
secrlinear - spatially explicit capture–recapture for linear habitats

Murray Efford

2023-10-17

Contents

Introductory example 2

Linear habitat masks 3
Input from a polyline shapefile . 4
Input from a SpatialLinesDataFrame . 5
Input from a dataframe of coordinates . 5
Input from a text file of coordinates . 5

Network distance 5

Detector layouts 7

Simulating detection data 8

Model fitting 9

Advanced topics 10
Population size and effective sampling area . 10
Linear habitat covariates . 11
Discontinuities and traversable non-habitat . 12
Linear home-range size . 13
Evaluating study designs . 14

Limitations, tips and troubleshooting 17

References 17

Appendix. Extended water vole example. 18

The R package secrlinear extends secr for animal populations in linear habitats. A habitat is considered
to be ‘linear’ if it is natural to express population density as number per unit length (e.g., animals per km)
rather than number per unit area (e.g., animals per ha). For example, species such as trout and riverine
otters may live almost entirely in stream channels. secrlinear provides functions to manipulate linear habitat
masks (the ‘linearmask’ class) and to approximate distances within a network defined by a linear mask. The
linear mask and network distance function may be used directly in secr functions such as secr.fit. secr
≥ 2.9.0 allows the simulation and analysis of linear populations (e.g., sim.popn now has a ‘linear’ option for
its argument ‘model2D’).

See secr-spatialdata.pdf for additional information about the handling of spatial data in secr. secrlinear
continues to rely on classes defined in sp (Pebesma and Bivand 2005).

1

https://CRAN.R-project.org/package=secrlinear/
https://CRAN.R-project.org/package=secr/
https://www.otago.ac.nz/density/pdfs/secr-spatialdata.pdf

Introductory example

Water voles (Arvicola amphibius) were trapped monthly in 1984 along 0.9 km of the River Glyme near
Woodstock in Oxfordshire, U.K. (Efford 1985). Two sheet-aluminium traps were set at stations 20 m apart
along one bank and checked morning and evening for 3 days. Voles were marked with individually colour-coded
ear tags. We use data from June 1984. This was early in the vole breeding season when most voles were
overwintered adults: only 3 were young-of-the-year and these were omitted.

Raw data files “Jun84capt.txt” and “glymetrap.txt” are provided in the ‘extdata’ folder of the secrlinear
installation. These are in the format used by secr (see the vignette secr-datainput.pdf for details). We
first load all packages that will be needed for this vignette and import the capture data, exactly as for
2-dimensional habitat in secr. Although single-catch traps were used, we set the detector type to “multi” to
avoid later warnings.

library(secrlinear) # also loads secr

options(digits = 4) # for more readable output

inputdir <- system.file("extdata", package = "secrlinear")

captfile <- paste0(inputdir, "/Jun84capt.txt")

trapfile <- paste0(inputdir, "/glymetrap.txt")

arvicola <- read.capthist(captfile, trapfile, covname = "sex")

No errors found :-)

Next we need to define the linear habitat geometry. For one simple line (no branches) we can read the
coordinates of the river bank from a text file. Coordinates are in a Cartesian system with an arbitrary origin;
distances are in metres. We form a ‘linearmask’ object by cutting the line at 4-m intervals.

habitatmap <- paste0(inputdir, "/glymemap.txt")

glymemask <- read.linearmask(file = habitatmap, spacing = 4)

Now we can display the data:

par(mar = c(1,1,4,1))

plot(glymemask)

plot(arvicola, add = TRUE, tracks = TRUE)

plot(traps(arvicola), add = TRUE)

1984−06

6 occasions, 84 detections, 26 animals

Fig. 1. Water vole captures along R. Glyme in June 1984. Traps (red crosses) spanned 860 m of river bank.

We can fit a spatially explicit model to the water vole data in three ways: (i) ignoring the linearity of the

2

https://www.otago.ac.nz/density/pdfs/secr-datainput.pdf

habitat (fit2DEuc), (ii) with a linear habitat map and the default Euclidean distance model (fit1DEuc), or
(iii) with both linear habitat and an appropriate non-Euclidean distance function (fit1DNet):

2-D habitat, Euclidean distance

fit2DEuc <- secr.fit(arvicola, buffer = 200, trace = FALSE)

1-D habitat, Euclidean distance

fit1DEuc <- secr.fit(arvicola, mask = glymemask, trace = FALSE)

1-D habitat, river distance

fit1DNet <- secr.fit(arvicola, mask = glymemask, trace = FALSE,

details = list(userdist = networkdistance))

The second fit displays the warning “using Euclidean distances with linear mask”. We compare the parameter
estimates from the three models:

predict(fit2DEuc)

link estimate SE.estimate lcl ucl

D log 1.2798 0.3046 0.8079 2.0275

g0 logit 0.2634 0.0978 0.1175 0.4899

sigma log 41.9103 4.1392 34.5507 50.8375

predict(fit1DEuc)

link estimate SE.estimate lcl ucl

D log 26.20069 5.2072 17.81467 38.5343

g0 logit 0.07629 0.0111 0.05719 0.1011

sigma log 44.41595 4.3780 36.63023 53.8565

predict(fit1DNet)

link estimate SE.estimate lcl ucl

D log 26.52514 5.27114 18.03599 39.00996

g0 logit 0.07283 0.01052 0.05472 0.09632

sigma log 47.39258 4.86151 38.78135 57.91589

Analysis with a 2-dimensional mask and Euclidean distances gives an estimated density of 1.3 voles per ha.
When the mask is linear, density is expressed in animals per km (here D̂ = 26.5/km, SE 5.3/km). Using the
correct distances (i.e. distances measured along the river with function networkdistance) has only a slight
effect in this instance because the river is unbranched and nearly straight.

In the rest of this vignette we explore in more detail the options for linear SECR that are available in
secrlinear.

Linear habitat masks

The representation of linear habitat in secrlinear is based on the SpatialLinesDataFrame object class defined
in the package sp (Pebesma and Bivand 2005). This provides the habitat template - e.g., a map of a
stream channel network. For ease of modelling the mask is discretized into equal-length line segments, each
represented by the coordinates of its central point as for other habitat masks in secr. The discretized form is
the most visible aspect of a linear mask. The underlying linear data are stored as an attribute (‘SLDF’). The
topology of the network is represented by an igraph (Csardi and Nepusz 2006) graph object saved as the
attribute ‘graph’. This is an undirected graph with the length of each edge stored as the attribute “weight”.

Other objects (detectors, animals) are assumed to lie on the linear mask. In effect, their x-y locations are
snapped to the nearest mask point (the discretized representation).

3

The function read.linearmask creates a linear mask from inputs that define the linear network. These may
be a polyline shapefile (ESRI 1998), a SpatialLinesDataFrame, a dataframe of coordinates for line vertices, or
a file containing coordinate data (as in the introductory example). The first two methods allow for complex
combinations of lines, including branching networks. The ‘spacing’ argument of read.linearmask determines
the coarseness of the discretization.

Input from a polyline shapefile

The ‘file’ argument of read.linearmask may be the name of a shapefile, including the ‘.shp’ extension. The
function st_read from package sf (Pebesma 2018) is used internally to read the shapefile, from which a
SpatialLinesDataFrame is created.

We can try this with a shapefile for the Silverstream catchment near Dunedin, New Zealand, based on data
from Land Information New Zealand (see ?Silverstream for details). The relevant files are ‘silverstream.shp’,
‘silverstream.dbf’ and ‘silverstream.shx’ in the ‘extdata’ folder of secrlinear.

habitatmap <- paste0(inputdir, "/silverstream.shp")

silverstreammask <- read.linearmask(file = habitatmap, spacing = 50)

par(mar = c(1,1,1,1))

plot(silverstreammask)

Fig. 2. Linear mask for Silverstream catchment, Dunedin, New Zealand. The river flows to the bottom left.
Mask points are grey dots at 50-m spacing; these merge together in the plot.

The discretized length of a complex mask will tend to be shorter than the original linear network as incomplete
segments are dropped from the ends of branches. See the following section for more details.

sldf <- attr(silverstreammask, "SLDF")

networklength <- sum(sp::SpatialLinesLengths(sldf)) / 1000 # km

discrepancy <- networklength - masklength(silverstreammask) # km

In this case the discrepancy is 0.06 km.

4

Input from a SpatialLinesDataFrame

The ‘data’ argument of read.linearmask may be a SpatialLinesDataFrame object. This allows for data to
be imported from GIS sources other than shapefiles, and for selection of features, re-projection, or other
manipulation.

secrlinear is based on classes defined in the package sp, but we use the more modern package sf to read the
shapefile before converting to an sp SpatialLinesDataFrame. For example,

habitatmap <- paste0(inputdir, "/silverstream.shp")

silverstreamsf <- st_read(habitatmap)

silverstreamSLDF <- as(silverstreamsf, 'Spatial')

silverstreammask <- read.linearmask(data = silverstreamSLDF, spacing = 50)

Input from a dataframe of coordinates

Alternatively, a simple mask may be constructed from a dataframe of coordinates. This example generates
an artificial geometry.

x <- seq(0, 4*pi, length = 200)

xy <- data.frame(x = x*100, y = sin(x)*300)

linmask <- read.linearmask(data = xy, spacing = 20)

plot(linmask)

Fig. 3. Artificial linear habitat mask. Each mask segment is 20 m long (pixel centres are indicated by a grey
dot).

Input from a text file of coordinates

See water vole example.

Network distance

If the movement of animals is largely confined to the linear network then it makes sense to measure
distances along the network rather than as the crow flies. Network distances are non-Euclidean. If the
animals concentrate their movements around linear features, but do not use them exclusively, then other
non-Euclidean approaches may be appropriate (cf Royle et al. 2013, Sutherland et al. 2015). These require
the estimation of an additional parameter and use a 2-dimensional habitat mask.

The igraph function shortest.distance is used within the secrlinear function networkdistance to

5

compute approximate distances on the network implied by a linear mask. In the case of a single line, the
distance is simply the product of the mask spacing and the number of steps (intervening points + 1).

The interactive showpath function allows you to verify the distance computation for chosen points on the
network:

start interactive session and click on two points

showpath(silverstreammask, lwd = 3)

Fig. 4. Network path between two arbitrary points, displayed using showpath. The dashed line corresponds
to the Euclidean distance. Euclidean and network distances are reported.

The network graph used by networkdistance is typically that generated by read.linearmask and saved as
the ‘graph’ attribute of a linearmask. Network distance is then the sum of distances between adjacent mask
points along the shortest network path. The distance is approximate because –

1. A simple adjacency rule is used to construct the network from the mask points, supplemented by the
terminal points of lines. Points are considered ‘adjacent’ if their Euclidean separation is less than the
mask ‘spacing’ times the mask attribute ‘spacingfactor’ (default 1.5). The graph formed using this rule
mirrors the linear network except for occasional shortcut ‘skips’ where lines meet obliquely.

2. The distance is based on discretization of the linear network as a set of segments represented by
their centroids. Incomplete terminal segments are dropped if they occur at the end of a Lines object.
The component Line objects within a Lines object (Pebesma and Bivand 2005) are effectively placed
end-on-end, and centroids are spaced equally along the combined length.

The convenience of the discretized network generally outweighs the cost of any imprecision, especially when
the mask spacing is small. The risk of skips increases with the spacing factor. Reducing the spacing factor
increases the risk of introducing breaks in the network.

The user may replace the default graph with one that more precisely represents the linear network. For example,
nodes may be added precisely at the intersections of streams, and linked by edges to the adjoining mask points,
while deleting ‘skip’ edges. You are mostly on your own here, but see https://rpubs.com/edzer/spatialnetworks/
and possibly https://CRAN.R-project.org/package=shp2graph/.

The functions showedges, replot and deleteedges are provided for editing the graph (see Examples in
help(deleteedges)). addedges may be used to replace edges deleted by mistake or to bridge unwanted

6

https://rpubs.com/edzer/spatialnetworks/
https://CRAN.R-project.org/package=shp2graph/

gaps in a network. cleanskips drops all but the shortest edge joining any two different lines; it is called by
default by read.linearmask.

Detector layouts

Detector layouts (‘traps’ objects in secr) are the same in linear and 2-dimensional habitat models, except for
the fact that detectors are located along the linear habitat features. There is no special ‘lineartraps’ class.

Input formats for detector layouts are described in secr-datainput.pdf.

The function make.line generates a traps object with detectors spaced equally along each line in a linear
mask, or in clustered patterns, possibly with a random offset as shown here:

trps <- make.line(linmask, detector = "proximity", n = 40, startbuffer = 0, by = 300,

endbuffer = 80, cluster = c(0,40,80), type = 'randomstart')

plot(linmask)

plot(trps, add = TRUE, detpar = list(pch = 16, cex = 1.2, col='red'))

Fig. 5. Detectors placed with make.line

make.line places detectors on each component line of the mask, independently of other lines. The ‘random-
start’ option is not guaranteed to provide a spatially representative sample. You may also locate detectors in
the field by GPS and import the data with read.traps. For ad hoc tests, detectors may be placed just by
clicking on a map:

plot(silverstreammask)

loc <- locator(30)

xy <- snapPointsToLinearMask(data.frame(loc), silverstreammask)

tr <- read.traps(data = xy, detector = 'multi')

plot(tr, add = TRUE)

For distance calculations in secrlinear, the location of each detector is ‘snapped’ to the nearest mask point.
This behaviour is slightly undesirable because it limits network distances to discrete values (usually multiples
of the mask spacing), but it should have little effect as long as mask spacing is much less than detector
spacing.

The ‘graph’ attribute this will be used by networkdistance to compute distances. Edges should have a
‘weight’ attribute equal to the distance between centroids (equal to the pixel size for most pixel pairs, but no
all).

Only point detector types are allowed. This excludes area search (polygon, polygonX) and transect search
(transect, transectX). Data are commonly collected by searching a linear habitat (e.g., using dogs to search for
scat along riverbanks). Model such data by discretizing the searched transect(s) as a series of point detectors.
There are several ways to do this. Probably the most straightforward is to import both the transect track(s)
and the point detections to secr as a capthist object with detector type ‘transect’; the transect(s) may then
be cut into equal segments with the snip function, and the snipped transects converted to point detectors

7

https://www.otago.ac.nz/density/pdfs/secr-datainput.pdf

with the reduce method for capthist data. The x-y coordinates for the centre of each segment may also
be generated manually or with the secrlinear function make.line, but this requires more effort to match
detections to searched segments. Data from searches most likely are of detector type ‘count’ to allow a
Poisson number of detections per animal per occasion per segment.

This code shows the steps to take; see secr-datainput.pdf for data formats.

transects <- read.traps('transectxy.txt', detector = 'transect')

capt <- read.table('capt.txt')

tempCH <- make.capthist(capt, transects, fmt = 'XY')

tempCH <- snip(tempCH, by = 100) # for 100-m segments

CH <- reduce(tempCH, outputdetector = "count")

Simulating detection data

Here we describe the core functions used to simulate detection data for linear habitats. See also Evaluating
study designs.

sim.linearpopn generates a population of a known density distributed at random along a linear mask. This
is merely a simple wrapper for the more elaborate secr function sim.popn.

Further, the secr function sim.capthist may be used to generate detection datasets (‘capthist’ objects)
from a specified population and detector layout (‘traps’ object). (This capability is used in the help files to
fake data for demonstrating other functions).

For 2-dimensional habitat, sim.capthist will generate a population automatically if none is provided. For
linear habitat, the user must explicitly simulate a population and supply this as the value of the ‘popn’
argument of sim.capthist.

The linear mask supplied to sim.linearpopn is retained as an attribute of the simulated population and used
in sim.capthist as an argument of the supplied ‘userdist’ function. This enables detection probabilities to
be modelled in sim.capthist using network the distance between each detector and an animal’s home-range
centre.

Here’s how it works, carrying on our Silverstream example:

simulate population of 2 animals / km

pop <- sim.linearpopn(mask = silverstreammask, D = 2)

simulate detections using network distances

CH <- sim.capthist(traps = tr, popn = pop, noccasions = 4,

detectpar = list(g0 = 0.25, sigma = 500),

userdist = networkdistance)

summary(CH) # detector spacing uses Euclidean distances

Object class capthist

Detector type multi (4)

Detector number 30

Average spacing 456.6 m

x-range 1397612 1402450 m

y-range 4919286 4928129 m

##

Counts by occasion

1 2 3 4 Total

n 20 22 26 21 89

u 20 16 12 5 53

f 28 16 7 2 53

M(t+1) 20 36 48 53 53

8

https://www.otago.ac.nz/density/pdfs/secr-datainput.pdf

losses 0 0 0 0 0

detections 20 22 26 21 89

detectors visited 15 17 18 16 66

detectors used 30 30 30 30 120

##

Individual covariates

sex

F:30

M:23

and plot the simulated detections...

par(mar = c(1,1,1,1))

plot(silverstreammask)

plot(CH, add = TRUE, tracks = TRUE, varycol = TRUE, rad = 100, cappar = list(cex = 2))

plot(tr, add = TRUE)

4 occasions, 89 detections, 53 animals

Fig. 6. Simulated detections of linear population. Colours vary (subtly) among individuals. Red crosses
indicate trap locations. Movements (‘tracks’) are shown as-the-crow-flies rather than along the network.

Model fitting

Spatially explicit capture–recapture models for linear populations may be fitted using the secr function
secr.fit with only slight alterations:

1. A linear mask is provided as the ‘mask’ argument.

2. Network distances are used instead of Euclidean distances.

Network distances may be specified either by passing a pre-computed matrix of distances between each trap
(rows) and each mask point (columns), or by passing the function networkdistance that will compute the
matrix on-the-fly. Either the function or the matrix is provided as the value of the ‘details’ component
‘userdist’ e.g., details = list(userdist = networkdistance). Continuing the Silverstream example,

userd <- networkdistance(tr, silverstreammask)

userd[!is.finite(userd)] <- 1e8 # testing

9

sfit <- secr.fit(CH, mask = silverstreammask, details = list(userdist = userd))

predict(sfit)

Linear habitat models differ from 2-dimensional models in the interpretation of the parameters. Population
density (D) is expressed as the expected or realised number of animals per kilometer of habitat, rather than
per hectare. The detection function represents the probability of detection (g) or the expected number of
detections (λ) at a given network distance from an animal’s home-range centre. In other words, the fitted
parameter σ scales with network distance (the units for σ are metres, as with a 2-dimensional model).

Advanced topics

Population size and effective sampling area

The usual secr functions for population size in a defined region, and for derived (conditional-likelihood)
estimates, may be applied to 1-D models as for 2-D models, but the interpretation of the output differs. We
can see this with the water vole models fitted earlier:

region.N(fit2DEuc)

estimate SE.estimate lcl ucl n

E.N 58.29 13.87 36.79 92.34 26

R.N 58.29 11.58 42.33 89.86 26

region.N(fit1DNet)

estimate SE.estimate lcl ucl n

E.N 34.59 6.874 23.52 50.87 26

R.N 34.59 3.558 29.94 44.74 26

The region of interest and the population model have been defined quite differently for 1-D and 2-D, and
it is no surprise that the estimated populations are also different. For 2-D, the region is the original mask
(area 45.5 ha) and the estimated density is extrapolated across its full extent although we believe animals are
confined to the riverbank: this makes little sense. For 1-D, the region is the length of ‘glymemask’ along the
river (1.3 km).

par(mfrow = c(1,2), mar = c(1,1,1,1))

plot(fit2DEuc$mask)

plot(traps(arvicola), add = TRUE)

mtext(side = 3,line = -1.8, "fit2DEuc$mask", cex = 0.9)

plot(fit1DNet$mask)

plot(traps(arvicola), add = TRUE)

mtext(side = 3,line = -1.8,"fit1DNet$mask", cex = 0.9)

fit2DEuc$mask fit1DNet$mask

Fig. 7. Comparison of 2-D and 1-D masks for water voles on R. Glyme. Traps in red.

10

Comparison of results from the derived function is also instructive:

derived(fit2DEuc)

estimate SE.estimate lcl ucl CVn CVa CVD

esa 20.32 NA NA NA NA NA NA

D 1.28 0.3004 0.8129 2.015 0.1961 0.129 0.2347

derived(fit1DNet)

estimate SE.estimate lcl ucl CVn CVa CVD

esa 0.9802 NA NA NA NA NA NA

D 26.5252 5.221 18.1 38.87 0.1961 0.01679 0.1968

In the 1-D model ‘esa’ (or a) refers to ‘effective linear extent of sampling’ rather than ‘effective sampling
area’, and the units are km. The relative precision of â (CVa) is very much better for the 1-D model than the
2-D model, and this improves the precision of the density estimate. The other component of precision (CVn)
is identical for the two models when distribution = "poisson" (the default).

Linear habitat covariates

Mask covariates are used to model spatial variation in population density. If the input to read.linearmask

is a SpatialLinesDataFrame then its line-level attributes become covariates of the final mask. Covariates may
also be added either directly, by assigning new columns in the ‘covariates’ dataframe, or indirectly, using the
secr function addCovariates. addCovariates extracts data for each mask point from another spatial data
source; this will usually be a SpatialPolygonsDataFrame or 2-dimensional mask object.

Suppose we wish to model density as a function of distance from the main channel (spine). In this code we
interactively identify the multiple lines comprising the spine and compute a new column for the covariates
dataframe.

interactively obtain LineID for central 'spine' by clicking on

each component line in plot

tmp <- getLineID(silverstreammask)

extract coordinates of 'spine'

spine <- subset(silverstreammask, LineID = tmp$LineID)

obtain network distances to spine and save for later use

netd <- networkdistance(spine, silverstreammask) # matrix dim = c(nrow(spine), nrow(mask))

dfs <- apply(netd, 2, min) / 1000 # km

covariates(silverstreammask)$dist.from.spine <- dfs

Now let’s plot the covariate –

par(mar=c(1,1,1,4))

plot(silverstreammask, covariate = 'dist.from.spine', col = topo.colors(13),

cex = 1.5, legend = FALSE)

strip.legend('right', legend = seq(0, 6.5, 0.5), col = topo.colors(13),

title = 'dist.from.spine km', height = 0.35)

plot(spine, add = TRUE, linecol = NA, cex = 0.3)

11

Fig. 8. Computed covariate of Silverstream mask points – distance in km from central channel (spine)

The covariate may appear later as a predictor of density in secr.fit formulae (e.g., D ∼ dist.from.spine).
Remember that if you wish to predict detection parameters (g0, sigma etc.) the relevant covariate(s) generally
should be associated with detectors (the ‘traps’ component of a ‘capthist’ object).

Discontinuities and traversable non-habitat

‘Habitat’ is the set of places where an animal may live, which we interpret for SECR as the set of possible
home-range centres (loosely defined). Under the usual 2-dimensional SECR model, detection is a function
of distance between a detector and the home-range centre irrespective of the continuity of habitat. This
entails the (usually unstated) assumption that non-habitat is traversable, and detection is not prevented
by intervening non-habitat. The reverse assumption (non-habitat is not traversed) is the default in linear
SECR models. This is because distance is calculated from the network graph, and mask points that are not
connected, either directly or indirectly, are considered to be an infinite distance apart.

Detections of an individual at unconnected detectors are strictly impossible under the default model, and
such data will cause secr.fit to fail. This may result simply from data entry errors, or from a local failure
of the algorithm used by read.linearmask to construct the graph. The function checkmoves finds animals
whose sequential re-detection distances (‘moves’) lie outside a specified acceptable range:

initially OK (no movement > 1000 m)--

checkmoves(arvicola, mask = glymemask, accept = c(0,1000))

deliberately break graph of linear mask

attr(glymemask, 'graph')[200:203,201:204] <- NULL

no longer OK --

out <- checkmoves(arvicola, mask = glymemask, accept = c(0,1000))

display captures of animals 32 and 35 whose records span break

out$df

problem shows up where voles recaptured either side of break:

showedges(glymemask, col = 'red', lwd = 6)

plot(out$CH, add = TRUE, tracks = TRUE, rad=8,cappar=list(cex=1.5))

pos <- traps(arvicola)['560.B',]

12

text(pos$x+5, pos$y+80, 'break', srt=90, cex=1.1)

Where individual detection histories are found to span a linear habitat gap, or for biological reasons we
expect them to do so, the default network graph is an inadequate model for movement. It may be sufficient
to ‘bridge’ breaks in the graph by adding edges manually:

plot(glymemask)

replot(glymemask) # click on corners to zoom in

showedges(glymemask, col = 'red', lwd = 2, add=T)

glymemask <- addedges(glymemask)

The edge weight (edge length) assigned by addedges defaults to the Euclidean geographical distance between
pixel centroids, which is an adequate approximation for small distances. The appropriate weight for edges
added to bridge zones of non-habitat is a larger question that will depend on the biology of the species, and
may involve estimated non-Euclidean distance parameters as in Royle et al. (2013) and secr-noneuclidean.pdf.

Linear home-range size

The implementation of the SECR model in secrlinear uses σ as the parameter to represent the spatial scale
of detection. For many purposes σ may also be interpreted as the spatial scale of animal movements, or an
index of home-range size. However, there are subtleties in the relation between σ and home-range size for
both 2-dimensional and linear habitat. Two animals with the same value of σ will have the same home-range
size (perhaps defined as a 95% activity area) only if there is an equal extent of habitat within their respective
neighbourhoods. This need not be the case for individuals in a dendritic network (Fig. 9).

par(mfrow = c(1,1), mar = c(1,1,1,5))

plot(silverstreammask)

centres <- data.frame(locator(4))

OK <- networkdistance(centres, silverstreammask) < 1000

for (i in 1:nrow(OK)) {

m1 <- subset(silverstreammask, OK[i,])

plot(m1, add = TRUE, col = 'red', cex = 1.7)

ml <- masklength(m1)

points(centres, pch = 16, col = 'yellow', cex = 1.4)

text (1406000, mean(m1$y), paste(ml, 'km'), cex = 1.2)

}

13

https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf

Fig. 9. Varying lengths of stream within 1 km of four arbitrarily located home range centres (yellow dots)
(distances measured along network). Stream length associated with each centre depends on local habitat
geometry.

It is possible, in principle, to fit a model in which σ varies across the network inversely with the channel
density, so as to maintain a constant length of channel in each animal’s home range.

Evaluating study designs

The R package secrdesign is a convenient wrapper for the simulation capability of secr, and this extends to
linear habitats. Use secrdesign to assess potential study designs with respect to measures such as the likely
number of detections and repeat detections, and the expected bias and precision of density estimates from a
fitted model. Here is a simple example using two linear detector layouts with a population at two densities
(50/km, 200/km) in a linear habitat.

library(secrdesign)

This is secrdesign 2.9.0 pre-release. For overview type ?secrdesign

create a habitat geometry

x <- seq(0, 4*pi, length = 200)

xy <- data.frame(x = x*100, y = sin(x)*300)

linmask <- read.linearmask(data = xy, spacing = 5)

define two possible detector layouts

trp1 <- make.line(linmask, detector = "proximity", n = 80, start = 200, by = 30)

trp2 <- make.line(linmask, detector = "proximity", n = 40, start = 200, by = 60)

trplist <- list(spacing30 = trp1, spacing60 = trp2)

create a scenarios dataframe

scen1 <- make.scenarios(D = c(50,200), trapsindex = 1:2, sigma = 25, g0 = 0.2)

we specify the mask, rather than construct it 'on the fly',

we will use a non-Euclidean distance function for both

14

https://CRAN.R-project.org/package=secrdesign/

simulating detections and fitting the model...

det.arg <- list(userdist = networkdistance)

fit.arg <- list(details = list(userdist = networkdistance))

run the scenarios and summarise results

sims1 <- run.scenarios(nrepl = 50, trapset = trplist, maskset = linmask,

det.args = list(det.arg), fit.args = list(fit.arg),

scenarios = scen1, seed = 345, fit = FALSE)

Completed scenario 1

Completed scenario 2

Completed scenario 3

Completed scenario 4

Completed in 0.096 minutes

summary(sims1)

run.scenarios(nrepl = 50, scenarios = scen1, trapset = trplist,

maskset = linmask, det.args = list(det.arg), fit = FALSE,

fit.args = list(fit.arg), seed = 345)

##

Replicates 50

Started 15:36:57 17 Oct 2023

Run time 0.096 minutes

Output class selectedstatistics

##

$constant

value

noccasions 3

nrepeats 1

g0 0.2

sigma 25

detectfn 0

recapfactor 1

popindex 1

detindex 1

fitindex 1

maskindex 1

##

$varying

scenario trapsindex D

1 1 50

2 2 50

3 1 200

4 2 200

##

$detectors

trapsindex trapsname

1 spacing30

2 spacing60

##

$det.args

15

detindex userdist

1 userdistfn

##

$fit.args

fitindex details

1 userdist=userdistfn

##

OUTPUT

##

$1

1

n mean se

n 50 93.0400 1.26973

r 50 64.2400 1.64616

nmov 50 48.5400 1.40849

dpa 50 1.4573 0.01058

rse 50 0.1262 0.00156

##

$2

2

n mean se

n 50 57.7400 1.03285

r 50 16.1600 0.67694

nmov 50 6.4200 0.43621

dpa 50 1.0999 0.00604

rse 50 0.2576 0.00585

##

$3

3

n mean se

n 50 358.18000 2.40487

r 50 246.46000 3.09657

nmov 50 189.48000 2.69909

dpa 50 1.46062 0.00549

rse 50 0.06389 0.00041

##

$4

4

n mean se

n 50 234.3400 2.01780

r 50 64.5800 1.11578

nmov 50 26.6200 0.65209

dpa 50 1.1030 0.00244

rse 50 0.1251 0.00108

Given some more time, we could set ‘fit = TRUE’ and assess the bias and precision of density estimates from
the four levels of sampling intensity crossed with density.

sims2 <- run.scenarios(nrepl = 5, trapset = trplist, maskset = linmask,

det.args = list(det.arg), scenarios = scen1, seed = 345, fit = TRUE)

summary(sims2)

16

Limitations, tips and troubleshooting

1. read.linearmask treats each Lines component of a SpatialLinesdataFrame as a separate entity, and
discretizes it independently of other lines. The input (even a SpatialLinesDataFrame) has no inherent
topology (junctions are not coded). The discretized form has an integer number of equal-length line
segments for each Lines component in the input. This has a minor distorting effect on network distances.
Each ‘Lines’ component may be composed of several ‘line’ objects, and these need not connect. However,
from version 1.0.2 onwards, terminal fragments are ‘run-on’ to the start of the next ‘line’ within the
same ‘Lines’ object, reducing the potential truncation error.

2. Many functions in secr for manipulating 2-dimensional detector arrays or model fits are unsuitable for
models fitted with a linear mask, and in some cases a linear analogue has yet to be programmed. Exam-
ples are buffer.contour, fxi.contour, fxi.total, circular.p, trap.builder, cluster.centres,
distancetotrap, nearesttrap, plot.Dsurface, and pdot.contour. Many other functions have not
been tested with linear inputs: please report problems.

3. Area-search methods (polygon detector types) are not appropriate.

4. Linear search (transect detector types) are appropriate, and would be useful, but have yet to be
implemented. The problem is that the numerical integration algorithm used in C code to predict overlap
between home ranges and the searched transect requires that distances be computed on-the-fly for
arbitrary locations, rather than from a pre-computed matrix.

5. Two-dimensional masks are often constructed by placing a ‘buffer’ around the detector array. The
appropriate buffer width is a multiple of the movement scale σ, perhaps 4σ. A similar procedure may
be followed for linear masks. We note that when movements (and home ranges) are strictly linear, a
smaller multiple of σ is needed to encompass a given fraction of the animal’s active locations. While a
radius of 2.45σ encompasses 95% of a circular bivariate normal home range, a span of ±1.96σ spans
the same fraction of a 2-sided linear normal home range.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64, 377–385.

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research, InterJournal,
Complex Systems 1695. https://igraph.org/.

Efford, M. G. (1985) The structure and dynamics of water vole populations. D.Phil thesis, University of
Oxford.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in spatially explicit capture–recapture data.
Ecology 95, 1341–1348.

ESRI (1998) ESRI shapefile technical description. https://www.esri.com/library/whitepapers/pdfs/shapefile.
pdf.

Pebesma, E.J. and Bivand, R. S. (2005) Classes and methods for spatial data in R. R News 5(2), https:
//cran.r-project.org/doc/Rnews/.

Pebesma, E. (2018) Simple features for R: standardized support for spatial vector data. The R Journal 10(1),
439–446. https://doi.org/10.32614/RJ-2018-009

Royle, J. A., Chandler, R. B., Gazenski, K. D. and Graves, T. A. (2013) Spatial capture–recapture models
for jointly estimating population density and landscape connectivity. Ecology 94 287–294.

Sutherland, C., Fuller, A. K. and Royle, J. A. (2015) Modelling non-Euclidean movement and landscape
connectivity in highly structured ecological networks. Methods in Ecology and Evolution 6, 169–177.

17

https://igraph.org/
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/
https://doi.org/10.32614/RJ-2018-009

Appendix. Extended water vole example.

Here we continue the water vole analysis with one or two twists. . . The ‘hcov’ formulation estimates the sex
ratio and allows for sex-based models of detection (see ?hcov).

We assume the data have been prepared as in the introductory example.

It is efficient to pre-compute a matrix of distances between traps (rows)

and mask points (columns)

distmat <- networkdistance (traps(arvicola), glymemask, glymemask)

Morning and evening trap checks as a time covariate

tcov <- data.frame(ampm = rep(c("am","pm"),3))

glymefit1 <- secr.fit(arvicola, mask = glymemask, trace = FALSE,

details = list(userdist = distmat),

model = g0~1, hcov = "sex")

glymefit2 <- secr.fit(arvicola, mask = glymemask, trace = FALSE,

details = list(userdist = distmat),

model = g0~ampm, timecov = tcov, hcov = "sex")

glymefit3 <- secr.fit(arvicola, mask = glymemask, trace = FALSE,

details = list(userdist = distmat),

model = g0~ampm + h2, timecov = tcov, hcov = "sex")

glymefit4 <- secr.fit(arvicola, mask = glymemask, trace = FALSE,

details = list(userdist = distmat),

model = list(sigma~h2, g0~ampm + h2),

timecov = tcov, hcov = "sex")

fitlist <- secrlist(glymefit1, glymefit2, glymefit3, glymefit4)

dropping the detectfn (halfnormal) column to save space...

AIC(fitlist)[,-2]

model npar logLik AIC AICc dAICc AICcwt

glymefit4 D~1 g0~ampm + h2 sigma~h2 pmix~h2 7 -322.5 659.1 665.3 0.00 1

glymefit3 D~1 g0~ampm + h2 sigma~1 pmix~h2 6 -347.3 706.7 711.1 45.80 0

glymefit2 D~1 g0~ampm sigma~1 pmix~h2 5 -353.5 717.0 720.0 54.66 0

glymefit1 D~1 g0~1 sigma~1 pmix~h2 4 -356.8 721.6 723.5 58.20 0

summaries of estimated density and sex ratio under different models

options(digits=3)

model does not affect density estimate

collate(fitlist, perm = c(2,3,1,4))[,,1,"D"]

estimate SE.estimate lcl ucl

glymefit1 26.5 5.27 18.0 39.0

glymefit2 26.4 5.26 18.0 38.9

glymefit3 26.3 5.25 17.9 38.8

glymefit4 27.2 5.45 18.5 40.2

model does affect the estimate of sex ratio (here proportion female)

collate(fitlist, perm=c(2,3,1,4))[,,1,"pmix"]

estimate SE.estimate lcl ucl

glymefit1 0.615 0.0954 0.421 0.779

glymefit2 0.615 0.0954 0.421 0.779

glymefit3 0.634 0.0938 0.439 0.793

glymefit4 0.669 0.0897 0.477 0.817

18

predictions from best model

newdata <- expand.grid(ampm = c("am", "pm"), h2 = c("F", "M"))

predict(glymefit4, newdata = newdata)

$`ampm = am, h2 = F`

link estimate SE.estimate lcl ucl

D log 27.239 5.4478 18.477 40.158

g0 logit 0.218 0.0463 0.141 0.322

sigma log 13.624 1.8764 10.414 17.823

pmix logit 0.669 0.0897 0.477 0.817

#

$`ampm = pm, h2 = F`

link estimate SE.estimate lcl ucl

D log 27.239 5.4478 18.4768 40.158

g0 logit 0.116 0.0293 0.0694 0.186

sigma log 13.624 1.8764 10.4136 17.823

pmix logit 0.669 0.0897 0.4774 0.817

#

$`ampm = am, h2 = M`

link estimate SE.estimate lcl ucl

D log 27.239 5.4478 18.4768 40.158

g0 logit 0.153 0.0392 0.0908 0.246

sigma log 70.958 10.0551 53.8247 93.545

pmix logit 0.331 0.0897 0.1829 0.523

#

$`ampm = pm, h2 = M`

link estimate SE.estimate lcl ucl

D log 27.2394 5.4478 18.4768 40.158

g0 logit 0.0782 0.0201 0.0468 0.128

sigma log 70.9581 10.0551 53.8247 93.545

pmix logit 0.3311 0.0897 0.1829 0.523

Some general observations:

The likelihood used is strictly for a multi-catch trap type (detector = “multi” rather than detector = “single”),
but given the low trap saturation we do not expect this to cause any problem.

Water voles are active both day and night. The greater g0 for morning trap checks is explained by the longer
interval between the afternoon and morning checks.

Precision is poor (RSE about 20%). If we were concerned only with the realised density on this river we
would be justified in setting distribution = “binomial’‘; this improves the RSE (’CVD’) to about 10%:

derived(glymefit4, distribution = 'binomial')

estimate SE.estimate lcl ucl CVn CVa CVD

esa 0.9545 NA NA NA NA NA NA

D 27.2396 2.867 22.17 33.46 0.1038 0.01747 0.1053

Adult males had much larger home ranges than adult females at this time of year (many females were suckling
young in burrows; males search out and fight over oestrous females).

Reciprocal variation in g0 and sigma between the sexes to some extent mitigated the effect of sex differences
on density estimates (cf Efford and Mowat Ecology 2014).

The terminal “buffer” on the linear mask (200–240 m beyond the terminal traps) was adequate, even for
males.

19

	Introductory example
	Linear habitat masks
	Input from a polyline shapefile
	Input from a SpatialLinesDataFrame
	Input from a dataframe of coordinates
	Input from a text file of coordinates

	Network distance
	Detector layouts
	Simulating detection data
	Model fitting
	Advanced topics
	Population size and effective sampling area
	Linear habitat covariates
	Discontinuities and traversable non-habitat
	Linear home-range size
	Evaluating study designs

	Limitations, tips and troubleshooting
	References
	Appendix. Extended water vole example.

