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Abstract

R package deSolve (Soetaert, Petzoldt, and Setzer 2010a,b) the successor of R package
odesolve is a package to solve initial value problems (IVP) of:

• ordinary differential equations (ODE),

• differential algebraic equations (DAE) and

• partial differential equations (PDE).

• delay differential equations (DeDE).

The implementation includes stiff integration routines based on the ODEPACK FOR-
TRAN codes (Hindmarsh 1983). It also includes fixed and adaptive time-step explicit
Runge-Kutta solvers and the Euler method (Press, Teukolsky, Vetterling, and Flannery
1992), and the implicit Runge-Kutta method RADAU (Hairer and Wanner 2010).

In this vignette we outline how to implement differential equations as R -functions.
Another vignette (“compiledCode”) (Soetaert, Petzoldt, and Setzer 2008), deals with dif-
ferential equations implemented in lower-level languages such as FORTRAN, C, or C++,
which are compiled into a dynamically linked library (DLL) and loaded into R (R Devel-
opment Core Team 2008).

Keywords:˜differential equations, ordinary differential equations, differential algebraic equa-
tions, partial differential equations, initial value problems, R.

1. A simple ODE: chaos in the atmosphere

The Lorenz equations (Lorenz, 1963) were the first chaotic dynamic system to be described.
They consist of three differential equations that were assumed to represent idealized behavior
of the earth’s atmosphere. We use this model to demonstrate how to implement and solve
differential equations in R. The Lorenz model describes the dynamics of three state variables,
X, Y and Z. The model equations are:
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dX

dt
= a ·X + Y · Z

dY

dt
= b · (Y − Z)

dZ

dt
= −X · Y + c · Y − Z

with the initial conditions:

X(0) = Y (0) = Z(0) = 1

Where a, b and c are three parameters, with values of -8/3, -10 and 28 respectively.

Implementation of an IVP ODE in R can be separated in two parts: the model specification
and the model application. Model specification consists of:

• Defining model parameters and their values,

• Defining model state variables and their initial conditions,

• Implementing the model equations that calculate the rate of change (e.g. dX/dt) of the
state variables.

The model application consists of:

• Specification of the time at which model output is wanted,

• Integration of the model equations (uses R-functions from deSolve),

• Plotting of model results.

Below, we discuss the R-code for the Lorenz model.

1.1. Model specification

Model parameters

There are three model parameters: a, b, and c that are defined first. Parameters are stored
as a vector with assigned names and values:

> parameters <- c(a = -8/3,

+ b = -10,

+ c = 28)

State variables

The three state variables are also created as a vector, and their initial values given:
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> state <- c(X = 1,

+ Y = 1,

+ Z = 1)

Model equations

The model equations are specified in a function (Lorenz) that calculates the rate of change
of the state variables. Input to the function is the model time (t, not used here, but required
by the calling routine), and the values of the state variables (state) and the parameters, in
that order. This function will be called by the R routine that solves the differential equations
(here we use ode, see below).

The code is most readable if we can address the parameters and state variables by their names.
As both parameters and state variables are ‘vectors’, they are converted into a list. The
statement with(as.list(c(state,parameters)), ...) then makes available the names of
this list.

The main part of the model calculates the rate of change of the state variables. At the end
of the function, these rates of change are returned, packed as a list. Note that it is necessary
to return the rate of change in the same ordering as the specification of the state variables
(this is very important). In this case, as state variables are specified X first, then Y and Z,
the rates of changes are returned as dX, dY, dZ.

> Lorenz<-function(t, state, parameters) {

+ with(as.list(c(state, parameters)),{

+ # rate of change

+ dX <- a*X + Y*Z

+ dY <- b * (Y-Z)

+ dZ <- -X*Y + c*Y - Z

+

+ # return the rate of change

+ list(c(dX, dY, dZ))

+ }) # end with(as.list ...

+ }

1.2. Model application

Time specification

We run the model for 100 days, and give output at 0.01 daily intervals. R’s function seq()

creates the time sequence:

> times <-seq(0,100,by=0.01)

Model integration

The model is solved using deSolve function ode, which is the default integration routine.
Function ode takes as input, a.o. the state variable vector (y), the times at which output is



4 Package deSolve: Solving Initial Value Differential Equations in R

required (times), the model function that returns the rate of change (func) and the parameter
vector (parms).

Function ode returns an object of class deSolve with a matrix that contains the values of the
state variables (columns) at the requested output times.

> require(deSolve)

> out <- ode(y = state, times = times, func = Lorenz, parms = parameters)

> head(out)

time X Y Z

[1,] 0.00 1.0000000 1.000000 1.000000

[2,] 0.01 0.9848912 1.012567 1.259918

[3,] 0.02 0.9731148 1.048823 1.523999

[4,] 0.03 0.9651593 1.107207 1.798314

[5,] 0.04 0.9617377 1.186866 2.088545

[6,] 0.05 0.9638068 1.287555 2.400161

Plotting results

Finally, the model output is plotted. We use the plot method designed for objects of class
deSolve, which will neatly arrange the figures in two rows and two columns; before plotting,
the size of the outer upper margin (the third margin) is increased (oma), such as to allow
writing a figure heading (mtext). First all model variables are plotted versus time, and
finally Z versus X:

> par(oma = c(0, 0, 3, 0))

> plot(out, type = "l", xlab = "time", ylab = "-")

> plot(out[, "X"], out[, "Z"], pch = ".")

> mtext(outer = TRUE, side = 3, "Lorenz model", cex = 1.5)
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Figure 1: Solution of the ordinary differential equation - see text for R-code
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2. Solvers for initial value problems of ordinary differential equations

Package deSolve contains several IVP ordinary differential equation solvers, that belong to
the most important classes of solvers. Most functions are based on original (FORTRAN) im-
plementations, e.g. the Backward Differentiation Formulae and Adams methods from ODE-
PACK (Hindmarsh 1983), or from (Brown, Byrne, and Hindmarsh 1989; Petzold 1983), the
implicit Runge-Kutta method RADAU (Hairer and Wanner 2010). The package contains
also a de novo implementation of several explicit Runge-Kutta methods (Butcher 1987; Press
et˜al. 1992; Hairer, Norsett, and Wanner 2009).

All methods1 can be triggered from function ode (by setting the argument method), or can
be run as stand-alone functions. Moreover, for each integration routine, several options are
available to optimise performance.

The default integration method, based on the FORTRAN code LSODA is one that switches
automatically between stiff and non-stiff systems (Petzold 1983). Thus it should be possible
to find, for one particular problem, the most efficient solver. See (Soetaert et˜al. 2010a) for
more information about when to use which solver in deSolve. For most cases, the default
solver, ode and using the default settings will do. Table 1 gives a short overview of the
available methods.

We solve the model with several integration routines, each time printing the time it took (in
seconds) to find the solution:

> print(system.time(out1 <- rk4 (state, times, Lorenz, parameters)))

user system elapsed

4.844 0.000 4.843

> print(system.time(out2 <- lsode (state, times, Lorenz, parameters)))

user system elapsed

1.772 0.000 1.773

> print(system.time(out <- lsoda (state, times, Lorenz, parameters)))

user system elapsed

2.424 0.000 2.424

> print(system.time(out <- lsodes(state, times, Lorenz, parameters)))

user system elapsed

1.612 0.000 1.614

> print(system.time(out <- daspk (state, times, Lorenz, parameters)))

user system elapsed

2.684 0.000 2.687

1except zvode, the solver used for systems containing complex numbers.
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> print(system.time(out <- vode (state, times, Lorenz, parameters)))

user system elapsed

1.757 0.000 1.759

2.1. Runge-Kutta methods

The explicit Runge-Kutta methods are de novo implementations in C, based on the Butcher
tables (Butcher 1987). They comprise simple Runge-Kutta formulae (Heun’s method rk2, the
classical 4th order Runge-Kutta, rk4) and several Runge-Kutta pairs of order 3(2) to order
8(7). The embedded, explicit methods are according to Fehlberg (1967) (rk..f, ode45),
Dormand and Prince (1980, 1981) (rk..dp.), Bogacki and Shampine (1989) (rk23bs, ode23)
and Cash and Karp (1990) (rk45ck), where ode23 and ode45 are aliases for the popular
methods rk23bs resp. rk45dp7.

With the following statement all implemented methods are shown:

> rkMethod()

[1] "euler" "rk2" "rk4" "rk23" "rk23bs" "rk34f"

[7] "rk45f" "rk45ck" "rk45e" "rk45dp6" "rk45dp7" "rk78dp"

[13] "rk78f" "irk3r" "irk5r" "irk4hh" "irk6kb" "irk4l"

[19] "irk6l" "ode23" "ode45"

This list also contains implicit Runge-Kutta’s (irk..), but they are not yet optimally coded.
The only well-implemented implicit Runge-Kutta is the radau method (Hairer and Wanner
2010) that will be discussed in the section dealing with differential algebraic equations.

The properties of a Runge-Kutta method can be displayed as follows:

> rkMethod("rk23")

$ID

[1] "rk23"

$varstep

[1] TRUE

$FSAL

[1] FALSE

$A

[,1] [,2] [,3]

[1,] 0.0 0 0

[2,] 0.5 0 0

[3,] -1.0 2 0

$b1
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[1] 0 1 0

$b2

[1] 0.1666667 0.6666667 0.1666667

$c

[1] 0.0 0.5 2.0

$stage

[1] 3

$Qerr

[1] 2

attr(,"class")

[1] "list" "rkMethod"

Here varstep informs whether the method uses a variable time-step; FSAL whether the first
same as last strategy is used, while stage and Qerr give the number of function evaluations
needed for one step, and the order of the local truncation error. A,b1,b2,c are the coefficients
of the Butcher table. Two formulae (rk45dp7, rk45ck) support dense output.

It is also possible to modify the parameters of a method (be very careful with this) or define
and use a new Runge-Kutta method:

> func <- function(t, x, parms) {

+ with(as.list(c(parms, x)),{

+ dP <- a * P - b * C * P

+ dC <- b * P * C - c * C

+ res <- c(dP, dC)

+ list(res)

+ })

+ }

> rKnew <- rkMethod(ID = "midpoint",

+ varstep = FALSE,

+ A = c(0, 1/2),

+ b1 = c(0, 1),

+ c = c(0, 1/2),

+ stage = 2,

+ Qerr = 1

+ )

> out <- ode(y = c(P = 2, C = 1), times = 0:100, func,

+ parms = c(a = 0.1, b = 0.1, c = 0.1), method = rKnew)

> head(out)

time P C

[1,] 0 2.000000 1.000000
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[2,] 1 1.990000 1.105000

[3,] 2 1.958387 1.218598

[4,] 3 1.904734 1.338250

[5,] 4 1.830060 1.460298

[6,] 5 1.736925 1.580136

2.2. Model diagnostics

Function diagnostics prints several diagnostics of the simulation to the screen. For the
Runge-Kutta and lsode routine they are:

> diagnostics(out1)

--------------------

rk return code

--------------------

return code (idid) = 0

Integration was successful.

--------------------

INTEGER values

--------------------

1 The return code : 0

2 The number of steps taken for the problem so far: 10000

3 The number of function evaluations for the problem so far: 40001

18 The order (or maximum order) of the method: 4

> diagnostics(out2)

--------------------

lsode return code

--------------------

return code (idid) = 2

Integration was successful.

--------------------

INTEGER values

--------------------

1 The return code : 2

2 The number of steps taken for the problem so far: 12778

3 The number of function evaluations for the problem so far: 16633

5 The method order last used (successfully): 5
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6 The order of the method to be attempted on the next step: 5

7 If return flag =-4,-5: the largest component in error vector 0

8 The length of the real work array actually required: 58

9 The length of the integer work array actually required: 23

14 The number of Jacobian evaluations and LU decompositions so far: 721

--------------------

RSTATE values

--------------------

1 The step size in t last used (successfully): 0.01

2 The step size to be attempted on the next step: 0.01

3 The current value of the independent variable which the solver has reached: 100.0072

4 Tolerance scale factor > 1.0 computed when requesting too much accuracy: 0
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3. Partial differential equations

As package deSolve includes integrators that deal efficiently with arbitrarily sparse and
banded Jacobians, it is especially well suited to solve initial value problems resulting from 1,
2 or 3-dimensional partial differential equations (PDE), using the method-of-lines approach.
The PDEs are first written as ODEs, using finite differences.

Several special-purpose solvers are included in deSolve:

• ode.band integrates 1-dimensional problems comprizing one species,

• ode.1D integrates 1-dimensional problems comprizing one or many species,

• ode.2D integrates 2-dimensional problems,

• ode.3D integrates 3-dimensional problems.

As an example, consider the Aphid model described in Soetaert and Herman (2009). It is a
model where aphids (a pest insect) slowly diffuse and grow on a row of plants. The model
equations are:

∂N

∂t
= −∂F lux

∂x
+ g ·N

and where the diffusive flux is given by:

Flux = −D∂N
∂x

with boundary conditions

Nx=0 = Nx=60 = 0

and initial condition

Nx = 0 for x 6= 30

Nx = 1 for x = 30

In the method of lines approach, the spatial domain is subdivided in a number of boxes and
the equation is discretized as:

dNi

dt
= −Fluxi,i+1 − Fluxi−1,i

∆xi
+ g ·Ni

with the flux on the interface equal to:

Fluxi−1,i = −Di−1,i ·
Ni −Ni−1

∆xi−1,i

Note that the values of state variables (here densities) are defined in the centre of boxes (i),
whereas the fluxes are defined on the box interfaces. We refer to Soetaert and Herman (2009)
for more information about this model and its numerical approximation.

Here is its implementation in R. First the model equations are defined:
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> Aphid <- function(t, APHIDS, parameters) {

+ deltax <- c (0.5, rep(1, numboxes - 1), 0.5)

+ Flux <- -D * diff(c(0, APHIDS, 0)) / deltax

+ dAPHIDS <- -diff(Flux) / delx + APHIDS * r

+

+ # the return value

+ list(dAPHIDS )

+ } # end

Then the model parameters and spatial grid are defined

> D <- 0.3 # m2/day diffusion rate

> r <- 0.01 # /day net growth rate

> delx <- 1 # m thickness of boxes

> numboxes <- 60

> # distance of boxes on plant, m, 1 m intervals

> Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

Aphids are initially only present in two central boxes:

> # Initial conditions: # ind/m2

> APHIDS <- rep(0, times = numboxes)

> APHIDS[30:31] <- 1

> state <- c(APHIDS = APHIDS) # initialise state variables

The model is run for 200 days, producing output every day; the time elapsed in seconds to
solve this 60 state-variable model is estimated (system.time):

> times <-seq(0, 200, by = 1)

> print(system.time(

+ out <- ode.1D(state, times, Aphid, parms = 0, nspec = 1)

+ ))

user system elapsed

0.076 0.000 0.077

Matrix out consist of times (1st column) followed by the densities (next columns).

> head(out[,1:5])

time APHIDS1 APHIDS2 APHIDS3 APHIDS4

[1,] 0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

[2,] 1 1.667194e-55 9.555028e-52 2.555091e-48 4.943131e-45

[3,] 2 3.630860e-41 4.865105e-39 5.394287e-37 5.053775e-35

[4,] 3 2.051210e-34 9.207997e-33 3.722714e-31 1.390691e-29

[5,] 4 1.307456e-30 3.718598e-29 9.635350e-28 2.360716e-26

[6,] 5 6.839152e-28 1.465288e-26 2.860056e-25 5.334391e-24
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Figure 2: Solution of the 1-dimensional aphid model - see text for R -code

Finally, the output is plotted. It is simplest to do this with deSolve’s S3-method image

> image(out, method = "filled.contour", grid = Distance,

+ xlab = "time, days", ylab = "Distance on plant, m",

+ main = "Aphid density on a row of plants")

As this is a 1-D model, it is best solved with deSolve function ode.1D. A multi-species IVP
example can be found in Soetaert and Herman (2009). For 2-D and 3-D problems, we refer
to the help-files of functions ode.2D and ode.3D.
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4. Differential algebraic equations

Package deSolve contains two functions that solve initial value problems of differential alge-
braic equations. They are:

• radau which implements the implicit Runge-Kutta RADAU5 (Hairer and Wanner 2010),

• daspk, based on the backward differentiation code DASPK (Brenan, Campbell, and
Petzold 1996).

Function radau needs the input in the form My′ = f(t, y, y′) where M is the mass matrix.
Function daspk also supports this input, but can also solve problems written in the form
F (t, y, y′) = 0.

radau solves problems up to index 3; daspk solves problems of index ≤ 1.

4.1. DAEs of index maximal 1

Function daspk from package deSolve solves (relatively simple) DAEs of index2 maximal 1.

The DAE has to be specified by the residual function instead of the rates of change (as in
ODE). Consider the following simple DAE:

dy1
dt

= −y1 + y2

y1 · y2 = t

where the first equation is a differential, the second an algebraic equation. To solve it, it is
first rewritten as residual functions:

0 =
dy1
dt

+ y1 − y2
0 = y1 · y2 − t

In R we write:

> daefun <- function(t, y, dy, parameters) {

+ res1 <- dy[1] + y[1] - y[2]

+ res2 <- y[2] * y[1] - t

+

+ list(c(res1, res2))

+ }

> library(deSolve)

> yini <- c(1, 0)

> dyini <- c(1, 0)

> times <- seq(0, 10, 0.1)

> ## solver

> print(system.time(out <- daspk(y = yini, dy = dyini,

+ times = times, res = daefun, parms = 0)))

2note that many – apparently simple – DAEs are higher-index DAEs
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Figure 3: Solution of the differential algebraic equation model - see text for R-code

user system elapsed

0.016 0.000 0.016

> matplot(out[,1], out[,2:3], type = "l", lwd = 2,

+ main = "dae", xlab = "time", ylab = "y")

4.2. DAEs of index up to three

Function radau from package deSolve can solve DAEs of index up to three provided that
they can be written in the form Mdy/dt = f(t, y).

Consider the well-known pendulum equation:

x′ = u

y′ = v

u′ = −λx
v′ = −λy − 9.8

0 = x2 + y2 − 1

where the dependent variables are x, y, u, v and λ.

Implemented in R to be used with function radau this becomes:

> pendulum <- function (t, Y, parms) {

+ with (as.list(Y),

+ list(c(u,

+ v,

+ -lam * x,

+ -lam * y - 9.8,

+ x^2 + y^2 -1
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+ ))

+ )

+ }

A consistent set of initial conditions are:

> yini <- c(x = 1, y = 0, u = 0, v = 1, lam = 1)

and the mass matrix M :

> M <- diag(nrow = 5)

> M[5, 5] <- 0

> M

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 0

Function radau requires that the index of each equation is specified; there are 2 equations of
index 1, two of index 2, one of index 3:

> index <- c(2, 2, 1)

> times <- seq(from = 0, to = 10, by = 0.01)

> out <- radau (y = yini, func = pendulum, parms = NULL,

+ times = times, mass = M, nind = index)

> plot(out, type = "l", lwd = 2)

> plot(out[, c("x", "y")], type = "l", lwd = 2)
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Figure 4: Solution of the pendulum problem, an index 3 differential algebraic equation using
radau - see text for R-code
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5. Integrating systems containing complex numbers, function zvode

Function zvode solves ODEs that are composed of complex variables. We use zvode to solve
the following system of 2 ODEs:

dz

dt
= i · z

dw

dt
= −i · w · w · z

where

w(0) = 1/2.1

z(0) = 1

on the interval t = [0, 2π]

> ZODE2 <- function(Time, State, Pars) {

+ with(as.list(State), {

+ df <- 1i * f

+ dg <- -1i * g * g * f

+ return(list(c(df, dg)))

+ })

+ }

> yini <- c(f = 1+0i, g = 1/2.1+0i)

> times <- seq(0, 2 * pi, length = 100)

> out <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,

+ atol = 1e-10, rtol = 1e-10)

The analytical solution is:

f(t) = exp(1i · t)

and

g(t) = 1/(f(t) + 1.1)

The numerical solution, as produced by zvode matches the analytical solution:

> analytical <- cbind(f = exp(1i*times), g = 1/(exp(1i*times)+1.1))

> tail(cbind(out[,2], analytical[,1]))

[,1] [,2]

[95,] 0.9500711-0.3120334i 0.9500711-0.3120334i

[96,] 0.9679487-0.2511480i 0.9679487-0.2511480i

[97,] 0.9819287-0.1892512i 0.9819287-0.1892512i

[98,] 0.9919548-0.1265925i 0.9919548-0.1265925i

[99,] 0.9979867-0.0634239i 0.9979867-0.0634239i

[100,] 1.0000000+0.0000000i 1.0000000-0.0000000i
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6. Making good use of the integration options

The solvers from ODEPACK can be fine-tuned if it is known whether the problem is stiff or
non-stiff, or if the structure of the Jacobian is sparse. We repeat the example from lsode to
show how we can make good use of these options.

The model describes the time evolution of 5 state variables:

> f1 <- function (t, y, parms) {

+ ydot <- vector(len = 5)

+

+ ydot[1] <- 0.1*y[1] -0.2*y[2]

+ ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]

+ ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]

+ ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]

+ ydot[5] <- -0.3*y[4] +0.1*y[5]

+

+ return(list(ydot))

+ }

and the initial conditions and output times are:

> yini <- 1:5

> times <- 1:20

The default solution, using lsode assumes that the model is stiff, and the integrator generates
the Jacobian, which is assummed to be full :

> out <- lsode(yini, times, f1, parms = 0, jactype = "fullint")

It is possible for the user to provide the Jacobian. Especially for large problems this can
result in substantial time savings. In a first case, the Jacobian is written as a full matrix:

> fulljac <- function (t, y, parms) {

+ jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,

+ data = c(0.1, -0.2, 0 , 0 , 0 ,

+ -0.3, 0.1, -0.2, 0 , 0 ,

+ 0 , -0.3, 0.1, -0.2, 0 ,

+ 0 , 0 , -0.3, 0.1, -0.2,

+ 0 , 0 , 0 , -0.3, 0.1))

+ return(jac)

+ }

and the model solved as:

> out2 <- lsode(yini, times, f1, parms = 0, jactype = "fullusr",

+ jacfunc = fulljac)
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The Jacobian matrix is banded, with one nonzero band above (up) and one below(down) the
diagonal. First we let lsode estimate the banded Jacobian internally (jactype = "bandint"):

> out3 <- lsode(yini, times, f1, parms = 0, jactype = "bandint",

+ bandup = 1, banddown = 1)

It is also possible to provide the nonzero bands of the Jacobian in a function:

> bandjac <- function (t, y, parms) {

+ jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,

+ data = c( 0 , -0.2, -0.2, -0.2, -0.2,

+ 0.1, 0.1, 0.1, 0.1, 0.1,

+ -0.3, -0.3, -0.3, -0.3, 0))

+ return(jac)

+ }

in which case the model is solved as:

> out4 <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",

+ jacfunc = bandjac, bandup = 1, banddown = 1)

Finally, if the model is specified as “non-stiff” (by setting mf=10), there is no need to specify
the Jacobian:

> out5 <- lsode(yini, times, f1, parms = 0, mf = 10)
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7. Events

As from version 1.6, events are supported. Events occur when the values of state variables
are instantaneously changed. They can be specified as a data.frame, or in a function. Events
can also be triggered by a root function.

7.1. Event specified in a data.frame

In this example, two state variables with constant decay are modeled:

> eventmod <- function(t, var, parms) {

+ list(dvar = -0.1*var)

+ }

> yini <- c(v1 = 1, v2 = 2)

> times <- seq(0, 10, by = 0.1)

At time 1 and 9 a value is added to variable v1, at time 1 state variable v2 is multiplied
with 2, while at time 5 the value of v2 is replaced with 3. These events are specified in a
data.frame, eventdat:

> eventdat <- data.frame(var = c("v1", "v2", "v2", "v1"), time = c(1, 1, 5, 9),

+ value = c(1, 2, 3, 4), method = c("add", "mult", "rep", "add"))

> eventdat

var time value method

1 v1 1 1 add

2 v2 1 2 mult

3 v2 5 3 rep

4 v1 9 4 add

The model is solved with vode:

> out <- ode(func = eventmod, y = yini, times = times, parms = NULL,

+ events = list(data = eventdat))

> plot(out, type = "l", lwd = 2)

7.2. Event triggered by a root function

This model describes the position (y1) and velocity (y2) of a bouncing ball:

> ballode<- function(t, y, parms) {

+ dy1 <- y[2]

+ dy2 <- -9.8

+ list(c(dy1, dy2))

+ }



22 Package deSolve: Solving Initial Value Differential Equations in R

0 2 4 6 8 10

1
2

3
4

v1

time

0 2 4 6 8 10

2.
0

2.
5

3.
0

3.
5

v2

time

Figure 5: A simple model that contains events

An event is triggered when the ball hits the ground (height = 0) Then velocity (y2) is reversed
and reduced by 10 percent. The root function, y[1] = 0, triggers the event:

> root <- function(t, y, parms) y[1]

The event function imposes the bouncing of the ball

> event <- function(t, y, parms) {

+ y[1]<- 0

+ y[2]<- -0.9 * y[2]

+ return(y)

+ }

After specifying the initial values and times, the model is solved. Both integrators lsodar or
lsode can estimate a root.

> yini <- c(height = 0, v = 20)

> times <- seq(from = 0, to = 20, by = 0.01)

> out <- lsode(times = times, y = yini, func = ballode, parms = NULL,

+ events = list(func = event, root = TRUE), rootfun = root)

> plot(out, which = "height", type = "l",lwd = 2,

+ main = "bouncing ball", ylab = "height")
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Figure 6: A model, with event triggered by a root function
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8. Delay differential equations

As from deSolve version 1.7, time lags are supported, and a new general solver for delay
differential equations, dede has been added. We implement the lemming model, example 6
from Shampine and Thompson, 2000 solving delay differential equations with dde23.

Function lagvalue calculates the value of the state variable at t-0.74. As long a these lag
values are not known, the value 19 is assigned to the state variable. Note that the simulation
starts at time = - 0.74.

> require(deSolve)

> #-----------------------------

> # the derivative function

> #-----------------------------

> derivs <- function(t, y, parms) {

+ if (t < 0)

+ lag <- 19

+ else

+ lag <- lagvalue(t - 0.74)

+

+ dy <- r * y* (1 - lag/m)

+ list(dy, dy = dy)

+ }

> #-----------------------------

> # parameters

> #-----------------------------

>

> r <- 3.5; m <- 19

> #-----------------------------

> # initial values and times

> #-----------------------------

>

> yinit <- c(y = 19.001)

> times <- seq(-0.74, 40, by = 0.01)

> #-----------------------------

> # solve the model

> #-----------------------------

>

> yout <- dede(y = yinit, times = times, func = derivs,

+ parms = NULL, atol = 1e-10)

> plot(yout, which = 1, type = "l", lwd = 2, main = "Lemming model", mfrow = c(1,2))

> plot(yout[,2], yout[,3], xlab = "y", ylab = "dy", type = "l", lwd = 2)
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9. Troubleshooting

9.1. Avoiding numerical errors

The solvers from ODEPACK should be first choice for any problem and the defaults of the
control parameters are reasonable for many practical problems. However, there are cases
where they may give dubious results. Consider the following Lotka-Volterra type of model:

> SPCmod <- function(t, x, parms) {

+ with(as.list(c(parms, x)), {

+ dP <- c*P - d*C*P # producer

+ dC <- e*P*C - f*C # consumer

+ res <- c(dP, dC)

+ list(res)

+ })

+ }

and with the following (biologically not very realistic)3 parameter values:

> parms <- c(c = 5, d = 0.1, e = 0.1, f = 0.1)

After specification of initial conditions and output times, the model is solved - using lsoda:

> xstart <- c(P = 0.5, C = 1)

> times <- seq(0, 190, 0.1)

> out <- ode(y = xstart, times = times,

+ func = SPCmod, parms = parms)

DLSODA- At T(=R1) and step size H(=R2), the error

test failed repeatedly or with ABS(H) = HMIN

In above, R1 = 0.6939216648513D+02 R2 = 0.2715184322655D-09

> tail(out)

time P C

[690,] 68.90000 -10987922703 9.461907e-10

[691,] 69.00000 -18116085177 1.529947e-09

[692,] 69.10000 -29868440077 -3.829030e-13

[693,] 69.20000 -49244831403 -6.491318e-12

[694,] 69.30000 -81191250314 4.105611e-11

[695,] 69.39217 -128720043519 -3.589685e-06

3they are not realistic because producers grow unlimited with a high rate and consumers with 100 %
efficiency
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At the end of the simulation, both producers and consumer values are Not-A-Numbers!

What has happened? Being an implicit method, lsoda generates very small negative values
for producers, from day 40 on; these negative values, small at first grow in magnitude until
they become NaNs. This is because the model equations are not intended to be used with
negative numbers, as negative concentrations are not realistic.

A quick-and-dirty solution is to reduce the maximum time step to a considerably small value
(e.g. hmax = 0.02 which, of course, reduces computational efficiency. However, a much better
solution is to think about the reason of the failure, i.e in our case the absolute accuracy
because the states can reach very small absolute values. Therefore, it helps here to reduce
atol to a very small number or even to zero:

> out <- ode(y = xstart,times = times, func = SPCmod,

+ parms = parms, atol = 0)

> matplot(out[,1], out[,2:3], type = "l")

It is, of course, not possible to set both, atol and rtol simultaneously to zero. As we see
from this example, it is always a good idea to test simulation results for plausibility. This can
be done by theoretical considerations or by comparing the outcome of different ODE solvers
and parametrizations.

9.2. Checking model specification

If a model outcome is obviously unrealistic or one of the deSolve functions complains about
numerical problems it is even more likely that the “numerical problem” is in fact a result of
an unrealistic model or a programming error. In such cases, playing with solver parameters
will not help. Here are some common mistakes we observed in our models and the codes of
our students:

• The function with the model definition must return a list with the derivatives of all
state variables in correct order (and optionally some global values). Check if the number
and order of your states is identical in the initial states y passed to the solver, in the
assignments within your model equations and in the returned values. Check also whether
the return value is the last statement of your model definition.

• The order of function arguments in the model definition is t, y, parms, .... This
order is strictly fixed, so that the deSolve solvers can pass their data, but naming is
flexible and can be adapted to your needs, e.g. time, init, params. Note also that
all three arguments must be given, even if t is not used in your model.

• Mixing of variable names: if you use the with()-construction explained above, you must
ensure to avoid naming conflicts between parameters (parms) and state variables (y).

The solvers included in package deSolve are thorougly tested, however they come with no
warranty and the user is solely responsible for their correct application. If you encounter
unexpected behavior, first check your model and read the documentation. If this doesn’t
help, feel free to ask a question to an appropriate mailing list, e.g. r-help@r-project.org

or, more specific, r-sig-dynamic-models@r-project.org.

r-help@r-project.org
r-sig-dynamic-models@r-project.org
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9.3. Making sense of deSolve’s error messages

As many of deSolve’s functions are wrappers around existing FORTRAN codes, the warning
and error messages are derived from these codes. Whereas these codes are highly robust, well
tested, and efficient, they are not always as user-friendly as we would like. Especially some
of the warnings/error messages may appear to be difficult to understand.

Consider the first example on the ode function:

> LVmod <- function(Time, State, Pars) {

+ with(as.list(c(State, Pars)), {

+ Ingestion <- rIng * Prey*Predator

+ GrowthPrey <- rGrow * Prey*(1-Prey/K)

+ MortPredator <- rMort * Predator

+

+ dPrey <- GrowthPrey - Ingestion

+ dPredator <- Ingestion*assEff -MortPredator

+

+ return(list(c(dPrey, dPredator)))

+ })

+ }

> pars <- c(rIng = 0.2, # /day, rate of ingestion

+ rGrow = 1.0, # /day, growth rate of prey

+ rMort = 0.2 , # /day, mortality rate of predator

+ assEff = 0.5, # -, assimilation efficiency

+ K = 10) # mmol/m3, carrying capacity

> yini <- c(Prey = 1, Predator = 2)

> times <- seq(0, 200, by = 1)

> out <- ode(func = LVmod, y = yini,

+ parms = pars, times = times)

This model is easily solved by the default integration method, lsoda.

Now we change one of the parameters to an unrealistic value: rIng is set to 100. This means
that the predator ingests 100 times its own body-weight per day if there are plenty of prey.
Needless to say that this is very unhealthy, if not lethal.

Also, lsoda cannot solve the model anymore. Thus, if we try:

> pars["rIng"] <- 100

> out2 <- ode(func = LVmod, y = yini,

+ parms = pars, times = times)

A lot of seemingly incomprehensible messages will be written to the screen. We repeat the
latter part of them:

DLSODA- Warning..Internal T (=R1) and H (=R2) are

such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.

In above, R1 = 0.8562448350331D+02 R2 = 0.3273781304624D-17
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DLSODA- Above warning has been issued I1 times.

It will not be issued again for this problem.

In above message, I1 = 10

DLSODA- At current T (=R1), MXSTEP (=I1) steps

taken on this call before reaching TOUT

In above message, I1 = 5000

In above message, R1 = 0.8562448350331D+02

Warning messages:

1: In lsoda(y, times, func, parms, ...) :

an excessive amount of work (> maxsteps ) was done, but integration was not successful - increase maxsteps

2: In lsoda(y, times, func, parms, ...) :

Returning early. Results are accurate, as far as they go

The first sentence tells us that at T=0.8562448350331e+02, the solver used a step size H=
0.3273781304624e-17. This step size is so small that it cannot tell the difference between T
and T+H. Nevertheless, the solver tried again.

The second sentence tells that, as this warning has been occurring 10 times, it will not be
outputted again.

As expected, this error did not go away, so soon the maximal number of steps (5000) has been
exceeded. This is indeed what the next message is about:

The third sentence tells that at T=0.8562448350331e+02, maxstep =5000 steps have been
done.

The one before last message tells why the solver returned prematurely, and suggests a solution.

Note: simply increasing maxsteps will not work. It makes more sense to first see if the output
tells what happens:

> plot(out2, type = "l", lwd = 2, main = "corrupt Lotka-Volterra model")



30 Package deSolve: Solving Initial Value Differential Equations in R

0 10 20 30 40 50

−
1.

2e
+

63
−

6.
0e

+
62

0.
0e

+
00

corrupt Lotka−Volterra model

time

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

corrupt Lotka−Volterra model

time

Figure 8: A model that cannot be solved correctly
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Table 1: Summary of the functions that solve differential equations

Function Description

ode integrates systems of ordinary differential equations, assumes a full,
banded or arbitrary sparse Jacobian

ode.1D integrates systems of ODEs resulting from 1-dimensional reaction-
transport problems

ode.2D integrates systems of ODEs resulting from 2-dimensional reaction-
transport problems

ode.3D integrates systems of ODEs resulting from 3-dimensional reaction-
transport problems

ode.band integrates systems of ODEs resulting from unicomponent 1-
dimensional reaction-transport problems

dede integrates systems of delay differential equations

daspk solves systems of differential algebraic equations, assumes a full or
banded Jacobian

radau solves systems of ordinary or differential algebraic equations, assumes
a full or banded Jacobian

lsoda integrates ODEs, automatically chooses method for stiff or non-stiff
problems, assumes a full or banded Jacobian

lsodar same as lsoda, but includes a root-solving procedure

lsode or vode integrates ODEs, user must specify if stiff or non-stiff assumes a full
or banded Jacobian; Note that, as from version 1.7, lsode includes a
root finding procedure, similar to lsodar.

lsodes integrates ODEs, using stiff method and assuming an arbitrary sparse
Jacobian

rk integrates ODEs, using Runge-Kutta methods (includes Runge-Kutta
4 and Euler as special cases)

rk4 integrates ODEs, using the classical Runge-Kutta 4th order method
(special code with less options than rk)

euler integrates ODEs, using Euler’s method (special code with less options
than rk)

zvode integrates ODEs composed of complex numbers, full, banded, stiff or
nonstiff
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Table 2: Meaning of the integer return parameters in the different integration routines. If out
is the output matrix, then this vector can be retrieved by function attributes(out)$istate;
its contents is displayed by function diagnostics(out). Note that the number of function
evaluations, is without the extra evaluations needed to generate the output for the ordinary
variables.

Nr Description

1 the return flag; the conditions under which the last call to the solver returned. For
lsoda, lsodar, lsode, lsodes, vode, rk, rk4, euler these are: 2: the solver was
successful, -1: excess work done, -2: excess accuracy requested, -3: illegal input detected,
-4: repeated error test failures, -5: repeated convergence failures, -6: error weight became
zero

2 the number of steps taken for the problem so far

3 the number of function evaluations for the problem so far

4 the number of Jacobian evaluations so far

5 the method order last used (successfully)

6 the order of the method to be attempted on the next step

7 If return flag = -4,-5: the largest component in the error vector

8 the length of the real work array actually required. (FORTRAN code)

9 the length of the integer work array actually required. (FORTRAN code)

10 the number of matrix LU decompositions so far

11 the number of nonlinear (Newton) iterations so far

12 the number of convergence failures of the solver so far

13 the number of error test failures of the integrator so far

14 the number of Jacobian evaluations and LU decompositions so far

15 the method indicator for the last succesful step, 1 = adams (nonstiff), 2 = bdf (stiff)

17 the number of nonzero elements in the sparse Jacobian

18 the current method indicator to be attempted on the next step, 1 = adams (nonstiff), 2
= bdf (stiff)

19 the number of convergence failures of the linear iteration so far
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Table 3: Meaning of the double precision return parameters in the different integration
routines. If out is the output matrix, then this vector can be retrieved by function
attributes(out)$rstate; its contents is displayed by function diagnostics(out)

Nr Description

1 the step size in t last used (successfully)

2 the step size to be attempted on the next step

3 the current value of the independent variable which the solver has actually reached

4 a tolerance scale factor, greater than 1.0, computed when a request for too much accuracy
was detected

5 the value of t at the time of the last method switch, if any (only lsoda, lsodar)
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