
libcurl-thread(3) libcurlthread safety libcurl-thread(3)

NAME
libcurl-thread − libcurl thread safety

Multi-threading with libcurl
libcurl is thread safe but has no internal thread synchronization. You may have to provide your own locking
should you meet any of the thread safety exceptions below.

Handles. You must never share the same handle in multiple threads.You can pass the handles around
among threads, but you must never use a single handle from more than one thread at any giv en time.

Shared objects. You can share certain data between multiple handles by using the share interface but you
must provide your own locking and setcurl_share_setopt(3) CURLSHOPT_LOCKFUNC and CURL-
SHOPT_UNLOCKFUNC.

TLS
If you are accessing HTTPS or FTPS URLs in a multi-threaded manner, you are then of course using the
underlying SSL library multi-threaded and those libs might have their own requirements on this issue.You
may need to provide one or two functions to allow it to function properly:

OpenSSL
https://www.openssl.org/docs/crypto/threads.html#DESCRIPTION

https://curl.haxx.se/libcurl/c/opensslthreadlock.html

GnuTLS
http://gnutls.org/manual/html_node/Thread-safety.html

NSS thread-safe already without anything required.

PolarSSL
Required actions unknown.

yassl Required actions unknown.

axTLS Required actions unknown.

Secure-Transport
The engine is used by libcurl in a way that is fully thread-safe.

WinSSL
The engine is used by libcurl in a way that is fully thread-safe.

wolfSSL
The engine is used by libcurl in a way that is fully thread-safe.

Other areas of caution
Signals Signals are used for timing out name resolves (during DNS lookup) - when built without using

either the c-ares or threaded resolver backends. When using multiple threads you should set the
CURLOPT_NOSIGNAL(3) option to 1L for all handles. Everything will or might work fine except
that timeouts are not honored during the DNS lookup - which you can work around by building
libcurl with c-ares support. c-ares is a library that provides asynchronous name resolves. On some
platforms, libcurl simply will not function properly multi-threaded unless this option is set.

Name resolving
gethostby* functions and other system calls. These functions, provided by your operating sys-
tem, must be thread safe. It is very important that libcurl can find and use thread safe versions of
these and other system calls, as otherwise it can’t function fully thread safe. Some operating sys-
tems are known to have faulty thread implementations. We hav e previously received problem
reports on *BSD (at least in the past, they may be working fine these days).Some operating sys-
tems that are known to have solid and working thread support are Linux, Solaris and Windows.

libcurl 13Jul 2015 1



libcurl-thread(3) libcurlthread safety libcurl-thread(3)

curl_global_* functions
These functions are not thread safe. If you are using libcurl with multiple threads it is especially
important that before use you callcurl_global_init(3) or curl_global_init_mem(3) to explicitly ini-
tialize the library and its dependents, rather than rely on the "lazy" fail-safe initialization that takes
place the first timecurl_easy_init(3) is called. For an in-depth explanation refer tolibcurl(3) sec-
tion GLOBAL CONSTANTS.

Memory functions
These functions, provided either by your operating system or your own replacements, must be
thread safe. You can usecurl_global_init_mem(3) to set your own replacement memory functions.

Non-safe
CURLOPT_DNS_USE_GLOBAL_CACHE(3) is not thread-safe.

libcurl 13Jul 2015 2


