic plots
Abbreviations:

e NPDE: normalized prediction distribution errors
o IWRES: individual weighted residuals

o EBE: empirical Bayes estimates

e RE: random effects

e VPC: visual predivtive check

7.4 ggPMX main functions

gegPMX implements few functions to generate and manipulate diagnostic plots. (Should we list pmx and
pmx_ mlx separately and say the differences? Or it’s maybe clear from the previous sections.)

Function name Description
1 1 pmx, or pmx_mlx Creates a controller
2 2 plot_names or plots Lists controller plots
3 3 get_data Lists controller data
4 4 get_plot Prints a plot
5 5 set_plot Creates a new plot
6 6 pmx_update Updates an existing plot
7 7 pmx_filter Filters globally the data of the current session
8 8 pmx_copy Returns a deep copy of the controller

Table 4: List of all ‘ggPMX"* functions
(Apparently, it’s not the full list. Add all functions.) The design of the package is around the central object:
the controller. It can introspected or piped using the %>% operand.
Note that:

The controller is an R6 object, it behaves like a reference object. Some functions (methods) can have a side
effect on the controller and modify it internally. Technically speaking we talk about chaining not piping
here. However, using pmx_copy user can work on a copy of the controller.
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7.5 ggPMX graphical parameters

Graphical parameters in ggPMX are set internally using the pmx_gpar function. A number of graphical
parameters can be set for the different plot types.

args (pmx_gpar)

## function (is.title, labels, axis.title, which_pages, print, axis.text,

## ranges, is.smooth, smooth, is.band, band, is.draft, draft,

## discrete, is.identity_line, identity_line, smooth_with_bloq,

## scale_x_logl0O, scale_y_loglO, color.scales, is.legend, legend.position)
## NULL

More information can be found in the help document ?pmx_gpar and in the examples that follow.

7.6 Pre-defined configurations
For the moment we are mainly using standing configuration. In the next release user can specfiy configuration

either by cretaing a custom yaml file or an R configuration object. Also ggPMX will create many helper
functions to manipulate the configuration objects.

7.7 Shrinkage

7.8 Default call

The shrinkage is a computation within controller data. In general it is used to annotate the plots. Although
one can get it independently from any plot using pmx_comp_shrink. It is part of the pmx_compt_xx layer(
In the future we will add , pmx_comp_cor , pmx_comp_summary,..)

Here the basic call:

ctr %>% pmx_comp_shrink

## EFFECT OMEGA SHRINK POS FUN
## <char> <num> <num> <num> <char>
#t 1: Cl 0.22485 0.1125175 0.2934250 var
## 2: V 0.03939 0.9469996 0.0057915 var
## 3. ka 0.10024 0.7423478 0.0810850 var

We get the shrinkage for each effect (SHRINK column).

The same values can be shown on distribution plot , for example :

ctr 7>% pmx_plot_eta_box
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or :

Model parameters

ctr 7>% pmx_plot_eta_hist
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You can add or remove shrinkage annotation using is.shrink argument ( TRUE by default) :

ctr %>%  pmx_plot_eta_box( is.shrink = FALSE)
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7.9 Var function
You can compute shrinkage by applying either standard deviation sd or variance var :

ctr %>/ pmx_comp_shrink(fun="var")

## EFFECT OMEGA SHRINK POS FUN
## <char> <num> <num> <num> <char>
## 1: Cl 0.22485 0.1125175 0.2934250 var
## 2: V 0.03939 0.9469996 0.0057915 var
## 3: ka 0.10024 0.7423478 0.0810850 var

ctr %> pmx_plot_eta_box(shrink=pmx_shrink(fun = "var"))
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7.10 Shrinkage and stratification

Shrinkage can be applied after stratification :

ctr %>% pmx_comp_shrink(strat.facet = ~SEX)

## EFFECT SEX OMEGA SHRINK POS
## <char> <int> <num> <num> <num>
## 1: Cl 1 0.22485 -0.08032359 0.29342500
## 2: Cl 0 0.22485 0.51828810 0.12378000
## 3: v 1 0.03939 0.94628054 0.00579150
## 4. v 0 0.03939 0.94818243 0.00437235
## 5: ka 1 0.10024 0.70737008 0.08108500
## 6: ka 0 0.10024 0.80907530 0.03676950
or by grouping like :

ctr %>} pmx_comp_shrink(strat.color = "SEX")

## EFFECT SEX OMEGA SHRINK POS
## <char> <int> <num> <num> <num>
## 1: Cl 1 0.22485 -0.08032359 0.29342500
## 2: Cl 0 0.22485 0.51828810 0.12378000

44

FUN
<char>
var
var
var
var
var
var

FUN
<char>
var
var




## 3: \ 1 0.03939 0.94628054 0.00579150 var
## 4. V' 0 0.03939 0.94818243 0.00437235 var
## 5: ka 1 0.10024 0.70737008 0.08108500 var
## 6: ka 0 0.10024 0.80907530 0.03676950 var
We can

ctr %>% pmx_plot_eta_hist(is.shrink = TRUE, strat.facet = ~SEX,
facets=list(scales="free_y"))
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ctr %>/ pmx_plot_eta_box(is.shrink = TRUE, strat.facet = ~SEX,
facets=list(scales="free_y",ncol=2))
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