
Package deSolve: Solving Initial Value Differential

Equations in R

Karline Soetaert

Centre for
Estuarine and Marine Ecology

Netherlands Institute of Ecology
The Netherlands

Thomas Petzoldt

Technische Universität
Dresden
Germany

R. Woodrow Setzer

National Center for
Computational Toxicology

US Environmental Protection Agency

Abstract

R package deSolve (Soetaert, Petzoldt, and Setzer 2009), the successor of R package
odesolve is a package to solve initial value problems (IVP) of:

• ordinary differential equations (ODE),

• differential algebraic equations (DAE) and

• partial differential equations (PDE).

The implementation includes stiff integration routines based on the ODEPACK FOR-
TRAN codes (Hindmarsh 1983). It also includes fixed and adative time-step Runge-Kutta
solvers and the Euler method (Press, Teukolsky, Vetterling, and Flannery 1992).

In this vignette we outline how to implement differential equations as R -functions.
Another vignette (“compiledCode”) (Soetaert and Setzer 2008), deals with differential
equations implemented in lower-level languages such as FORTRAN, C, or C++, which are
compiled into a dynamically linked library (DLL) and loaded into R. R (R Development
Core Team 2008).

Keywords:˜differential equations, ordinary differential equations, differential algebraic equa-
tions, partial differential equations, initial value problems, R.

1. A simple ODE: chaos in the atmosphere

The Lorenz equations (Lorenz, 1963) were the first chaotic dynamic system to be described.
They consist of three differential equations that were assumed to represent idealized behavior
of the earth’s atmosphere. We use this model to demonstrate how to implement and solve
differential equations in R. The Lorenz model describes the dynamics of three state variables,
X, Y and Z. The model equations are:

dX
dt = a ·X + Y · Z
dY
dt = b · (Y − Z)
dZ
dt = −X · Y + c · Y − Z

2 Package deSolve: Solving Initial Value Differential Equations in R

with the initial conditions:

X(0) = Y (0) = Z(0) = 1

Where a, b and c are three parameters, with values of -8/3, -10 and 28 respectively.

Implementation of an IVP ODE in R can be separated in two parts: the model specification
and the model application.

Model specification consists of:

• Defining model parameters and their values,

• Defining model state variables and their initial conditions,

• Implementing the model equations that calculate the rate of change (e.g. dX/dt) of the
state variables.

The model application consists of

• Specification of the time at which model output is wanted,

• Integration of the model equations (uses R-functions from deSolve),

• Plotting of model results.

Below, we discuss the R-code for the Lorenz model.

1.1. Model specification

Model parameters

There are three model parameters: a, b, and c that are defined first. Parameters are stored
as a vector with assigned names and values.

> parameters <- c(a = -8/3,

+ b = -10,

+ c = 28)

State variables

The three state variables are also created as a vector, and their initial values given.

> state <- c(X = 1,

+ Y = 1,

+ Z = 1)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 3

Model equations

The model equations are specified in a function (Lorenz) that calculates the rate of change
of the state variables. Input to the function is the model time (t, not used here, but required
by the calling routine), and the values of the state variables (state) and the parameters, in
that order. This function will be called by the R routine that solves the differential equations
(here we use ode, see below).

The code is most readable if we can address the parameters and state variables by their
names. As both parameters and state variables are ’vectors’, they are converted as a list. The
statement with(as.list(c(state,parameters)), ...) then makes available the names of
this list.

The main part of the model calculates the rate of change of the state variables. At the end
of the function, these rates of change are returned, packed as a list. Note that it is necessary
to return the rate of change in the same ordering as the specification of the state variables
(this is very important). In this case, as state variables are specified X first, then Y and Z,
the rates of changes are returned as dX, dY, dZ.

> Lorenz<-function(t, state, parameters) {

+ with(as.list(c(state, parameters)),{

+ # rate of change

+ dX <- a*X + Y*Z

+ dY <- b * (Y-Z)

+ dZ <- -X*Y + c*Y - Z

+

+ # return the rate of change

+ list(c(dX, dY, dZ))

+ }) # end with(as.list...

+ }

1.2. Model application

Time specification

We run the model for 100 days, and give output at 0.01 daily intervals. R’s function seq()
creates the time sequence.

> times <-seq(0,100,by=0.01)

Model integration

The model is solved using deSolve function ode, which is the default integration routine.
Function ode takes as input, a.o. the state variable vector (y), the times at which output is
required (times), the model function that returns the rate of change (func) and the parameter
vector (parms).

Function ode returns a matrix that contains the values of the state variables (columns) at
the requested output times. The output is converted to a data frame and stored in ’out’.

4 Package deSolve: Solving Initial Value Differential Equations in R

Data frames have the advantage, that their columns can be accessed by name, rather than
by number. For instance, out$X will take the outputted values of state variable X, and so on.

> require(deSolve)

> out <- as.data.frame(ode(y=state,times=times,func=Lorenz,parms=parameters))

> head(out)

time X Y Z
1 0.00 1.0000000 1.000000 1.000000
2 0.01 0.9848912 1.012567 1.259918
3 0.02 0.9731148 1.048823 1.523999
4 0.03 0.9651593 1.107207 1.798314
5 0.04 0.9617377 1.186866 2.088545
6 0.05 0.9638068 1.287555 2.400161

Plotting results

Finally, the model output is plotted. The figures are arranged in two rows and two columns
(mfrow), and the size of the outer upper margin (the third margin) is increased (oma), such as
to allow writing a figure heading (mtext). First the X concentration versus time is plotted,
then the Y concentration versus time, and finally Y versus X and Z versus X.

> par(mfrow=c(2,2), oma=c(0,0,3,0))

> plot (times,out$X ,type="l",main="X", xlab="time", ylab="-")

> plot (times,out$Y ,type="l",main="Y", xlab="time", ylab="-")

> plot (outX,outY, pch=".")

> plot (outX,outZ, pch=".")

> mtext(outer=TRUE,side=3,"Lorenz model",cex=1.5)

1.3. Solvers for initial value problems of ordinary differential equations

Package deSolve contains several IVP ordinary differential equation solvers. They can all be
triggered from function ode (by setting the argument method), or can be run as stand-alone
functions. Moreover, for each integration routine, several options are available to optimise
performance.

Thus it should be possible to find, for one particular problem, the most efficient solver. See
(Soetaert et˜al. 2009) for more information about when to use which solver in deSolve. For
most cases, the default solver, ode and using the default settings will do. Table 1 gives a
short overview of the available methods.

We solve the model with several integration routines, each time printing the time it took (in
seconds) to find the solution.

> print(system.time(out1 <- rk4 (state, times, Lorenz, parameters)))

user system elapsed
4.39 0.00 4.41

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 5

0 20 40 60 80 100

0
10

30

X

time

−

0 20 40 60 80 100

−
10

0
10

20

Y

time

−

0 10 20 30 40

−
10

0
10

20

out$X

ou
t$

Y

0 10 20 30 40

−
20

0
20

out$X

ou
t$

Z

Lorenz model

Figure 1: Solution of the ordinary differential equation - see text for R-code

6 Package deSolve: Solving Initial Value Differential Equations in R

> print(system.time(out2 <- lsode (state, times, Lorenz, parameters)))

user system elapsed
1.570 0.000 1.574

> print(system.time(out <- lsoda (state, times, Lorenz, parameters)))

user system elapsed
2.240 0.000 2.282

> print(system.time(out <- lsodes(state, times, Lorenz, parameters)))

user system elapsed
1.370 0.000 1.404

> print(system.time(out <- daspk (state, times, Lorenz, parameters)))

user system elapsed
2.630 0.000 2.757

> print(system.time(out <- vode (state, times, Lorenz, parameters)))

user system elapsed
1.600 0.000 1.625

1.4. Model diagnostics

Function diagnostics prints several diagnostics of the simulation to the screen. For the
runge kutta and lsode routine they are:

> diagnostics(out1)

rk return code

return code (idid) = 0
Integration was successful.

INTEGER values

1 The return code : 0
2 The number of steps taken for the problem so far: 10000
3 The number of function evaluations for the problem so far: 40000
18 The order (or maximum order) of the method: 4

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 7

> diagnostics(out2)

lsode return code

return code (idid) = 2
Integration was successful.

INTEGER values

1 The return code : 2
2 The number of steps taken for the problem so far: 12778
3 The number of function evaluations for the problem so far: 16633
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag =-4,-5: the largest component in error vector 0
8 The length of the real work array actually required: 58
9 The length of the integer work array actually required: 23
14 The number of Jacobian evaluations and LU decompositions so far: 721

RSTATE values

1 The step size in t last used (successfully): 0.01
2 The step size to be attempted on the next step: 0.01
3 The current value of the independent variable which the solver has actually reached: 100.0072
4 Tolerance scale factor > 1.0 computed when a request for too much accuracy was detected: 0

2. Partial differential equations

As package deSolve includes integrators that deal efficiently with arbitrarily sparse and
banded Jacobians, it is especially well suited to solve initial value problems resulting from 1,
2 or 3-dimensional partial differential equations (PDE). These are first written as ODEs using
the method-of-lines approach.

Three special-purpose solvers are included in deSolve :

• ode.band integrates 1-dimensional problems comprizing one species,

• ode.1D integrates 1-dimensional problems comprizing many species,

• ode.2D integrates 2-dimensional problems,

8 Package deSolve: Solving Initial Value Differential Equations in R

• ode.2D integrates 2-dimensional problems.

As an example, consider the Aphid model described in Soetaert and Herman (2009). It is a
model where aphids (a pest insect) slowly diffuse and grow on a row of plants. The model
equations are:

∂N

∂t
= −∂F lux

∂x
+ g ·N

and where the diffusive flux is given by:

Flux = −D∂N
∂x

with boundary conditions

Nx=0 = Nx=60 = 0

and initial condition

Nx = 0 for x 6= 30

Nx = 1 for x = 30

In the method of lines approach, the spatial domain is subdivided in a number of boxes and
the equation is discretized as:

dNi

dt
= −Fluxi,i+1 − Fluxi−1,i

∆xi
+ g ·Ni

with the flux on the interface equal to:

Fluxi−1,i = −Di−1,i ·
Ni −Ni−1

∆xi−1,i

Note that the values of state variables (here densities) are defined in the centre of boxes (i),
whereas the fluxes are defined on the box interfaces. We refer to Soetaert and Herman (2009)
for more information about this model and its numerical approximation.

Here is its implementation in R. First the model equations are defined:

> Aphid <- function(t, APHIDS, parameters) {

+ deltax <- c (0.5, rep(1, numboxes - 1), 0.5)

+ Flux <- -D * diff(c(0, APHIDS, 0)) / deltax

+ dAPHIDS <- -diff(Flux) / delx + APHIDS * r

+

+ # the return value

+ list(dAPHIDS)

+ } # end

Then the model parameters and spatial grid are defined

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 9

> D <- 0.3 # m2/day diffusion rate

> r <- 0.01 # /day net growth rate

> delx <- 1 # m thickness of boxes

> numboxes <- 60

> # distance of boxes on plant, m, 1 m intervals

> Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

Aphids are initially only present in two central boxes:

> # Initial conditions: # ind/m2

> APHIDS <- rep(0, times = numboxes)

> APHIDS[30:31] <- 1

> state <- c(APHIDS = APHIDS) # initialise state variables

The model is run for 200 days, producing output every day; the time elapsed in seconds to
solve this 60 state-variable model is estimated (system.time):

> times <-seq(0, 200, by = 1)

> print(system.time(

+ out <- ode.band(state, times, Aphid, parms = 0, nspec = 1)

+))

user system elapsed
0.060 0.000 0.057

Matrix out consist of times (1st column) followed by the densities (next columns).

> head(out[,1:5])

time APHIDS1 APHIDS2 APHIDS3 APHIDS4
[1,] 0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
[2,] 1 2.588639e-43 1.225265e-41 5.638679e-40 2.576713e-38
[3,] 2 2.502496e-37 9.091895e-36 3.159257e-34 1.078682e-32
[4,] 3 6.880643e-33 1.773667e-31 4.338516e-30 1.046752e-28
[5,] 4 1.045758e-29 2.167113e-28 4.193684e-27 7.961462e-26
[6,] 5 2.255197e-27 4.021606e-26 6.611523e-25 1.061826e-23

> DENSITY <- out[,2:(numboxes +1)]

Finally, the output is plotted

> filled.contour(x = times, y = Distance, DENSITY, color = topo.colors,

+ xlab = "time, days", ylab = "Distance on plant, m",

+ main = "Aphid density on a row of plants")

10 Package deSolve: Solving Initial Value Differential Equations in R

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

10

20

30

40

50

Aphid density on a row of plants

time, days

D
is

ta
nc

e
on

 p
la

nt
, m

Figure 2: Solution of the 1-dimensional aphid model - see text for R -code

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 11

As the 1-D model describes only one species, it is best solved with deSolve function ode.band.
A multi-species IVP example can be found in Soetaert, Petzoldt, and Setzer (subm). For 2-D
problems, we refer to the help-files of function ode.2D.

3. Differential algebraic equations

Function daspk from package deSolve solves (relatively simple) DAEs of index1 maximal 1.

The DAE has to be specified by the residual function instead of the rates of change (as in
ODE). Consider the following simple DAE:

dy1

dt
= −y1 + y2

y1 · y2 = t

where the first equation is a differential, the second an algebraic equation. To solve it, it is
first rewritten as residual functions:

0 =
dy1

dt
+ y1 − y2

0 = y1 · y2 − t

In R we write:

> daefun<-function(t,y,dy,parameters) {

+ res1 <- dy[1] + y[1] - y[2]

+ res2 <- y[2]*y[1] - t

+

+ list(c(res1, res2))

+ }

> require(deSolve)

> yini <- c(1, 0)

> dyini <- c(1, 0)

> times <- seq(0, 10, 0.1)

> ## solver

> print(system.time(out <- daspk(y=yini,dy=dyini,times=times,res=daefun,parms=0)))

user system elapsed
0.010 0.000 0.014

> matplot(out[,1], out[,2:3], type = "l", lwd = 2,

+ main = "dae", xlab = "time", ylab = "y")

1note that many -apparently simple- DAEs are higher-index DAEs

12 Package deSolve: Solving Initial Value Differential Equations in R

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

dae

time

y

Figure 3: Solution of the differential algebraic equation model - see text for R-code

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 13

4. Integrating complex numbers, function zvode

Function zvode solves ODEs that are composed of complex variables.

We use zvode to solve the following system of 2 ODEs:

dz

dt
= i · z

dw

dt
= −i · w · w · z

where

w(0) = 1/2.1
z(0) = 1

on the interval t = [0, 2 π]

> ZODE2 <- function(Time, State, Pars) {

+ with(as.list(State), {

+ df <- 1i * f

+ dg <- -1i*g*g*f

+ return(list(c(df, dg)))

+ })

+ }

> yini <- c(f = 1+0i, g = 1/2.1+0i)

> times <- seq(0, 2*pi, length = 100)

> out <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,

+ atol = 1e-10, rtol = 1e-10)

The analytical solution is:
f(t) = exp(1i ∗ t)

and
g(t) = 1/(f(t) + 1.1)

The numerical solution, as produced by zvode matches the analytical solution:

> analytical <- cbind(f = exp(1i*times), g = 1/(exp(1i*times)+1.1))

> tail(cbind(out[,2], analytical[,1]))

[,1] [,2]
[95,] 0.9500711-0.3120334i 0.9500711-0.3120334i
[96,] 0.9679487-0.2511480i 0.9679487-0.2511480i
[97,] 0.9819287-0.1892512i 0.9819287-0.1892512i
[98,] 0.9919548-0.1265925i 0.9919548-0.1265925i
[99,] 0.9979867-0.0634239i 0.9979867-0.0634239i
[100,] 1.0000000+0.0000000i 1.0000000-0.0000000i

14 Package deSolve: Solving Initial Value Differential Equations in R

5. Making good use of the integration options

The solvers from ODEPACK can be optimised if it is known whether the problem is stiff or
non-stiff, or if the structure of the Jacobian is sparse. We repeat the example from lsode to
show how we can make good use of these options.

The model describes the time evolution of 5 state variables:

> f1 <- function (t, y, parms) {

+ ydot <- vector(len = 5)

+

+ ydot[1] <- 0.1*y[1] -0.2*y[2]

+ ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]

+ ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]

+ ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]

+ ydot[5] <- -0.3*y[4] +0.1*y[5]

+

+ return(list(ydot))

+ }

and the initial conditions and output times are:

> yini <- 1:5

> times <- 1:20

The default solution, using lsode assumes that the model is stiff, and the integrator generates
the Jacobian, which is assummed to be full :

> out <- lsode(yini, times, f1, parms = 0, jactype = "fullint")

It is possible for the user to provide the Jacobian. Especially for large problems this can
result in subtantial time savings. In a first case, the Jacobian is written as a full matrix:

> fulljac <- function (t, y, parms) {

+ jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,

+ data = c(0.1, -0.2, 0 , 0 , 0 ,

+ -0.3, 0.1, -0.2, 0 , 0 ,

+ 0 , -0.3, 0.1, -0.2, 0 ,

+ 0 , 0 , -0.3, 0.1, -0.2,

+ 0 , 0 , 0 , -0.3, 0.1))

+ return(jac)

+ }

and the model solved as:

> out2 <- lsode(yini, times, f1, parms = 0, jactype = "fullusr",

+ jacfunc = fulljac)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 15

The Jacobian matrix is banded, with one nonzero band above (up) and one below(down) the
diagonal. First we let lsode to estimate the banded Jacobian internally (jactype="bandint"):

> out3 <- lsode(yini, times, f1, parms = 0, jactype = "bandint",

+ bandup = 1, banddown = 1)

It is also possible to provide the nonzero bands of the Jacobian in a function:

> bandjac <- function (t, y, parms) {

+ jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,

+ data = c(0 , -0.2, -0.2, -0.2, -0.2,

+ 0.1, 0.1, 0.1, 0.1, 0.1,

+ -0.3, -0.3, -0.3, -0.3, 0))

+ return(jac)

+ }

in which case the model is solved as:

> out4 <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",

+ jacfunc = bandjac, bandup = 1, banddown = 1)

Finally, if the model is specified as a ”non-stiff” (by setting mf=10), there is no need to specify
the Jacobian.

> out5 <- lsode(yini, times, f1, parms = 0, mf = 10)

16 Package deSolve: Solving Initial Value Differential Equations in R

6. Troubleshooting

6.1. Avoiding numerical errors

The solvers from ODEPACK should be first choice for any problem and the the defaults of
the control parameters are reasonable for many practical problems. However, there are cases
where they may give dubious results. Consider the following Lotka-Volterra type of model:

> SPCmod <- function(t, x, parms) {

+ with(as.list(c(parms, x)), {

+ dP <- c*P - d*C*P # producer

+ dC <- e*P*C - f*C # consumer

+ res <- c(dP, dC)

+ list(res)

+ })

+ }

and with the following (biologically not very realistic)2 parameter values:

> parms <- c(c = 5, d = 0.1, e = 0.1, f = 0.1)

After specification of initial conditions and output times, the model is solved - using lsoda:

> xstart <- c(P = 0.5, C = 1)

> times <- seq(0, 190, 0.1)

> out <- as.data.frame(ode(y = xstart, times = times,

+ func = SPCmod, parms = parms))

> tail(out)

time P C
690 68.90000 -10987922703 9.461907e-10
691 69.00000 -18116085177 1.529947e-09
692 69.10000 -29868440077 -3.829030e-13
693 69.20000 -49244831403 -6.491318e-12
694 69.30000 -81191250314 4.105611e-11
695 69.39217 -128720043519 -3.589685e-06

At the end of the simulation, both producers and consumer values are Not-A-Numbers!

What has happened? Being an implicit method, lsoda generates very small negative values
for producers, from day 40 on; these negative values, small at first grow in magnitude until
they become NaNs. This is because the model equations are not intended to be used with
negative numbers, as negative concentrations are not realistic.

A quick-and-dirty solution is to reduce the maximum time step to a considerably small value
(e.g. hmax = 0.02 which, of course, reduces computational efficiency. However, a much better

2they are not realistic because producers grow unlimited with a high rate and consumers with 100 %
efficiency

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 17

solution is to think about the reason of the failure, i.e in our case the absolute accuracy
because the states can reach very small absolute values. Therefore, it helps here to reduce
atol to a very small number or even to zero:

> out <- as.data.frame(ode(y = xstart,times = times, func = SPCmod,

+ parms = parms, atol = 0))

> matplot(out[,1], out[,2:3], type="l")

It is, of course, not possible to set both, atol and rtol simultaneously to zero. As we see at
this example, it is always a good idea to test simulation results for plausibility. This can be
done by theoretical considerations or by comparing the outcome of different ODE solvers and
parametrizations.

6.2. Checking model specification

If a model outcome is obviously unrealistic or one of the deSolve functions complains about
numerical problems it is even more likely that the “numerical problem” is in fact a result of
an unrealistic model or a programming error. In such cases, playing with solver parameters
will not help. Here are some common mistakes we observed in our models and the codes of
our students:

• The function with the model definition must return a list with the derivatives of all
state variables in correct order (and optionally some global values). Check if the number
and order of your states is identical in the initial states y passed to the solver, in the
assignments within your model equations and in the returned values. Check also whether
the return value is the last statement of your model definition.

• The order of function parameters in the model definition is t, y, parms, This
order is strictly fixed, so that the deSolve solvers can pass their data, but naming is
flexible and can be adapted to your needs, e.g. time, init, params. Note also that
all three parameters must be given, even if t is not used in your model.

• Mixing of variable names: if you use the with()-construction explained above, you must
ensure to avoid naming conflicts between parameters (parms) and state variables (y).

The solvers included in package deSolve are thorougly tested, however they come with no
warranty and the user is solely responsible for their correct application. If you encounter
unexpected behavior, first check your model and read the documentation. If this doesn’t
help, feel free to ask a question to an appropriate mailing list, e.g. r-help@r-project.org.

r-help@r-project.org

18 Package deSolve: Solving Initial Value Differential Equations in R

References

Hindmarsh AC (1983). “ODEPACK, a Systematized Collection of ODE Solvers.” In
R˜Stepleman (ed.), “Scientific Computing, Vol. 1 of IMACS Transactions on Scientific
Computation,” pp. 55–64. IMACS / North-Holland, Amsterdam.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in FOR-
TRAN. The Art of Scientific Computing. Cambridge University Press, 2nd edition.

R Development Core Team (2008). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Petzoldt T, Setzer R (subm). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software.

Soetaert K, Petzoldt T, Setzer RW (2009). deSolve: General solvers for initial value problems
of ordinary differential equations (ODE), partial differential equations (PDE) and differen-
tial algebraic equations (DAE). R package version 1.5.

Soetaert K, Setzer RW (2008). R package deSolve: Writing Code in Compiled Languages.
deSolve vignette - R package version 1.5.

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO)
4401 NT Yerseke, Netherlands
E-mail: k.soetaert@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/ppages/ksoetaert

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: http://tu-dresden.de/Members/thomas.petzoldt/

R. Woodrow Setzer
National Center for Computational Toxicology
US Environmental Protection Agency
URL: http://www.epa.gov/comptox

http://www.R-project.org
mailto:k.soetaert@nioo.knaw.nl
http://www.nioo.knaw.nl/ppages/ksoetaert
mailto:thomas.petzoldt@tu-dresden.de
http://tu-dresden.de/Members/thomas.petzoldt/
http://www.epa.gov/comptox

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 19

Table 1: Summary of the functions that solve differential equations

Function Description

ode integrates systems of ordinary differential equations, assumes a full,
banded or arbitrary sparse Jacobian

ode.1D integrates systems of ODEs resulting from multicomponent 1-
dimensional reaction-transport problems

ode.2D integrates systems of ODEs resulting from 2-dimensional reaction-
transport problems

ode.3D integrates systems of ODEs resulting from 3-dimensional reaction-
transport problems

ode.band integrates systems of ODEs resulting from unicomponent 1-
dimensional reaction-transport problems

daspk solves systems of differential algebraic equations, assumes a full or
banded Jacobian

lsoda integrates ODEs, automatically chooses method for stiff or non-stiff
problems, assumes a full or banded Jacobian

lsodar same as lsoda, but includes a root-solving procedure

lsode or vode integrates ODEs, user must specify if stiff or non-stiff assumes a full
or banded Jacobian

lsodes integrates ODEs, using stiff method and assuming an arbitrary sparse
Jacobian

rk integrates ODEs, using Runge-Kutta methods (includes Runge-Kutta
4 and Euler as special cases)

rk4 integrates ODEs, using the classical Runge-Kutta 4th order method
(special code with less options than rk)

euler integrates ODEs, using Euler’s method (special code with less options
than rk)

zvode integrates ODEs composed of complex numbers, full, banded, stiff or
nonstiff

20 Package deSolve: Solving Initial Value Differential Equations in R

Table 2: Meaning of the integer return parameters in the different integration routines. If out
is the output matrix, then this vector can be retrieved by function attributes(out)$istate;
its contents is displayed by function diagnostics(out)

Nr Description

1 the return flag; the conditions under which the last call to the solver returned. For
lsoda, lsodar, lsode, lsodes, vode, rk, rk4, euler these are: 2: the solver was
successful, -1: excess work done, -2: excess accuracy requested, -3: illegal input detected,
-4: repeated error test failures, -5: repeated convergence failures, -6: error weight became
zero

2 the number of steps taken for the problem so far

3 the number of function evaluations for the problem so far

4 the number of Jacobian evaluations so far

5 the method order last used (successfully)

6 the order of the method to be attempted on the next step

7 If return flag = -4,-5: the largest component in the error vector

8 the length of the real work array actually required. (FORTRAN code)

9 the length of the integer work array actually required. (FORTRAN code)

10 the number of matrix LU decompositions so far

11 the number of nonlinear (Newton) iterations so far

12 the number of convergence failures of the solver so far

13 the number of error test failures of the integrator so far

14 the number of Jacobian evaluations and LU decompositions so far

15 the method indicator for the last succesful step, 1 = adams (nonstiff), 2 = bdf (stiff)

17 the number of nonzero elements in the sparse Jacobian

18 the current method indicator to be attempted on the next step, 1 = adams (nonstiff), 2
= bdf (stiff)

19 the number of convergence failures of the linear iteration so far

Table 3: Meaning of the double precision return parameters in the different integration
routines. If out is the output matrix, then this vector can be retrieved by function
attributes(out)$rstate; its contents is displayed by function diagnostics(out)

Nr Description

1 the step size in t last used (successfully)

2 the step size to be attempted on the next step

3 the current value of the independent variable which the solver has actually reached

4 a tolerance scale factor, greater than 1.0, computed when a request for too much accuracy
was detected

5 the value of t at the time of the last method switch, if any (only lsoda, lsodar)

	A simple ODE: chaos in the atmosphere
	Model specification
	Model parameters
	State variables
	Model equations

	Model application
	Time specification
	Model integration
	Plotting results

	Solvers for initial value problems of ordinary differential equations
	Model diagnostics

	Partial differential equations
	Differential algebraic equations
	Integrating complex numbers, function zvode
	Making good use of the integration options
	Troubleshooting
	Avoiding numerical errors
	Checking model specification

	References

